
Chapter 5 Chapter 5

DecreaseDecrease--andand--ConquerConquer

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

5-1Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

DecreaseDecrease--andand--ConquerConquer

1.1.

Reduce problem instance to smaller instance of the same Reduce problem instance to smaller instance of the same
problemproblem

2.2.

Solve smaller instanceSolve smaller instance
3.3.

Extend solution of smaller instance to obtain solution to Extend solution of smaller instance to obtain solution to
original instanceoriginal instance

Can be implemented either topCan be implemented either top--down or bottomdown or bottom--upup
Also referred to as Also referred to as inductiveinductive oror incrementalincremental approachapproach

5-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

3 Types of Decrease and Conquer3 Types of Decrease and Conquer
Decrease by a constant Decrease by a constant (usually by 1):(usually by 1):
••

insertion sortinsertion sort

••

graph traversal algorithms (DFS and BFS)graph traversal algorithms (DFS and BFS)
••

topological sortingtopological sorting

••

algorithms for generating permutations, subsetsalgorithms for generating permutations, subsets

Decrease by a constant factorDecrease by a constant factor (usually by half)(usually by half)
••

binary search and bisection methodbinary search and bisection method

••

exponentiation by squaringexponentiation by squaring
••

multiplication multiplication àà

la russela russe

VariableVariable--size decreasesize decrease
••

EuclidEuclid’’s algorithms algorithm

••

selection by partitionselection by partition
••

NimNim--like gameslike games

5-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

WhatWhat’’s the difference?s the difference?

Consider the problem of exponentiation: Compute Consider the problem of exponentiation: Compute aann

Brute Force:Brute Force:

Divide and conquer:Divide and conquer:

Decrease by one:Decrease by one:

Decrease by constant factor:Decrease by constant factor:

Presenter�
Presentation Notes�
Try to get the students involved in coming up with these:

Brute Force:

an= a*a*a*a*...*a

 n

Divide and conquer:

an= an/2 * an/2 (more accurately, an= an/2 * a n/2│)

Decrease by one:

an= an-1* a (one hopes a student will ask what is the difference with brute force here:

 there is none in the resulting algorithm, of course, but you can arrive

 at it in two different ways)

Decrease by constant factor:

an= (an/2)2 (again, if no student asks about it, be sure to point out the difference

 with divide and conquer. Here there is a significant difference that leads to a

 much more efficient algorithm – in divide and conquer we recompute an/2�

5-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Insertion SortInsertion Sort
To sort array A[0..To sort array A[0..nn--1], sort A[0..1], sort A[0..nn--2] recursively and then 2] recursively and then

insert A[insert A[nn--1] in its proper place among the sorted A[0..1] in its proper place among the sorted A[0..nn--2]2]

Usually implemented bottom up (nonrecursively)Usually implemented bottom up (nonrecursively)

Example: Sort 6, 4, 1, 8, 5Example: Sort 6, 4, 1, 8, 5

6 | 6 | 44

1 8 51 8 5
4 6 | 4 6 | 11

8 58 5

1 4 6 | 1 4 6 | 88

55
1 4 6 8 | 1 4 6 8 | 55
1 4 5 6 81 4 5 6 8

5-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Pseudocode of Insertion Sort Pseudocode of Insertion Sort

5-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Analysis of Insertion SortAnalysis of Insertion Sort
Time efficiencyTime efficiency
CCworstworst ((nn) =) = nn((nn--1)/2 1)/2 ∈∈

ΘΘ((nn22))

CCavgavg

((nn)) ≈≈

nn22/4 /4 ∈∈

ΘΘ((nn22))

CCbestbest ((nn) =) = nn --

1 1 ∈∈

ΘΘ((nn))

(also fast on almost sorted arrays)(also fast on almost sorted arrays)

Space efficiency: inSpace efficiency: in--placeplace

Stability: yesStability: yes

Best elementary sorting algorithm overallBest elementary sorting algorithm overall

Binary insertion sortBinary insertion sort

5-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Graph TraversalGraph Traversal

Many problems require processing all graph vertices (and Many problems require processing all graph vertices (and
edges) in systematic fashionedges) in systematic fashion

Graph traversal algorithmsGraph traversal algorithms::

••

DepthDepth--first search (DFS)first search (DFS)

••

BreadthBreadth--first search (BFS)first search (BFS)

5-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

DepthDepth--First Search (DFS) First Search (DFS)

Visits graphVisits graph’’s vertices by always moving away from lasts vertices by always moving away from last
visited vertex to unvisited one, backtracks if no adjacentvisited vertex to unvisited one, backtracks if no adjacent
unvisited vertex is available.unvisited vertex is available.

Uses a stackUses a stack
••

a vertex is pushed onto the stack when ita vertex is pushed onto the stack when it’’s reached for the s reached for the
first timefirst time

••

a vertex is popped off the stack when it becomes a dead a vertex is popped off the stack when it becomes a dead
end, i.e., when there is no adjacent unvisited vertexend, i.e., when there is no adjacent unvisited vertex

““RedrawsRedraws”” graph in treegraph in tree--like fashion (with tree edges andlike fashion (with tree edges and
back edges for undirected graph)back edges for undirected graph)

5-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Pseudocode of DFSPseudocode of DFS

5-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Example: DFS traversal of undirected graphExample: DFS traversal of undirected graph

a b

e f

c d

g h

DFS traversal stack:DFS traversal stack: DFS tree:DFS tree:

Presenter�
Presentation Notes�
Traversal using alphabetical order of vertices. Work through this example in detail,

showing the traversal by highlighting edges on the graph and showing how the stack

evolves:

 8 h 3

 7 d 4 stack shown growing upwards

 4 e 1 6 c 5 number on left is order that vertex was pushed onto stack

 3 f 2 5 g 6 number on right is order that vertex was popped from stack

 2 b 7 overlap is because after e, f are popped off stack, g and c

 1 a 8 are pushed onto stack in their former locations.

order pushed onto stack: a b f e g c d h

order popped from stack: e f h d c g b a

* show dfs tree as it gets constructed, back edges�

5-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Notes on DFSNotes on DFS

DFS can be implemented with graphs represented as:DFS can be implemented with graphs represented as:
••

adjacency matrices: adjacency matrices: ΘΘ((VV22))

••

adjacency lists: adjacency lists: ΘΘ(|(|V|V|+|E|)+|E|)

Yields two distinct ordering of vertices:Yields two distinct ordering of vertices:
••

order in which vertices are first encountered (pushed onto stackorder in which vertices are first encountered (pushed onto stack))

••

order in which vertices become deadorder in which vertices become dead--ends (popped off stack)ends (popped off stack)

Applications:Applications:
••

checking connectivity, finding connected componentschecking connectivity, finding connected components

••

checking acyclicitychecking acyclicity
••

finding articulation points and biconnected componentsfinding articulation points and biconnected components

••

searching statesearching state--space of problems for solution (AI)space of problems for solution (AI)

5-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

BreadthBreadth--first search (BFS)first search (BFS)

Visits graph vertices by moving across to all the neighbors Visits graph vertices by moving across to all the neighbors
of last visited vertexof last visited vertex

Instead of a stack, BFS uses a queueInstead of a stack, BFS uses a queue

Similar to levelSimilar to level--byby--level tree traversallevel tree traversal

““RedrawsRedraws”” graph in treegraph in tree--like fashion (with tree edges and like fashion (with tree edges and
cross edges for undirected graph)cross edges for undirected graph)

5-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Pseudocode of BFSPseudocode of BFS

5-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Example of BFS traversal of undirected graphExample of BFS traversal of undirected graph

BFS traversal queue:BFS traversal queue:

a b

e f

c d

g h

BFS tree:BFS tree:

5-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Notes on BFSNotes on BFS

BFS has same efficiency as DFS and can be implemented BFS has same efficiency as DFS and can be implemented
with graphs represented as:with graphs represented as:
••

adjacency matrices: adjacency matrices: ΘΘ((VV22))

••

adjacency lists: adjacency lists: ΘΘ(|(|V|V|+|E|)+|E|)

Yields single ordering of vertices (order added/deleted from Yields single ordering of vertices (order added/deleted from
queue is the same)queue is the same)

Applications: same as DFS, but can also find paths from a Applications: same as DFS, but can also find paths from a
vertex to all other vertices with the smallest number of vertex to all other vertices with the smallest number of
edgesedges

5-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Dags and Topological SortingDags and Topological Sorting
A A dagdag: a directed acyclic graph, i.e. a directed graph with no (direc: a directed acyclic graph, i.e. a directed graph with no (directed) ted)
cyclescycles

Arise in modeling many problems that involve prerequisiteArise in modeling many problems that involve prerequisite
constraints (construction projects, document version control)constraints (construction projects, document version control)

Vertices of a dag can be linearly ordered so that for every edgeVertices of a dag can be linearly ordered so that for every edge
 its starting vertex is listed before its ending vertex (its starting vertex is listed before its ending vertex (topological sortingtopological sorting).).

Being a dag is also a necessary condition for topological sortinBeing a dag is also a necessary condition for topological sorting be possible. g be possible.

a b

c d

a b

c d

a daga dag not a dagnot a dag

5-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Topological Sorting ExampleTopological Sorting Example

Order the following items in a food chainOrder the following items in a food chain

fish

human

shrimp

sheep

wheatplankton

tiger

5-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

DFSDFS--based Algorithmbased Algorithm

DFSDFS--based algorithm for topological sortingbased algorithm for topological sorting
••

Perform DFS traversal, noting the order vertices are popped off Perform DFS traversal, noting the order vertices are popped off
the traversal stackthe traversal stack

••

Reverse order solves topological sorting problemReverse order solves topological sorting problem
••

Back edges encountered?Back edges encountered?→→ NOT a dag!NOT a dag!

Example:Example:

Efficiency: Efficiency:

a b

e f

c d

g h

5-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Source Removal AlgorithmSource Removal Algorithm
Source removal algorithmSource removal algorithm

Repeatedly identify and remove a Repeatedly identify and remove a sourcesource (a vertex with no incoming (a vertex with no incoming
edges) and all the edges incident to it until either no vertex iedges) and all the edges incident to it until either no vertex is left s left
(problem is solved) or there is no source among remaining vertic(problem is solved) or there is no source among remaining vertices (not es (not
a dag)a dag)

Example:Example:

Efficiency: same as efficiency of the DFSEfficiency: same as efficiency of the DFS--based algorithmbased algorithm

a b

e f

c d

g h

5-20Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

DecreaseDecrease--byby--ConstantConstant--Factor AlgorithmsFactor Algorithms

In this variation of decreaseIn this variation of decrease--andand--conquer, instance size is conquer, instance size is
reduced by the same factor (typically, 2) reduced by the same factor (typically, 2)

Examples:Examples:
••

Binary search and the method of bisectionBinary search and the method of bisection

••

Exponentiation by squaringExponentiation by squaring

••

Multiplication Multiplication àà

la russe (Russian peasant method)la russe (Russian peasant method)

••

FakeFake--coin puzzlecoin puzzle

••

Josephus problemJosephus problem

5-21Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Exponentiation by SquaringExponentiation by Squaring

The problem: Compute The problem: Compute aann where where n n is a nonnegative integeris a nonnegative integer

The problem can be solved by applying recursively the formulas:The problem can be solved by applying recursively the formulas:

For even values of For even values of nn

For odd values of For odd values of nn

a a nn = ((a a nn/2 /2))2 2 if if n n > 0 and > 0 and a a 0 0 = 1= 1

a a nn =

((a a ((nn--1)/21)/2

))2 2 aa

Recurrence: M(Recurrence: M(nn) = M() = M(⎣⎣nn/2/2⎦⎦

) + f) + f(n(n)),, where f(where f(nn) = 1 or 2,) = 1 or 2,

M(0) = 0M(0) = 0

Master Theorem: Master Theorem: M(M(nn))

∈∈

ΘΘ(log (log nn) =) = ΘΘ((bb) where) where b = b = ⎡⎡loglog22

((n+n+1)1)⎤⎤

5-22Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Russian Peasant MultiplicationRussian Peasant Multiplication

The problem: Compute the product of two positive integersThe problem: Compute the product of two positive integers

Can be solved by a decreaseCan be solved by a decrease--byby--half algorithm based on the half algorithm based on the
following formulas.following formulas.

For even values of For even values of nn::

For odd values of For odd values of nn::

nn * * mm = * 2= * 2mm

n n * * mm = * 2= * 2m + m m + m if if nn > 1 and > 1 and m m if if n n = 1 = 1

n n
22

nn ––

1 1
22

5-23Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Example of Russian Peasant MultiplicationExample of Russian Peasant Multiplication

Compute 20 Compute 20 * 26* 26
n mn m
20 2620 26
10 5210 52
5 104 1045 104 104
2 208 +2 208 +
1 416 4161 416 416

520520

Note:Note:

Method reduces to adding Method reduces to adding mm’’ss

values corresponding tovalues corresponding to
 odd odd nn’’s.s.

5-24Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

FakeFake--Coin Puzzle (simpler version)Coin Puzzle (simpler version)

There are There are nn identically looking coins one of which is fake. identically looking coins one of which is fake.
There is a balance scale but there are no weights; the scale canThere is a balance scale but there are no weights; the scale can

 tell whether two sets of coins weigh the same and, if not, whichtell whether two sets of coins weigh the same and, if not, which
 of the two sets is heavier (but not by how much). Design an of the two sets is heavier (but not by how much). Design an

efficient algorithm for detecting the fake coin. Assume that efficient algorithm for detecting the fake coin. Assume that
the fake coin is known to be lighter than the genuine ones.the fake coin is known to be lighter than the genuine ones.

Decrease by factor 2 algorithmDecrease by factor 2 algorithm

Decrease by factor 3 algorithm Decrease by factor 3 algorithm

5-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

VariableVariable--SizeSize--Decrease AlgorithmsDecrease Algorithms

In the variableIn the variable--sizesize--decrease variation of decreasedecrease variation of decrease--andand--conquer,conquer,
instance size reduction varies from one iteration to another instance size reduction varies from one iteration to another

Examples:Examples:
••

EuclidEuclid’’s algorithm for greatest common divisors algorithm for greatest common divisor

••

PartitionPartition--based algorithm for selection problembased algorithm for selection problem

••

Interpolation searchInterpolation search

••

Some algorithms on binary search treesSome algorithms on binary search trees

••

Nim and NimNim and Nim--like gameslike games

5-26Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

EuclidEuclid’’s algorithm s algorithm is is based on repeated application of equalitybased on repeated application of equality
gcd(gcd(m, nm, n) = gcd() = gcd(n, m n, m mod mod nn))

Ex.: Ex.: gcd(80,44) = gcd(44,36) = gcd(36, 12) = gcd(12,0) = 12gcd(80,44) = gcd(44,36) = gcd(36, 12) = gcd(12,0) = 12

One can One can prove prove that the sizethat the size, , measured by the second numbermeasured by the second number,,
decreases at least by half after two consecutive iterationsdecreases at least by half after two consecutive iterations. .
HenceHence, T(, T(nn)) ∈∈

O(log O(log nn))

EuclidEuclid’’s Algorithms Algorithm

5-27Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Selection ProblemSelection Problem

Find the Find the kk--th smallest element in a list of th smallest element in a list of nn numbersnumbers
k = k = 1 or 1 or k k = = nn

medianmedian: : kk = = ⎡⎡n/2n/2⎤⎤
Example: Example: 4, 1, 10, 9, 7, 12, 8, 2, 154, 1, 10, 9, 7, 12, 8, 2, 15

medianmedian

= ?= ?

The median is used in statistics as a measure of an averageThe median is used in statistics as a measure of an average
value of a sample. In fact, it is a better (more robust) indicavalue of a sample. In fact, it is a better (more robust) indicatortor
than the mean, which is used for the same purpose.than the mean, which is used for the same purpose.

5-28Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Digression: Post Office Location ProblemDigression: Post Office Location Problem

Given Given n n village locations along a straight highway, where should village locations along a straight highway, where should
a new post office be located to minimize the average distance a new post office be located to minimize the average distance
from the villages to the post office?from the villages to the post office?

5-29Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Algorithms for the Selection ProblemAlgorithms for the Selection Problem
The sortingThe sorting--based algorithm: Sort and return the based algorithm: Sort and return the kk--th elementth element

 Efficiency (if sorted by mergesort): Efficiency (if sorted by mergesort): ΘΘ((nnlog log nn))

A faster algorithm is based on using the quicksortA faster algorithm is based on using the quicksort--like partition of the list. like partition of the list.
Let Let s s be a split position obtained by a partition:be a split position obtained by a partition:

Assuming that the list is indexed from 1 to Assuming that the list is indexed from 1 to nn::
If If s = ks = k, the problem is solved;, the problem is solved;
if if s > ks > k, look for the , look for the kk--th smallest elem. in the left part;th smallest elem. in the left part;

 if if s < ks < k, look for the (, look for the (kk--ss))--th smallest elem. in the right part.th smallest elem. in the right part.

Note: The algorithm can simply continue untilNote: The algorithm can simply continue until

s =s = kk..

s
all are ≤

A[s] all are ≥

A[s]

5-30Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Tracing the Median / Selection AlgorithmTracing the Median / Selection Algorithm

Example: 4 1 10 9 7 12 8 2 15Example: 4 1 10 9 7 12 8 2 15

Here:Here:

nn = 9, = 9, kk = = ⎡⎡9/29/2⎤⎤

= 5= 5

array index 1 2 3 4 5 6 7 8 9array index 1 2 3 4 5 6 7 8 9
44

1 1 1010 9 7 12 8 9 7 12 8 22 1515

44

1 2 9 7 12 8 10 151 2 9 7 12 8 10 15
2 1 2 1 44

9 7 12 8 10 15 9 7 12 8 10 15 ------

ss=3 < =3 < kk=5=5

99

7 7 1212 88 10 1510 15
99

7 8 12 10 157 8 12 10 15

8 7 8 7 99

12 10 15 12 10 15 ------

ss=6 > =6 > kk=5 =5
88

77

77

88

ss==kk=5=5
Solution: median is 8Solution: median is 8

5-31Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Efficiency of the PartitionEfficiency of the Partition--based Algorithmbased Algorithm

Average case (average split in the middle): Average case (average split in the middle):

C(C(nn) = C() = C(nn/2)+(/2)+(nn+1) C(+1) C(nn)) ∈∈

ΘΘ((nn))

Worst case (degenerate split): C(Worst case (degenerate split): C(nn)) ∈∈

ΘΘ((nn22))

A more sophisticated choice of the pivot leads to a complicated A more sophisticated choice of the pivot leads to a complicated
algorithm with algorithm with ΘΘ((nn) worst) worst--case efficiency.case efficiency.

5-32Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

index

value

A[r]

v

A[l]

l x r

.

.

Interpolation SearchInterpolation Search

Searches a sorted array similar to binary search but estimates Searches a sorted array similar to binary search but estimates
location of the search key in location of the search key in AA[[l..rl..r] by using its value] by using its value v.v.
Specifically, the values of the arraySpecifically, the values of the array’’s elements are assumed to s elements are assumed to
grow linearly from grow linearly from AA[[ll] to] to AA[[rr] and the location of] and the location of v v is is
estimated as the estimated as the xx--coordinate of the point on the straight line coordinate of the point on the straight line
through (through (l, l, A[A[ll]) and (]) and (r, r, A[A[rr]) whose]) whose yy--coordinate is coordinate is vv::

xx = = ll + + ⎣⎣((v v --

A[A[ll])(])(rr --

ll)/(A[)/(A[rr]] ––

A[A[ll])])⎦⎦

5-33Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Analysis of Interpolation SearchAnalysis of Interpolation Search
EfficiencyEfficiency

average case: C(average case: C(nn))

< log< log22

loglog22

nn + 1+ 1

worst case: C(worst case: C(nn) =) = nn

Preferable to binary search only for VERY large arrays Preferable to binary search only for VERY large arrays
and/or expensive comparisonsand/or expensive comparisons

Has a counterpart, the Has a counterpart, the method of false positionmethod of false position ((regula falsiregula falsi),),
for solving equations in one unknown (Sec. 12.4)for solving equations in one unknown (Sec. 12.4)

5-34Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Binary Search Tree AlgorithmsBinary Search Tree Algorithms

Several algorithms on BST requires recursive processing of Several algorithms on BST requires recursive processing of
just one of its subtrees, e.g.,just one of its subtrees, e.g.,

SearchingSearching

Insertion of a new keyInsertion of a new key

Finding the smallest (or the largest) keyFinding the smallest (or the largest) key

k

<k >k

5-35Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Searching in Binary Search TreeSearching in Binary Search Tree

Algorithm Algorithm BTSBTS((xx, , vv))
//Searches for node with key equal to //Searches for node with key equal to v v in BST rooted at node in BST rooted at node xx

if if xx = NIL return = NIL return --11
else ifelse if

vv = = KK((xx))

return return xx

else if else if v < Kv < K((xx))

return return BTSBTS((leftleft((xx)), v, v))
else return else return BTSBTS((rightright((xx)), v, v))

EfficiencyEfficiency

worst case: worst case: C(C(nn) =) = nn
average case: average case: C(C(nn)) ≈≈

2ln 2ln n n ≈≈

1.391.39loglog22

nn

5-36Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

OneOne--Pile NimPile Nim

There is a pile of There is a pile of n n chips. Two players take turn by removing chips. Two players take turn by removing
from the pile at least 1 and at most from the pile at least 1 and at most m m chips. (The number of chips. (The number of
chips taken can vary from move to move.) The winner is the chips taken can vary from move to move.) The winner is the
player that takes the last chip. Who wins the game player that takes the last chip. Who wins the game ––

the the

player moving first or second, if both player make the best player moving first or second, if both player make the best
moves possible?moves possible?

ItIt’’s a good idea to analyze this and similar games s a good idea to analyze this and similar games ““backwardsbackwards””, ,
i.e., starting with i.e., starting with n = n = 0, 1, 2, 0, 1, 2, ……

5-37Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 5

Partial Graph of OnePartial Graph of One--Pile Nim with Pile Nim with m m = 4 = 4

0 5

1

2

3

4

10

6

7

8

9

Vertex numbers indicate Vertex numbers indicate nn, the number of chips in the pile. The , the number of chips in the pile. The
losing position for the player to move are circled. Only winninlosing position for the player to move are circled. Only winning g
moves from a winning position are shown (in bold).moves from a winning position are shown (in bold).

GeneralizationGeneralization: The player moving first wins iff : The player moving first wins iff n n is not a is not a
multiple of 5 (more generally, multiple of 5 (more generally, mm+1); the+1); the

 winning move is to take winning move is to take n n mod 5 (mod 5 (n n mod (mod (mm+1))+1))
 chips on every move.chips on every move.

	Slide Number 1
	Decrease-and-Conquer
	3 Types of Decrease and Conquer
	What’s the difference?
	Insertion Sort
	Pseudocode of Insertion Sort
	Analysis of Insertion Sort
	Graph Traversal
	Depth-First Search (DFS)
	Pseudocode of DFS
	Example: DFS traversal of undirected graph
	Notes on DFS
	Breadth-first search (BFS)
	Pseudocode of BFS
	Example of BFS traversal of undirected graph
	Notes on BFS
	Dags and Topological Sorting
	Topological Sorting Example
	DFS-based Algorithm
	Source Removal Algorithm
	Decrease-by-Constant-Factor Algorithms
	Exponentiation by Squaring
	Russian Peasant Multiplication
	Example of Russian Peasant Multiplication
	Fake-Coin Puzzle (simpler version)
	Variable-Size-Decrease Algorithms
	Euclid’s Algorithm
	Selection Problem
	Digression: Post Office Location Problem
	Algorithms for the Selection Problem
	Tracing the Median / Selection Algorithm
	Efficiency of the Partition-based Algorithm
	Interpolation Search
	Analysis of Interpolation Search
	Binary Search Tree Algorithms
	Searching in Binary Search Tree
	One-Pile Nim
	Partial Graph of One-Pile Nim with m = 4

