Compactness

Definition 1. A cover or a covering of a topological space X is a family C of
subsets of X whose union is X. A subcover of a cover C is a subfamily of C

which is a cover of X. An open cover of X is a cover consisting of open sets.

Definition 2. A topological space X is said to be compact if every open cover
of X has a finite subcover. A subset S of X is said to be compact if S is

compact with respect to the subspace topology.

Theorem 3. A subset S of a topological space X is compact if and only if

every open cover of S by open sets in X has a finite subcover.

Proof. (=) Assume that S is a compact subset of a topology space X. Let
{G, | @ € A} be a collection of open subset of X such that S C Uu,epGy. Let
O, = G,N S for each a € A. Then O, is open in S for each a € A and

UaeAOa = Uaea(Ga NS) = (UpeaGa) NS = S.

Thus {O, | @ € A} is an open cover of S. It follows that {O, | a € A}

contains a finite subcover {O,,, Oq,, ..., 04, }. Hence
S = U100, = UL1(0a, N S) = (UL, Go,) NS,

Thus S C UL, G,,.
(<) Let {O, | @ € A} be an open cover of (S, 7). Then, for each a € A,
there exists an open set GG, in X such that O, = G, N S. Thus

S = UaEAOa = UaEA(Ga N S) = (UaeAGa) ns.

Thus S C UuenGo. Then there is a finite subset {G,,, Gay, - - ., Ga, } such
that S C U ,G,,. It follows that

S = (U?:IGO%) ns = U?:l(GOti N S) = U?:IOCW:‘
Hence (S, 75) is compact. O

Examples.

1. Any finite set is compact. In general, (X, 7), where 7 is finite, is compact.
In particular, an indiscrete space is compact.

2. Any infinite discrete space is not compact. In fact, if X is an infinite
discrete space, then {{z} | z € X} is an open cover of X which has no finite
subcover.

3. R is not compact. The class {(—n,n) | n € N} is an open cover of R

which contains no finite subcover.



Theorem 4. A closed subset of a compact space is compact.

Proof. Let (X, 7) be a compact space and F' a closed subset of X. Let C =
{G, | @ € A} be a family of open subsets of X such that F' C UaepGo. Then

X = FUF® = (UaeaGa) U F©.

Thus C U {F*} is an open cover of X and hence it has a finite subcover
{Goy,Gayys -, Gq,,, F°}, le. X = (UL, G,,) U F°. Since F' C X it follows
that F¥ C U ,G,,. Thus {G4,,Ga,,...,Ga,} is a finite subfamily of C such
that F' C U ,G,,. Hence, F' is compact. O

Theorem 5. If A is a compact subset of a Hausdorff space X and = ¢ A,
then x and A have disjoint neighborhoods.

Proof. By the Hausdorffness of X, for each y € A, there are open neighbor-
hoods U, and V, of x and y, respectively, such that U, NV, = &. Then
{V, | y € A} is an open cover for A, which is compact. Hence there are y;, yo,

..y Yn € Asuch that A C U, V,,. Let V =U",V,, and U = N;_,U,,. Then
U and V are neighborhoods of x and A, respectively, and U NV = @. O]

Theorem 6. Any compact subset of a Hausdorff space is closed.

Proof. Let A be a compact subset of a Hausdorff space X. To show that
A° is open, let x € A°. By the previous theorem, there are neighborhoods
U and V of x and A, respectively, such that U NV = @. It follows that
x € U C Ve C A° This shows that A° is a neighborhood of x. Hence, A€ is
a neighborhood of all its elements. It follows that A€ is open and that A is
closed. O]

Theorem 7. A continuous image of a compact space is compact.

Proof. Let f: X — Y be a continuous function from a compact space X into
a space Y. By Theorem 3, it is sufficient to assume that f maps X onto Y
and we show that Y is compact. To see this, let {G, | @ € A} be an open
cover for Y. By continuity of f, it follows that f~'[G,] is open in X for each

o and
Uneaf HGa] = FHUaenGaol = fHY] = X.

Hence, {f71[G,] | @ € A} is an open cover for X. By the compactness of X,
there are oy, ag, ..., a, € A such that U™, f~1[G,,] = X. Thus

Y = fIX] = fUL f G = fIF UL Gal] € UL G,

This shows that Y is compact. O



Corollary 8. Let f : X — Y is a bijective continuous function. If X is

compact and Y is Hausdorff, then f is a homeomorphism.

Proof. Let f: X — Y be a bijective continuous function. Assume that X is
compact and Y is Hausdorff. To show that f is a homeomorphism, it suffices
to show that f is a closed map. Let F' be a closed subset of X. Then F
is compact by Theorem 4. By Theorem 7, f[F] is compact in the Hausdorff
space Y. Hence, f[F] is closed in Y by Theorem 6. O

Theorem 9. A continuous function of a compact metric space into a metric

space is uniformly continuous.

Proof. Let f: (X,d) — (Y, p) be a continuous function between metric spaces.
Assume that X is compact. To show that f is uniformly continuous, let ¢ > 0.
By continuity of f, for each x € X, there is a ¢, > 0 such that

d(y,z) < 0. = p(f(y), f(z)) <

DN ™

Then {By(z,%) | € X} is an open cover for a compact space X. Hence,
we can choose x1, x9, ..., 2, € X such that X = U?Zle(xi,é—;i). Choose
0 = tmin{d,,,dy,,...,ds,}. Now, let 2, y € X be such that d(z,y) < d.
Then z € By(x;, %) for some i. Hence, p(f(x), f(x;)) < 5. Moreover,

< 6,..

It follows that p(f(y), f(z;)) < £. By triangle inequality,

p(f(x), f(y)) < p(f (@), f(x:) + p(f (i), fy)) <e.

This shows that f is uniformly continuous. O

Next we introduce a property that measures “boundedness” of a subset of
a metric space. We say that a non-empty set A is bounded if diam(A) < oo,
i.e., there is a constant M > 0 such that d(z,y) < M for any =, y € A. This
definition of boundedness depends on the metric rather than the set itself. For
example, R with the discrete metric is bounded even though in some sense R

is “large”. The following definition of total boundedness captures this spirit.

Definition 10. A metric space (X, d) is said to be totally bounded or precom-
pact if for any € > 0, there is a finite cover of X by sets of diameter less than

E.

Theorem 11. A metric space (X, d) is totally bounded if and only if for each
€ > 0, X can be covered by finitely many e-balls.



Proof. (=) Let € > 0. Then there exist subsets A, Ay, ..., A, of X such that
diam A; < ¢ for all i € {1,2,...,n} and U ; A; = X. We may assume that
each A; is non-empty and choose z; € A;. If x € X, then x € A; for some ¢
and hence, d(z,z;) < diam(A4;) < e. This show that X = U" | By(z;, ).

(<) Let € > 0. Then there is a finite subset {z1, za, ..., z,} of X such that
X = UL By(z;, §). Let A; = By(x;, §) for each i € {1,2,...,n}. For each
a, b€ A d(a,b) < d(a,z;) +d(z;,b) < §+ 5 = 5. Hence, diam(4;) <e. O

Theorem 12. A subspace of a totally bounded metric space is totally
bounded.

Proof. Let (X, d) be a totally bounded metric space and Y a subspace of X.
Let € > 0. Then there exist A;, As,..., A, C X such that diam A; < ¢ for all
i€{1,2,...,n} and U A; = X. Then diam(A4; NY) < diam A; < ¢ for each
ie{l,2,...,n}and U, (A, NY)= (U, 4)NY =XNY =Y. O

Theorem 13. Every totally bounded subset of a metric space is bounded.

Proof. Let (X, d) be a totally bounded metric space. Then there exists a finite
subset {x1,x9,...,x,} of X such that U}, By(z;,1) = X. Let

K =max{d(z;,z;) | i,j € {1,2,...,n}} + 2.
Let x, y € X. Then = € By(x;,1) and y € By(z;,1) for some ¢, j. Thus
d(z,y) < d(z,2;) + d(z;,2;) + d(z,y) < 1+ d(z;,2;) +1 < K,
i.e. diam X < K, so X is bounded. O

In general, the converse is not true. The space R with the discrete metric
is bounded because d(x,y) < 1 for all z,y € R, but it cannot be covered by
a finitely many balls of radius % However, it is true for R™ with the usual
metric.

Theorem 14. A bounded subset of R” is totally bounded.

Proof. We will prove this theorem for the case n = 1. The proof for the case
n > 1 is similar but slightly more complicated.

By Theorem 12, it suffices to prove that a closed interval [a,b] is totally
bounded. Let ¢ > 0. Choose an n € N such that (b —a)/n < e. For i =
0,1,...,n, let

b—a

T, =a-+1 .
n

Then [a,b] = U [z;—1, x;] and diam([x;—1, 2;]) = 2, — 221 < €. O



Theorem 15. A metric space is totally bounded if and only if every sequence

in it has a Cauchy subsequence.

Proof. (<) Assume that (X, d) is not tally bounded. Then there is an € > 0
such that X cannot be covered by finitely many balls of radius €. Let 1 € X.
Then By(z1,¢) # X, so we can choose x9 € X — By(x1,¢). In general, for each
n € N, we can choose 2,41 € X —U, By(z;,¢). If m > n, then x,,, ¢ By(z,,¢),
and thus d(z,, z,) > €. It is easy to see that (x,,) has no Cauchy subsequence.

(=) Assume that (X, d) is totally bounded and let (x,) be a sequence in
(X,d). Set By = X. There exist Ay1, Ao, ..., A1, € X such that

n1
diam Ay; < 1 for all ¢ € {1,2,...,n;} and UA“ = X.
i—1

At least one of these Ay;’s, called By, must contain infinitely many terms of
(z,). Let (x11,212,...) be a subsequence of (z,) which lies entirely in Bj.
Since By C X, it is totally bounded. There are Asy, ..., As,, € B such that

n2
diam Ay; < % foralli € {1,2,...,ny} and UA% = B;.
i=1
At least one of these Ay;’s, called B,, must contain infinitely many terms of
(21n). Then diam By < % and we can choose a subsequence (g1, g, Ta3, . . . ) of
(211, 12, 13, - . . ) in By. We can continue this process. To make this argument
more precise, we will give an inductive construction.

Assume that we can choose B; C B;_; with diam B; < % and a subsequence
(.Z'il, Tio, Tigy - - - ) of (x(i—l)la T(i-1)2; T(i—1)3; - - - ) in B; for all i € {1, 2,... ,/{1—1}.
Since B,_1 € By_o C...B; C By = X, By_; is totally bounded. Then there
exist Ag1, Ago, ..., Akn, C Bi_1 such that

ng
diam Ay; < % for all j € {1,2,...,n%} and UA’“' = Bj._1.
i=1
At least one of these Ay;’s, called B, must contain infinitely many terms of
(xk—1,n). Hence By C By_;, diam By, < % and we can choose a subsequence
(Tk1, Tho, Tk, - - ) Of (T(k—1)1, T(k—1)2; T(k—1)3; - - - ) Which lies entirely in By.
Now we choose the diagonal elements (x11, %22, 233,...) from the above
subsequences. This is to guarantee that the index of the chosen subsequence
is strictly increasing. To see that it is a Cauchy subsequence of (z,,), let £ > 0.
Choose an N € N such that % < e. Let m, n € N be such that m, n > N.
Then z,,, € B,, € By and z,, € B,, C By. Thus
(T, Tnn) < diam By < % <e.

Hence (z,,) is a Cauchy subsequence of (x,,). O

5



Definition 16. A space X is said to be sequentially compact if every sequence

in X has a convergent subsequence.

Theorem 17. A metric space X is sequentially compact if and only if it is

complete and totally bounded.

Proof. (=) Let (X,d) be a sequentially compact space. By Theorem 15, it is
totally bounded because a convergent sequence is a Cauchy sequence. To see
that it is complete, let (x,,) be a Cauchy sequence in X. Since X is sequentially
compact, it has a convergent subsequence. Hence, (z,,) is convergent. It follows
that X is complete.

(<) Assume that (X, d) is totally bounded and complete. To see that X
is sequentially compact, let (x,) be a sequence in X. By Theorem 15, it has
a Cauchy subsequence (z,,). Since (X,d) is complete, (z,,) is convergent.
Hence, (x,) has a convergent subsequence. This shows that X is sequentially

compact. O

Definition 18. Let C be a cover of a metric space X. A Lebesque number for
C is a positive number A such that any subset of X of diameter less than or

equal to A is contained in some member of C.
Remark. If ) is a Lebesgue number, then so is any A’ > 0 such that A’ < A.

Example. Let X = (0,1) € R and C = {(3,1) | n > 2}. Then C is an
open cover for X, but it has no Lebesgue number. To see this, let A > 0.
Choose a positive integer n such that % < A. Let A = (0, %) C X. Then
diam(A) = % < A, but A is not contained in any member of C. Hence C has

no Lebesgue number.

Theorem 19. Every open cover of a sequentially compact metric space has a

Lebesgue number.

Proof. Let C be an open cover of a sequentially compact metric space (X, d).
Suppose that C does not have a Lebesgue number. Then for each n € N there
exists a subset B,, of X such that

1

diam(B,) < and B, ZG forall G eC.
n

For each n € N, choose z,, € B,,. Since X is sequentially compact, the sequence
(x,) contains a convergent subsequence (z,, ). Let z € X be the limit of this
subsequence. Then x € G, for some Gy € C. Since G is open, there exists
e > 0 such that By(z,e) C Gy. Since (z,,) converges to z, there exists an

integer N such that

d(xp,,x) < for any k > N.

DO | ™



Choose M € N such that ﬁ < £. Let K =max{M, N}. Then nxg > K > M.

£
5

Hence,
d(Tpy, ) < % and  x,, € By.
Moreover,
diam(B,,) < — < &
iam(B,,) < — < —=.
K Nk 2
For any y € B,,,., we have
e €
d(z,y) < d(z,Tn,) + d(xn,,y) < 5 + 5 =&
Hence y € By(z,e). Then B,, C By(x,e) C Gy. This contradicts the fact
that B,, € G for all G € C. O

Definition 20. A space X is said to satisfy the Bolzano-Weierstrass property

if every infinite subset has an accumulation point in X.
Theorem 21. In a metric space X, the following statements are equivalent:
(a) X is compact;
(b) X has the Bolzano-Weierstrass property;
(c) X is sequentially compact;
(d) X is complete and totally bounded.

Proof. We have already proved (c¢) < (d) in Theorem 17.

(a) = (b). Let (X,d) be a compact metric space and S an infinite subset
of X. Suppose that S has no accumulation point. Then for each z € X
there exists an open neighborhood V, such that V, N (S — {z}) = @. Hence,
C={V, |z € X} is an open cover of X. Since X is compact, there exists a
finite subcover {V,,, V,,,..., V., } of C. Since each ball contains at most one
point of S, X = U}, V,, contains finitely many points of S. Hence, S is finite,
contrary to the hypothesis.

(b) = (c). Assume that X has the Bolzano-Weierstrass property. To show
that X is sequentially compact, let (z,,) be a sequence in X.
Case I. The set S = {x,, | n € N} is finite. Then there is a € X such that
x, = a for infinitely many n’s. Choose n; = min{n € N | ,, = a} and for any
k> 2, let

n =min({n € N |z, =a} — {ni,ne,...,np_1}).

Then (z,,) is a constant subsequence of (z,) and hence is convergent.



Case II. The set S = {z,, | n € N} is infinite. By the assumption, S has an
accumulation point z (in X). For each n € N, By(x, =) N (S — {2}) # @; in
fact, Bq(x, =) N (S — {z}) is an infinite set. Let

ny = min{n € N |z, € By(z,1)N (S —{z})} and
ny =min({n € N| z, € By(z, 1) N (S —{z})} — {n1, ..., me1}),

for any k > 2. Then (z,,) is a subsequence of () such that d(z,,,z) < ¢ for
each k € N. Hence (x,,) converges to x.

(¢) = (a). Assume that (X, d) is a sequentially compact metric space. Let C
be an open cover for X. Hence C has a Lebesgue number A > 0. Moreover, X is
totally bounded. Thus there exist Ay, Ay, ..., A, C X such that X = U | A;
and diam(A;) < A for each i. Hence for each i € {1,2,...,n}, there exists
G; € C such that A; C G;. Thus X = U}" ,G,. This shows that C has a finite

subcover. Hence X is compact. O]

Theorem 22 (Heine-Borel). A subset of R™ is compact if and only if it is

closed and bounded.

Proof. By Theorem 21, a metric space is compact if and only if it is complete
and totally bounded. Hence, if a subset of R™ is compact, then it is closed
and bounded. (In fact, we can prove directly that compactness implies a set
being closed and bounded without using Theorem 21.) Conversely, let A be
a closed and bounded subset of R”. By Theorem 14, A is totally bounded.
Since A is closed subset of R™, which is complete, A is also complete. Hence,

A is compact. O]

Corollary 23 (Extreme Value Theorem). A real-valued continuous func-

tion on a compact space has a maximum and a minimum.

Proof. Assume that f: X — R is a continuous function and X is compact.
By Theorem 7, f[X] is a compact subset of R. Hence, f[X] is closed and
bounded. Let a = inf f[X] and b = sup f[X]. Since f[X] is closed, a and b are

in f[X]. Thus a and b are maximum and minimum of f[X], respectively. [

Theorem 24 (Bolzano-Weierstrass). Every bounded infinite subset of R"

has at least one accumulation point (in R™).

Proof. Let A be a bounded infinite subset of R". Since A is bounded, it is
contained in some closed cube I,, = [-n,n| X .-+ x [=n,n]. Since I, is closed
and bounded, it is compact by Heine-Borel theorem. Since A is an infinite

subset of a compact set I, it must have an accumulation point (in R™) by
Theorem 21. [



Theorem 25. Every bounded sequence in R"™ has a convergent subsequence.

Proof. Let (x,) be a bounded sequence in R"™. Hence it is contained in some
closed cube I,, = [-n,n] X --- x [-n,n|. Since I, is closed and bounded, it
is compact by Heine-Borel theorem. Then [, is sequentially compact. This

implies that (z,) has a convergent subsequence. [



