Chapter 5

introdhction to The Desi.g.'n- & _
Decrease-and-Conquer - Analysis of Algorithms

PEARSON

Addison
LGB Copyright © 2007 Pearson Addison-Wesley. All rights reserved.




Decrease-and-Conquer

1. Reduce problem instance to smaller instance of the same
problem

2. Solve smaller instance

3. Extend solution of smaller instance to obtain solution to
original instance

o)

Can be implemented either top-down or bottom-up
Also referred to as inductive or incremental approach

o)

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-1




3 Types of Decrease and Conquer

& Decrease by a constant (usually by 1):
 insertion sort
» graph traversal algorithms (DFS and BFS)
* topological sorting
 algorithms for generating permutations, subsets

& Decrease by a constant factor (usually by half)
» binary search and bisection method
* exponentiation by squaring
 multiplication a la russe

& Variable-size decrease
* Euclid’s algorithm
» selection by partition
* Nim-like games

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-2




What’s the difference?

Consider the problem of exponentiation: Compute a"

) Brute Force:
& Divide and conquer:
& Decrease by one:

& Decrease by constant factor:

. . Copyright © 2007 Pearson Addison-Wesley. Al rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5

5-3


Presenter�
Presentation Notes�
Try to get the students involved in coming up with these:

Brute Force:

an= a*a*a*a*...*a

                 n

Divide and conquer:

an= an/2 * an/2  (more accurately, an= an/2 * a n/2│) 



Decrease by one:

an= an-1* a            (one hopes a student will ask what is the difference with brute force here:

                                   there is none in the resulting algorithm, of course, but you can arrive 

                                   at it in two different ways)



Decrease by constant factor:

an= (an/2)2                   (again, if no student asks about it, be sure to point out the difference 

                               with divide and conquer. Here there is a significant difference that leads to a 

                               much more efficient algorithm – in divide and conquer we recompute an/2�


Insertion Sort

Ny
To sort array A[0..n-1], sort A[0..n-2] recursively and then ~ '!
insert A[n-1] in its proper place among the sorted A[0..n-2]

& Usually implemented bottom up (nonrecursively)

Example: Sort 6, 4, 1, 8, 5

6
4
1
1
1

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 54




Pseudocode of Insertion Sort

ALGORITHM InsertionSort(A[0..n — 1])

/[Sorts a given array by insertion sort
/[Input: An array A|0..n — 1] of n orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
fori < 1ton —1do
v < Ali]
j<«—i—1
while j > 0 and A[j] > v do
AL +1] < A[J]
J<Jj—1
Alj+1] <« v

..> Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 55



Analysis of Insertion Sort

& Time efficiency

Cuorst(N) = N(N-1)/2 € O(n?)

C,\(N) = N*/4 € O(N%)

111

Ciei(N) =n-1 € O(n) (also fast on almost sorted arrays)

& Space efficiency: in-place

& Stability: yes

& Best elementary sorting algorithm overall

== & Binary insertion sort

. ... Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5

5-6



Graph Traversal

Lrr
Many problems require processing all graph vertices (and
edges) in systematic fashion

Graph traversal algorithms:

* Depth-first search (DFS)

* Breadth-first search (BFS)

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-7




Depth-First Search (DFS)

11m
& Visits graph’s vertices by always moving away from last
visited vertex to unvisited one, backtracks if no adjacent

unvisited vertex is available.

) Uses a stack

» a vertex is pushed onto the stack when it’s reached for the
first time

» a vertex is popped off the stack when it becomes a dead
end, i.e., when there is no adjacent unvisited vertex

& “Redraws” graph in tree-like fashion (with tree edges and
back edges for undirected graph)

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-8



Pseudocode of DFS

ALGORITHM DFS(G)

/Mmplements a depth-first search traversal of a given graph
/[Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
//in the order they’ve been first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited™
count < ()
for each vertex vin V do
if v is marked with 0

dfs(v)

dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v by a path
/land numbers them in the order they are encountered
/Ivia global variable count
count < count + 1; mark v with count
for each vertex w in V adjacent to v do

if w is marked with 0

dfs(w)

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-9



Example: DFS traversal of undirected graph

DFS traversal stack: DFS tree:

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-10


Presenter�
Presentation Notes�
Traversal using alphabetical order of vertices. Work through this example in detail,

showing the traversal by highlighting edges on the graph and showing how the stack

evolves:

                        8 h 3

                        7 d 4                  stack shown growing upwards

         4 e 1       6 c 5                  number on left is order that vertex was pushed onto stack

         3 f 2        5 g 6                  number on right is order that vertex was popped from stack

         2 b 7                                overlap is because after e, f are popped off stack, g and c

         1 a 8                                  are pushed onto stack in their former locations.



order pushed onto stack: a b f e g c d h

order popped from stack: e f h d c g b a



* show dfs tree as it gets constructed, back edges�


Notes on DFS

& DFS can be implemented with graphs represented as:
« adjacency matrices: @(V?)
» adjacency lists: O(|V|+|E|)

& Yields two distinct ordering of vertices:
e order in which vertices are first encountered (pushed onto stack)
e order in which vertices become dead-ends (popped off stack)

& Applications:
* checking connectivity, finding connected components
» checking acyclicity
» finding articulation points and biconnected components
» searching state-space of problems for solution (Al)

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-11



Breadth-first search (BFS)

& Visits graph vertices by moving across to all the neighbors
of last visited vertex

& Instead of a stack, BFS uses a queue

& Similar to level-by-level tree traversal

& “Redraws” graph in tree-like fashion (with tree edges and
g
cross edges for undirected graph)

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-12




Pseudocode of BFS

ALGORITHM BFS(G)

/Implements a breadth-first search traversal of a given graph
/Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
//in the order they have been visited by the BFS traversal
mark each vertex in V with 0 as a mark of being “unvisited™
count <0
for each vertex v in V do

if v 1s marked with O

Dfs(v)

bfsiv)
/Ivisits all the unvisited vertices connected to vertex v by a path
/land assigns them the numbers in the order thev are visited
/Ivia global variable couni
count <« count + 1; mark v with count and initialize a queue with v
while the queue is not empty do

for cach vertex w in V adjacent to the front vertex do

if w is marked with O
count < count + 1; mark w with count
add w to the queue
remove the front vertex from the queue

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-13



Example of BFS traversal of undirected graph

BFS traversal queue: BFS tree:

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-14



Notes on BFS

Iy
& BFS has same efficiency as DFS and can be implemente.d. o
with graphs represented as:
« adjacency matrices: @(V?)
 adjacency lists: O(|V|+|E|)

& Yields single ordering of vertices (order added/deleted from
queue is the same)

& Applications: same as DFS, but can also find paths from a
vertex to all other vertices with the smallest number of
edges

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-15



Dags and Topological Sorting

A dag: a directed acyclic graph, i.e. a directed graph with no (directed)
cycles

a dag not a dag

Arise in modeling many problems that involve prerequisite
constraints (construction projects, document version control)

Vertices of a dag can be linearly ordered so that for every edge _
its starting vertex is listed before its ending vertex (topological sorting).
Being a dag is also a necessary condition for topological sorting be possible.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-16



Topological Sorting Example

e

Order the following items in a food chain

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-17



DFS-based Algorithm

111

* Perform DFS traversal, noting the order vertices are popped off
the traversal stack

DES-based algorithm for topological sorting

* Reverse order solves topological sorting problem
 Back edges encountered?— NOT a dag!

Example:

L
o« Efficiency:
.

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-18




Source Removal Algorithm

Source removal algorithm

Repeatedly identify and remove a source (a vertex with no incoming
edges) and all the edges incident to it until either no vertex is left
(problem is solved) or there is no source among remaining vertices (not
a dag)

Example:

P - Efficiency: same as efficiency of the DFS-based algorithm
L
. Iy

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-19




Decrease-by-Constant-Factor Algorithms
'y

In this variation of decrease-and-conquer, instance size is
reduced by the same factor (typically, 2)

Examples:
Binary search and the method of bisection

Exponentiation by squaring
Multiplication a la russe (Russian peasant method)
Fake-coin puzzle

Josephus problem

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-20



Exponentiation by Squaring

The problem: Compute a" where n is a nonnegative integer

The problem can be solved by applying recursively the formulas:

For even values of n

a"=(a")® ifn>0 and a’=1

For odd values of n

an=(amhz)g
Recurrence: M(n) = M(Ln/2]) + f(n), where f(n) =1 or 2,
M(@0)=0

N
L : Master Theorem: M(n) € O(log n) = O(b) where b = rlng(anl)_'
N

. _ Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-21




Russian Peasant Multiplication

The problem: Compute the product of two positive integers

Can be solved by a decrease-by-half algorithm based on the
following formulas.

For even values of n;

nN*m = 2 *2m

For odd values of n:

n*m = ngl *2m + m if n>1 and mif n=1

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-22




Example of Russian Peasant Multiplication

e

Compute 20 * 26

n m

20 26

10 52

S 104 104
2 208 +

1 416 416

520

Note: Method reduces to adding m’s values corresponding to
R odd n’s.

. . Copyright © 2007 Pearson Addison-Wesley. Al rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-23



Fake-Coin Puzzle (simpler version)

2 2ay
There are n identically looking coins one of which is fake.

There is a balance scale but there are no weights; the scale can
tell whether two sets of coins weigh the same and, if not, which
of the two sets is heavier (but not by how much). Design an
efficient algorithm for detecting the fake coin. Assume that

the fake coin is known to be lighter than the genuine ones.

Decrease by factor 2 algorithm

Decrease by factor 3 algorithm

. _ Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-24




Variable-Size-Decrease Algorithms

In the variable-size-decrease variation of decrease-and-conquer,

instance size reduction varies from one iteration to another

Examples:
o Euclid’s algorithm for greatest common divisor

Partition-based algorithm for selection problem
Interpolation search

Some algorithms on binary search trees

Nim and Nim-like games

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5

5-25




Euclid’s Algorithm

Euclid’s algorithm is based on repeated application of equality
gcd(m, n) = ged(n, m mod N)

Ex.: gcd(80,44) = gcd(44,36) = gcd(36, 12) = gcd(12,0) =12
One can prove that the size, measured by the second number,

decreases at least by half after two consecutive iterations.
Hence, T(n) € O(log n)

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-26




Selection Problem

Find the k-th smallest element in a list of N numbers

 K=1lork=n

9 median: k =[n/2]
Example: 4, 1, 10, 9, 7, 12, 8, 2, 15 median=?

The median is used in statistics as a measure of an average
value of a sample. In fact, it is a better (more robust) indicator
than the mean, which is used for the same purpose.

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-27




Digression: Post Office Location Problem

111

Given n village locations along a straight highway, where should
a new post office be located to minimize the average distance
from the villages to the post office?

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-28




Algorithms for the Selection Problem

The sorting-based algorithm: Sort and return the k-th element
Efficiency (if sorted by mergesort): ©(nlog n)

A faster algorithm is based on using the quicksort-like partition of the list.
Let s be a split position obtained by a partition:

all are < A[S] . all are > A[S]

Assuming that the list is indexed from 1 to n:
If s = k, the problem is solved;

if s > Kk, look for the k-th smallest elem. in the left part;
if s <Kk, look for the (k-s)-th smallest elem. in the right part.

Note: The algorithm can simply continue until s = k.

. .. Copyright © 2007 Pearson Addison-Wesley. Al rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-29




Tracing the Median / Selection Algorithm

Example: 41109 7 12 8 2 15

arrayindex 1 2 3 4 § 6 7 8 9
4 110 9 712 8 2 15
4 12 9 712 8 10 15
214 9 712 810 15 ---s=3<k=5
9 712 8 10 15
9 7 8 1210 15
8 7 9 1210 15 ---5=6 > k=5
8 7
7 8 --- 5=k=5
. Solution: median is 8
.y
.y

. ... Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5

111

Here:n=9,k=[9/2]=5

5-30



Efficiency of the Partition-based Algorithm
n

Average case (average split in the middle):

C(n) = C(n/2)+(n+1) C(n) € O(n)
Worst case (degenerate split): C(n) € O(n?)

A more sophisticated choice of the pivot leads to a complicated
algorithm with ®(n) worst-case efficiency.

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-31




Interpolation Search
Ny

Searches a sorted array similar to binary search but estimates
location of the search key in A[l..r] by using its value v.
Specifically, the values of the array’s elements are assumed to
ogrow linearly from A[l] to A[r] and the location of v is
estimated as the X-coordinate of the point on the straight line

through (I, A[l]) and (r, A[r]) whose y-coordinate is V:

value
A

Alr]

x=1+L(v- A - D/IA[r] - A[l] )

A[l]

» index

| X r

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-32



Analysis of Interpolation Search

§ Efficiency sEEE

average case: C(n) <log, log, n +1

worst case: C(nN) =n

&, Preferable to binary search only for VERY large arrays
and/or expensive comparisons

& Has a counterpart, the method of false position (regula falsi),
for solving equations in one unknown (Sec. 12.4)

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-33




Binary Search Tree Algorithms

L
Several algorithms on BST requires recursive processing of
just one of its subtrees, e.g.,

& Searching @

& Insertion of a new key

& Finding the smallest (or the largest) key

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-34




Searching in Binary Search Tree

LIr
Algorithm BTS(X, V)
//Searches for node with key equal to v in BST rooted at node X

if X =NIL return -1

else if v=K(X) return X

else if v < K(X) return BTS(left(x), v)

else return BTS(right(x), v)

Efficiency

worst case: C(n)=n
average case: C(n) = 2ln n = 1.391o0g, n

. . Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-35




One-Pile Nim

There is a pile of n chips. Two players take turn by removing
from the pile at least 1 and at most m chips. (The number of
chips taken can vary from move to move.) The winner is the
player that takes the last chip. Who wins the game — the
player moving first or second, if both player make the best
moves possible?

It’s a good idea to analyze this and similar games “backwards”,
i.e., starting withn=0,1, 2, ...

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-36



Vertex numbers indicate n, the number of chips in the pile. The
losing position for the player to move are circled. Only winning
moves from a winning position are shown (in bold).

Generalization: The player moving first wins iff n is not a
multiple of 5 (more generally, m+1); the
. winning move is to take n mod 5 (N mod (M+1))
i chips on every move.

. _ Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2" ed., Ch. 5 5-37




	Slide Number 1
	Decrease-and-Conquer
	3 Types of Decrease and Conquer
	What’s the difference?
	Insertion Sort
	Pseudocode of Insertion Sort 
	Analysis of Insertion Sort
	Graph Traversal
	Depth-First Search (DFS) 
	Pseudocode of DFS
	Example: DFS traversal of undirected graph
	Notes on DFS
	Breadth-first search (BFS)
	Pseudocode of BFS
	Example of BFS traversal of undirected graph
	Notes on BFS
	Dags and Topological Sorting
	Topological Sorting Example
	DFS-based Algorithm
	Source Removal Algorithm
	Decrease-by-Constant-Factor Algorithms
	Exponentiation by Squaring
	Russian Peasant Multiplication
	Example of Russian Peasant Multiplication
	Fake-Coin Puzzle (simpler version)
	Variable-Size-Decrease Algorithms
	Euclid’s Algorithm
	Selection Problem
	Digression: Post Office Location Problem
	Algorithms for the Selection Problem
	Tracing the Median / Selection Algorithm
	Efficiency of the Partition-based Algorithm
	Interpolation Search
	Analysis of Interpolation Search
	Binary Search Tree Algorithms
	Searching in Binary Search Tree
	One-Pile Nim
	Partial Graph of One-Pile Nim with m = 4 

