Software System Testing and Quality Assurance

Boris Beizer, Van Nostrand Reinhold Electrical/Computer Science and Engineering Series, 1984.

Testing VS Debugging

- testing starts with known conditions, uses predefined procedures, and has predictable outcomes. Debugging starts from possibly unknown initial conditions and the end cannot be predicted, except statistically.
- testing should be designed and scheduled beforehand. The procedures for, and duration of debugging, cannot be constrained.
- testing is a demonstration of error or apparent correctness. Debugging is a deductive process.
- testing proves programmer's failure. Debugging is the programmer's vindication.
- testing should strive to be predictable, dull, constrained, rigid, and inhuman. Debugging demands intuitive leaps, conjectures, experimentation, intelligence, and freedom.
- testing can be done by an outsider; debugging must be done by an insider.
- testing, to a large extent, can be designed and accomplished in ignorance of the design. Debugging is impossible without detailed design knowledge.

Decision table (SE—Theory and Practice, Pfleeger, Prentice-Hall, 2001)

Variables					Actions					
W	X	У	Z	A_1	A_2	A_3	A_4	A_5	A_6	
0	0	0	0						X	
0	0	0	1					X	X	
0	0	1	0				X	X		
0	0	1	1				X			
0	1	0	0				X			
0	1	0	1		X		X			
0	1	1	0		X		X			
0	1	1	1		X		X			
1	0	0	0		X		X			
1	0	0	1		X		X			
1	0	1	0		X		X			
1	0	1	1		X		X			
1	1	0	0		X	X				
1	1	0	1		X	X				
1	1	1	0	X		X				
1	1	1	1	X		X				

$$A_1 = wxy\underline{z} + wxyz$$

$$A_2 = \underline{w}x\underline{y}z + \underline{w}x\underline{y}z$$

$$A_3 = wx\underline{yz} + wx\underline{yz} + wx\underline{yz} + wx\underline{yz} + wx\underline{yz}$$

$$A_4 = \underline{wxyz} + \underline{wxyz}$$

$$A_5 = \underline{wxyz} + \underline{wxyz}$$

$$A_6 = \underline{wxyz} + \underline{wxy}z$$

To reduce A₁

$$A_1 = wxy\underline{z} + wxyz$$

$$= wxy(z + \underline{z})$$

$$= wxy$$

Similarly,

$$A_2 = x\underline{y} + \underline{w}xy + w\underline{x}$$

$$A_3 = wx$$

$$A_4 = \underline{x}y + \underline{w}x + w\underline{x}\underline{y}$$

$$A_5 = \underline{wxy}$$

$$A_6 = \underline{wxy}$$