
Compactness

Definition 1. A cover or a covering of a topological space X is a family C of

subsets of X whose union is X. A subcover of a cover C is a subfamily of C
which is a cover of X. An open cover of X is a cover consisting of open sets.

Definition 2. A topological space X is said to be compact if every open cover

of X has a finite subcover. A subset S of X is said to be compact if S is

compact with respect to the subspace topology.

Theorem 3. A subset S of a topological space X is compact if and only if

every open cover of S by open sets in X has a finite subcover.

Proof. (⇒) Assume that S is a compact subset of a topology space X. Let

{Gα | α ∈ Λ} be a collection of open subset of X such that S ⊆ ∪α∈ΛGα. Let

Oα = Gα ∩ S for each α ∈ Λ. Then Oα is open in S for each α ∈ Λ and

∪α∈ΛOα = ∪α∈Λ(Gα ∩ S) = (∪α∈ΛGα) ∩ S = S.

Thus {Oα | α ∈ Λ} is an open cover of S. It follows that {Oα | α ∈ Λ}
contains a finite subcover {Oα1 , Oα2 , . . . , Oαn}. Hence

S = ∪n
i=1Oαi

= ∪n
i=1(Oαi

∩ S) = (∪n
i=1Gαi

) ∩ S.

Thus S ⊆ ∪n
i=1Gαi

.

(⇐) Let {Oα | α ∈ Λ} be an open cover of (S, τs). Then, for each α ∈ Λ,

there exists an open set Gα in X such that Oα = Gα ∩ S. Thus

S = ∪α∈ΛOα = ∪α∈Λ(Gα ∩ S) = (∪α∈ΛGα) ∩ S.

Thus S ⊆ ∪α∈ΛGα. Then there is a finite subset {Gα1 , Gα2 , . . . , Gαn} such

that S ⊆ ∪n
i=1Gαi

. It follows that

S = (∪n
i=1Gαi

) ∩ S = ∪n
i=1(Gαi

∩ S) = ∪n
i=1Oαi

.

Hence (S, τs) is compact.

Examples.

1. Any finite set is compact. In general, (X, τ), where τ is finite, is compact.

In particular, an indiscrete space is compact.

2. Any infinite discrete space is not compact. In fact, if X is an infinite

discrete space, then {{x} | x ∈ X} is an open cover of X which has no finite

subcover.

3. R is not compact. The class {(−n, n) | n ∈ N} is an open cover of R
which contains no finite subcover.
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Theorem 4. A closed subset of a compact space is compact.

Proof. Let (X, τ) be a compact space and F a closed subset of X. Let C =

{Gα | α ∈ Λ} be a family of open subsets of X such that F ⊆ ∪α∈ΛGα. Then

X = F ∪ F c = (∪α∈ΛGα) ∪ F c.

Thus C ∪ {F c} is an open cover of X and hence it has a finite subcover

{Gα1 , Gα2 , . . . , Gαn , F c}, i.e. X = (∪n
i=1Gαi

) ∪ F c. Since F ⊆ X, it follows

that F ⊆ ∪n
i=1Gαi

. Thus {Gα1 , Gα2 , . . . , Gαn} is a finite subfamily of C such

that F ⊆ ∪n
i=1Gαi

. Hence, F is compact.

Theorem 5. If A is a compact subset of a Hausdorff space X and x /∈ A,

then x and A have disjoint neighborhoods.

Proof. By the Hausdorffness of X, for each y ∈ A, there are open neighbor-

hoods Uy and Vy of x and y, respectively, such that Uy ∩ Vy = ∅. Then

{Vy | y ∈ A} is an open cover for A, which is compact. Hence there are y1, y2,

. . . , yn ∈ A such that A ⊆ ∪n
i=1Vyi

. Let V = ∪n
i=1Vyi

and U = ∩n
i=1Uyi

. Then

U and V are neighborhoods of x and A, respectively, and U ∩ V = ∅.

Theorem 6. Any compact subset of a Hausdorff space is closed.

Proof. Let A be a compact subset of a Hausdorff space X. To show that

Ac is open, let x ∈ Ac. By the previous theorem, there are neighborhoods

U and V of x and A, respectively, such that U ∩ V = ∅. It follows that

x ∈ U ⊆ V c ⊆ Ac. This shows that Ac is a neighborhood of x. Hence, Ac is

a neighborhood of all its elements. It follows that Ac is open and that A is

closed.

Theorem 7. A continuous image of a compact space is compact.

Proof. Let f : X → Y be a continuous function from a compact space X into

a space Y . By Theorem 3, it is sufficient to assume that f maps X onto Y

and we show that Y is compact. To see this, let {Gα | α ∈ Λ} be an open

cover for Y . By continuity of f , it follows that f−1[Gα] is open in X for each

α and

∪α∈Λf−1[Gα] = f−1[∪α∈ΛGα] = f−1[Y ] = X.

Hence, {f−1[Gα] | α ∈ Λ} is an open cover for X. By the compactness of X,

there are α1, α2, . . . , αn ∈ Λ such that ∪n
i=1f

−1[Gαi
] = X. Thus

Y = f [X] = f [∪n
i=1f

−1[Gαi
]] = f [f−1[∪n

i=1Gαi
]] ⊆ ∪n

i=1Gαi
.

This shows that Y is compact.
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Corollary 8. Let f : X → Y is a bijective continuous function. If X is

compact and Y is Hausdorff, then f is a homeomorphism.

Proof. Let f : X → Y be a bijective continuous function. Assume that X is

compact and Y is Hausdorff. To show that f is a homeomorphism, it suffices

to show that f is a closed map. Let F be a closed subset of X. Then F

is compact by Theorem 4. By Theorem 7, f [F ] is compact in the Hausdorff

space Y . Hence, f [F ] is closed in Y by Theorem 6.

Theorem 9. A continuous function of a compact metric space into a metric

space is uniformly continuous.

Proof. Let f : (X, d) → (Y, ρ) be a continuous function between metric spaces.

Assume that X is compact. To show that f is uniformly continuous, let ε > 0.

By continuity of f , for each x ∈ X, there is a δx > 0 such that

d(y, x) < δx =⇒ ρ(f(y), f(x)) <
ε

2
.

Then {Bd(x, δx

2
) | x ∈ X} is an open cover for a compact space X. Hence,

we can choose x1, x2, . . . , xn ∈ X such that X = ∪n
i=1Bd(xi,

δxi

2
). Choose

δ = 1
2
min{dx1 , dx2 , . . . , dxn}. Now, let x, y ∈ X be such that d(x, y) < δ.

Then x ∈ Bd(xi,
δxi

2
) for some i. Hence, ρ(f(x), f(xi)) < ε

2
. Moreover,

d(y, xi) ≤ d(y, x) + d(x, xi) ≤ δ +
δxi

2
≤ δxi

.

It follows that ρ(f(y), f(xi)) < ε
2
. By triangle inequality,

ρ(f(x), f(y)) ≤ ρ(f(x), f(xi)) + ρ(f(xi), f(y)) < ε.

This shows that f is uniformly continuous.

Next we introduce a property that measures “boundedness” of a subset of

a metric space. We say that a non-empty set A is bounded if diam(A) < ∞,

i.e., there is a constant M > 0 such that d(x, y) ≤ M for any x, y ∈ A. This

definition of boundedness depends on the metric rather than the set itself. For

example, R with the discrete metric is bounded even though in some sense R
is “large”. The following definition of total boundedness captures this spirit.

Definition 10. A metric space (X, d) is said to be totally bounded or precom-

pact if for any ε > 0, there is a finite cover of X by sets of diameter less than

ε.

Theorem 11. A metric space (X, d) is totally bounded if and only if for each

ε > 0, X can be covered by finitely many ε-balls.
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Proof. (⇒) Let ε > 0. Then there exist subsets A1, A1, . . . , An of X such that

diam Ai < ε for all i ∈ {1, 2, . . . , n} and ∪n
i=1Ai = X. We may assume that

each Ai is non-empty and choose xi ∈ Ai. If x ∈ X, then x ∈ Ai for some i

and hence, d(x, xi) ≤ diam(Ai) < ε. This show that X = ∪n
i=1Bd(xi, ε).

(⇐) Let ε > 0. Then there is a finite subset {x1, x2, . . . , xn} of X such that

X = ∪n
i=1Bd(xi,

ε
4
). Let Ai = Bd(xi,

ε
4
) for each i ∈ {1, 2, . . . , n}. For each

a, b ∈ Ai, d(a, b) ≤ d(a, xi) + d(xi, b) < ε
4

+ ε
4

= ε
2
. Hence, diam(Ai) < ε.

Theorem 12. A subspace of a totally bounded metric space is totally

bounded.

Proof. Let (X, d) be a totally bounded metric space and Y a subspace of X.

Let ε > 0. Then there exist A1, A2,. . . , An ⊆ X such that diam Ai < ε for all

i ∈ {1, 2, . . . , n} and ∪n
i=1Ai = X. Then diam(Ai ∩ Y ) ≤ diam Ai < ε for each

i ∈ {1, 2, . . . , n} and ∪n
i=1(Ai ∩ Y ) = (∪n

i=1Ai) ∩ Y = X ∩ Y = Y.

Theorem 13. Every totally bounded subset of a metric space is bounded.

Proof. Let (X, d) be a totally bounded metric space. Then there exists a finite

subset {x1, x2, . . . , xn} of X such that ∪n
i=1Bd(xi, 1) = X. Let

K = max{d(xi, xj) | i, j ∈ {1, 2, . . . , n}}+ 2.

Let x, y ∈ X. Then x ∈ Bd(xi, 1) and y ∈ Bd(xj, 1) for some i, j. Thus

d(x, y) ≤ d(x, xi) + d(xi, xj) + d(xj, y) < 1 + d(xi, xj) + 1 ≤ K,

i.e. diam X ≤ K, so X is bounded.

In general, the converse is not true. The space R with the discrete metric

is bounded because d(x, y) ≤ 1 for all x, y ∈ R, but it cannot be covered by

a finitely many balls of radius 1
2
. However, it is true for Rn with the usual

metric.

Theorem 14. A bounded subset of Rn is totally bounded.

Proof. We will prove this theorem for the case n = 1. The proof for the case

n > 1 is similar but slightly more complicated.

By Theorem 12, it suffices to prove that a closed interval [a, b] is totally

bounded. Let ε > 0. Choose an n ∈ N such that (b − a)/n < ε. For i =

0, 1, . . . , n, let

xi = a + i
b− a

n
.

Then [a, b] = ∪n
i=1[xi−1, xi] and diam([xi−1, xi]) = xi − xi−1 < ε.
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Theorem 15. A metric space is totally bounded if and only if every sequence

in it has a Cauchy subsequence.

Proof. (⇐) Assume that (X, d) is not tally bounded. Then there is an ε > 0

such that X cannot be covered by finitely many balls of radius ε. Let x1 ∈ X.

Then Bd(x1, ε) 6= X, so we can choose x2 ∈ X−Bd(x1, ε). In general, for each

n ∈ N, we can choose xn+1 ∈ X−∪n
i=1Bd(xi, ε). If m > n, then xm /∈ Bd(xn, ε),

and thus d(xm, xn) ≥ ε. It is easy to see that (xn) has no Cauchy subsequence.

(⇒) Assume that (X, d) is totally bounded and let (xn) be a sequence in

(X, d). Set B0 = X. There exist A11, A12, . . . , A1n1 ⊆ X such that

diam A1i < 1 for all i ∈ {1, 2, . . . , n1} and

n1⋃
i=1

A1i = X.

At least one of these A1i’s, called B1, must contain infinitely many terms of

(xn). Let (x11, x12, . . . ) be a subsequence of (xn) which lies entirely in B1.

Since B1 ⊆ X, it is totally bounded. There are A21, . . . , A2n2 ⊆ B1 such that

diam A2i <
1

2
for all i ∈ {1, 2, . . . , n2} and

n2⋃
i=1

A2i = B1.

At least one of these A2i’s, called B2, must contain infinitely many terms of

(x1n). Then diam B2 < 1
2

and we can choose a subsequence (x21, x22, x23, . . . ) of

(x11, x12, x13, . . . ) in B2. We can continue this process. To make this argument

more precise, we will give an inductive construction.

Assume that we can choose Bi ⊆ Bi−1 with diam Bi < 1
i
and a subsequence

(xi1, xi2, xi3, . . . ) of (x(i−1)1, x(i−1)2, x(i−1)3, . . . ) in Bi for all i ∈ {1, 2, . . . , k−1}.
Since Bk−1 ⊆ Bk−2 ⊆ . . . B1 ⊆ B0 = X, Bk−1 is totally bounded. Then there

exist Ak1, Ak2, . . . , Aknk
⊆ Bk−1 such that

diam Akj <
1

k
for all j ∈ {1, 2, . . . , nk} and

nk⋃
i=1

Aki = Bk−1.

At least one of these Aki’s, called Bk, must contain infinitely many terms of

(xk−1,n). Hence Bk ⊆ Bk−1, diam Bk < 1
k

and we can choose a subsequence

(xk1, xk2, xk3, . . . ) of (x(k−1)1, x(k−1)2, x(k−1)3, . . . ) which lies entirely in Bk.

Now we choose the diagonal elements (x11, x22, x33, . . . ) from the above

subsequences. This is to guarantee that the index of the chosen subsequence

is strictly increasing. To see that it is a Cauchy subsequence of (xn), let ε > 0.

Choose an N ∈ N such that 1
N

< ε. Let m, n ∈ N be such that m, n ≥ N .

Then xmm ∈ Bm ⊆ BN and xnn ∈ Bn ⊆ BN . Thus

d(xmm, xnn) ≤ diam BN <
1

N
< ε.

Hence (xnn) is a Cauchy subsequence of (xn).
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Definition 16. A space X is said to be sequentially compact if every sequence

in X has a convergent subsequence.

Theorem 17. A metric space X is sequentially compact if and only if it is

complete and totally bounded.

Proof. (⇒) Let (X, d) be a sequentially compact space. By Theorem 15, it is

totally bounded because a convergent sequence is a Cauchy sequence. To see

that it is complete, let (xn) be a Cauchy sequence in X. Since X is sequentially

compact, it has a convergent subsequence. Hence, (xn) is convergent. It follows

that X is complete.

(⇐) Assume that (X, d) is totally bounded and complete. To see that X

is sequentially compact, let (xn) be a sequence in X. By Theorem 15, it has

a Cauchy subsequence (xnk
). Since (X, d) is complete, (xnk

) is convergent.

Hence, (xn) has a convergent subsequence. This shows that X is sequentially

compact.

Definition 18. Let C be a cover of a metric space X. A Lebesgue number for

C is a positive number λ such that any subset of X of diameter less than or

equal to λ is contained in some member of C.

Remark. If λ is a Lebesgue number, then so is any λ′ > 0 such that λ′ ≤ λ.

Example. Let X = (0, 1) ⊆ R and C = {( 1
n
, 1) | n ≥ 2}. Then C is an

open cover for X, but it has no Lebesgue number. To see this, let λ > 0.

Choose a positive integer n such that 1
n

< λ. Let A = (0, 1
n
) ⊆ X. Then

diam(A) = 1
n

< λ, but A is not contained in any member of C. Hence C has

no Lebesgue number.

Theorem 19. Every open cover of a sequentially compact metric space has a

Lebesgue number.

Proof. Let C be an open cover of a sequentially compact metric space (X, d).

Suppose that C does not have a Lebesgue number. Then for each n ∈ N there

exists a subset Bn of X such that

diam(Bn) ≤ 1

n
and Bn 6⊆ G for all G ∈ C.

For each n ∈ N, choose xn ∈ Bn. Since X is sequentially compact, the sequence

(xn) contains a convergent subsequence (xnk
). Let x ∈ X be the limit of this

subsequence. Then x ∈ G0 for some G0 ∈ C. Since G0 is open, there exists

ε > 0 such that Bd(x, ε) ⊆ G0. Since (xnk
) converges to x, there exists an

integer N such that

d(xnk
, x) <

ε

2
for any k ≥ N .
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Choose M ∈ N such that 1
M

< ε
2
. Let K = max{M, N}. Then nK ≥ K ≥ M .

Hence,

d(xnK
, x) <

ε

2
and xnK

∈ BnK
.

Moreover,

diam(BnK
) ≤ 1

nK

<
ε

2
.

For any y ∈ BnK
, we have

d(x, y) ≤ d(x, xnK
) + d(xnK

, y) <
ε

2
+

ε

2
= ε.

Hence y ∈ Bd(x, ε). Then BnK
⊆ Bd(x, ε) ⊆ G0. This contradicts the fact

that BnK
6⊆ G for all G ∈ C.

Definition 20. A space X is said to satisfy the Bolzano-Weierstrass property

if every infinite subset has an accumulation point in X.

Theorem 21. In a metric space X, the following statements are equivalent:

(a) X is compact;

(b) X has the Bolzano-Weierstrass property;

(c) X is sequentially compact;

(d) X is complete and totally bounded.

Proof. We have already proved (c) ⇔ (d) in Theorem 17.

(a) ⇒ (b). Let (X, d) be a compact metric space and S an infinite subset

of X. Suppose that S has no accumulation point. Then for each x ∈ X

there exists an open neighborhood Vx such that Vx ∩ (S − {x}) = ∅. Hence,

C = {Vx | x ∈ X} is an open cover of X. Since X is compact, there exists a

finite subcover {Vx1 , Vx2 , . . . , Vxn} of C. Since each ball contains at most one

point of S, X = ∪n
i=1Vxi

contains finitely many points of S. Hence, S is finite,

contrary to the hypothesis.

(b) ⇒ (c). Assume that X has the Bolzano-Weierstrass property. To show

that X is sequentially compact, let (xn) be a sequence in X.

Case I. The set S = {xn | n ∈ N} is finite. Then there is a ∈ X such that

xn = a for infinitely many n’s. Choose n1 = min{n ∈ N | xn = a} and for any

k ≥ 2, let

nk = min({n ∈ N | xn = a} − {n1, n2, . . . , nk−1}).

Then (xnk
) is a constant subsequence of (xn) and hence is convergent.
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Case II. The set S = {xn | n ∈ N} is infinite. By the assumption, S has an

accumulation point x (in X). For each n ∈ N, Bd(x, 1
n
) ∩ (S − {x}) 6= ∅; in

fact, Bd(x, 1
n
) ∩ (S − {x}) is an infinite set. Let

n1 = min{n ∈ N | xn ∈ Bd(x, 1) ∩ (S − {x})} and

nk = min({n ∈ N | xn ∈ Bd(x, 1
k
) ∩ (S − {x})} − {n1, . . . , nk−1}),

for any k ≥ 2. Then (xnk
) is a subsequence of (xn) such that d(xnk

, x) < 1
k

for

each k ∈ N. Hence (xnk
) converges to x.

(c) ⇒ (a). Assume that (X, d) is a sequentially compact metric space. Let C
be an open cover for X. Hence C has a Lebesgue number λ > 0. Moreover, X is

totally bounded. Thus there exist A1, A2, . . . , An ⊆ X such that X = ∪n
i=1Ai

and diam(Ai) ≤ λ for each i. Hence for each i ∈ {1, 2, . . . , n}, there exists

Gi ∈ C such that Ai ⊆ Gi. Thus X = ∪n
i=1Gi. This shows that C has a finite

subcover. Hence X is compact.

Theorem 22 (Heine-Borel). A subset of Rn is compact if and only if it is

closed and bounded.

Proof. By Theorem 21, a metric space is compact if and only if it is complete

and totally bounded. Hence, if a subset of Rn is compact, then it is closed

and bounded. (In fact, we can prove directly that compactness implies a set

being closed and bounded without using Theorem 21.) Conversely, let A be

a closed and bounded subset of Rn. By Theorem 14, A is totally bounded.

Since A is closed subset of Rn, which is complete, A is also complete. Hence,

A is compact.

Corollary 23 (Extreme Value Theorem). A real-valued continuous func-

tion on a compact space has a maximum and a minimum.

Proof. Assume that f : X → R is a continuous function and X is compact.

By Theorem 7, f [X] is a compact subset of R. Hence, f [X] is closed and

bounded. Let a = inf f [X] and b = sup f [X]. Since f [X] is closed, a and b are

in f [X]. Thus a and b are maximum and minimum of f [X], respectively.

Theorem 24 (Bolzano-Weierstrass). Every bounded infinite subset of Rn

has at least one accumulation point (in Rn).

Proof. Let A be a bounded infinite subset of Rn. Since A is bounded, it is

contained in some closed cube In = [−n, n]× · · · × [−n, n]. Since In is closed

and bounded, it is compact by Heine-Borel theorem. Since A is an infinite

subset of a compact set In, it must have an accumulation point (in Rn) by

Theorem 21.
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Theorem 25. Every bounded sequence in Rn has a convergent subsequence.

Proof. Let (xn) be a bounded sequence in Rn. Hence it is contained in some

closed cube In = [−n, n] × · · · × [−n, n]. Since In is closed and bounded, it

is compact by Heine-Borel theorem. Then In is sequentially compact. This

implies that (xn) has a convergent subsequence.
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