
A biological-like synthesis framework for software engineering
environment

Peraphon Sophatsathit
speraphon@gmail.com

Abstract
Background: Software architecture consists of many artifacts that encompass their own
architectures. These architectures evolve over the software lifetime. Some are replaced
by new versions, others are obsolete and disposed of. At any rate, they suffer from

complexities and interoperability. The human body, on the contrary, is a natural wonder
that works seamlessly and intelligently. By imitating the biology of a uni-cellular life
form and the body’s building blocks or DNA, this prospectus will furnish an
autonomous software system that is independent of its working environment.

Methods: In this paper, we propose a Biological-like Architecture for Software
Systems (BASS) that mimic the simplicity of a uni-cellular life form. The basic
construct consists of fixed size components holding their attributes and operations
arranged in a one-dimension array akin to DNA strings. This permits self-execution

without external support. Since uni-cellular life form is short-live, so are the
components modeled to undergo a three-stage life cycle, namely, creation, sustainment,
and cessation that must be completed within a predefined Time-To-Live (TTL) limit. In
the meantime, a new component is cloned to replace the ceasing one in situ. Since there

is no comparable architecture to benchmark the proposed novel architecture, it is
simulated to gauge the performance statistics of BASS.
Results: The combinations of fixed size, direct access, and linearly arranged like DNA
string are purposely planned to advocate hardware implementation. The results show

that memory occupation remains relatively low by virtue of this organization and
replacement in situ scheme.
Conclusions: The contribution of the proposed software architecture is an autonomous
system that serves as an efficient portable environment and can lessen software systems

resource utilization considerably.
Keywords: autonomous system, fixed size, short-live, creation, sustainment, cessation,
replacement in situ.

1. Introduction
Traditional software architecture presets many constituent components that possess a
number of design attributes. For example, an architectural construct of a utility set could
be a temporary or permanent attribute, while the functional characteristics might be

specifically derived from some basic requirements. An operating system (OS) is a
comprehensive case to echo the above argument. The temporary components are
numerous, namely, caches, buffers, processes, pipes and filters, etc., whereas the
permanent ones are files, directories, bootstrap program, devices, etc. The functional

characteristics can range from general utilities such as shell commands, editor, to
special programs such as text formatting programs, network APIs, device drivers, etc.
Fowler [1] outlines software architecture as follows

“There are two common elements: One is the highest-level breakdown of a system

into its parts; the other, decisions that are hard to change. It's also increasingly
realized that there isn't just one way to state a system's architecture; rather, there
are multiple architectures in a system, and the view of what is architecturally
significant is one that can change over a system's lifetime.”

The above arguments represent man-made complex artifacts that are theoretically
well-structured, configurable, and can run indefinitely. Unfortunately, one of the
shortfalls of this construct is its limitations induced by its own creating principles such
as time and space complexities. This study looks into the basic building blocks of

software architecture if there are alternatives to build software systems in a way
mimicking natural artifacts, thereby the theory-ridden design process can be avoided.
From the oriental belief, the human body is made up of four substances, namely, earth,
water, air, and fire. What makes it work is the soul that controls this living contraption.

The hardware and software systems are analogous to the body as depicted in Figure 1.

hardware

software

soul

body

Figure 1. The human body VS the computer system.

The intricacy of architectural relationships to be drawn from this analogy begins

at the highest level of body abstraction. The basic five senses, namely, sight, smell,
touch, taste, and hearing, functioned by the input organs are the natural marvel that no

artificially man-made devices can substitute. An even more intricacy is their integrated
operations that consolidate all forms of input senses for instantaneous processing by the
brain, subconscious mind, and instinct. The result is then interpreted, responded, or
acted on accordingly. All these activities are completed in splits of a second. A further

research deep into the structural construct of these organs unveils one common building
block, i.e., the Deoxyribonucleic Acid (DNA) which is fundamentally composed of
Adenine (A), Thymine (T), Cytosine (C), and Guanine (G) nucleotides. The functional
aspect of each organ has long been discovered and established. From Figure 1, hardware

and software exhibit simple design principles that map directly from 0 and 1 to AND,
OR, NOT gates and software type hierarchy (see Figure 3). No qubit and superposition
of quantum computing [21] or full library support of DNA computing [22] constructs to
complicate the structure, function, and behavior of the proposed system. However,

Adleman [23] proposed one good DNA computing prospect that could encode the
Hamiltonian path to solve it in a single molecule.

The objective of study is to propose a Biological-like Architecture for Software
Systems (BASS) that will attain the following four characterizations: (1) simple and

straightforward linear structure and algorithm design for technology transfer to
hardware, (2) fixed size to entail fast access and retrieval, (3) simple in situ replacement
for space efficiency, and (4) no complex theoretical imposition.

This paper is organized as follows. Section 2 recounts some relevant researches
that will be further exploited. Section 3 describes the methods for BASS architectural

propositions in three aspects, namely, structure, function, and behavior. A concise
verification of both propositions is also presented. Section 4 explains the simulation
experiment. Section 5 explains some practical applications of this novel prospectus,
limitations, and research questions. Some final thoughts are given in Section 6.

2. Related work
Race and ethnicity have long been used but were controversial and misunderstood of
human classification. Mayr [2] was critical of the use of races. Foster et al. [5]

explained the multi-dimensional of genetic variations by genomic resources in human
populations. Whatever the classifications might be, biological heterogeneity offers a
range of human genetic compositions. Such constructs, complicated as they appear, are
made up of the aforementioned DNA to carry the genetic code of living cells. This

notion, though has not yet been adopted in software systems, can be drawn as an
analogy to software architecture that has varieties of patterns composing the software
systems.

One of the well-established architectural constructs is modularization. Parnas [4]

discussed related criteria using Keyword in Context (KWIC) as an example that
consisted of (1) the task which was to build a contextualized index for the text, (2) input
which was a set of lines of text, and (3) Output which was the set of all circular shifts of
all lines in alphabetical order. These in turn entailed several flexible software

architectural designs such as function-based, action-based, pipe and filter, event-
condition-action, and implicit invocation.

Meierk et al. [3] explained some key architectural designs, for instance, built to
change instead of building to last models to analyze and reduce risks, used model and

visualization, as a communication and collaboration tool, and identified key engineering
decisions. Both suggestions pointed to flexible design considerations and decisions for a
well-planned system architecture. Research endeavors on Software Engineering
Environment (SEE) support [11] attempted to establish a framework of reference model

(RM) for architectural standardization process, encompassing platform suppliers,
environment suppliers, tool suppliers, and users. The underlying RM provided service
groups as follows: (1) object management services, such as metadata, storage,
persistence, archive, backup, relationship, name, distribution, location, replication,

transaction, concurrency, synchronization, process support, access control, common
schema, composite object, data interchange; (2) process management services, such as
development, enactment, resource, monitoring, transaction; (3) communication services,
such as data sharing, inter-process communication, network, message, event

notification; (4) operating system services, such as synchronization, input and output,
file storage, memory management; (5) user interface services, such as metadata, session,
dialog, presentation, security, internationalization; (6) policy enforcement, such as
identification and authentication, mandatory and discretionary access control, audit; and

(7) framework administration services, such as registration, metrication, sub-
environment, license management.

From hardware support standpoint, the contents of software are stored in
memory waiting for execution. BASS is set out to simplify hardware constructs that

support the software system operations, in particular, memory management systems.
Saulsbury et al. [9] proposed the process and memory integration to solve the memory
wall problem. Rixner et al. [10] introduced a memory access scheduler consisting of a
comprehensive memory access scheduling architecture that supposedly alleviated

memory bandwidth bottleneck. Current research and development efforts have
established various techniques to efficiently handle such outgrown storage problems,
leading to contention for shared resources on distributed environments such as non-
uniform memory access (NUMA) [24]. However, the insatiable demands for massive

storage do not dwindle down, cluttering the memory pool, and demanding more
computational power of multiple tightly-coupled computer systems. Lergchinnaboot et
al. [18] simulated the biological-like memory architecture using modified FIFO scheme
and TTL as a limiting factor to gauge how the scheme stacked up against well-

established memory allocation algorithms such as pure FIFO, shortest remaining time
first (SRTF), and round-robin (RR). The prospect proved to out-pace all schemes except

pure FIFO due to context switch problem. Moreover, the modified FIFO scheme was
starvation free and suitable for hardware implementable without any supporting
complex allocation algorithms as oppose to other comparable schemes.

Recent development of DNA computing [14, 15, 23] shed some lights to the

adoption of biological approach for solving classical computing problems such as NP
problems. A number of intrinsically complex problems that could not be efficiently
solved by conventional electronic computers were handled by DNA computing.
Adleman [15, 23] exploited the sequential code of 0’s and 1’s data in the computer to be

adapted on the DNA computing storage scheme. The revolutionary hindsight instills
more research endeavors on biological adaptation of efficient and effective computing
capability. All these prior works constitute the framework for the design of BASS. They
are:

H1) component adheres to uni-cellular structure, that is, autonomy;
H2) component splits to create new ones (creation), undergoes some activities

(sustainment), and finally goes away (cessation);
H3) component lasts only TTL duration just as uni-cellular life form has limited

short life span. A renewal is allowed only in a long processing situation;
H4) basic types are the mandatory composition of component;
H5) component is linearly modeled after nature cellular structure, that is,

nucleotide, codon, chromosome and cell; and

H6) nature is simple, so should BASS. No complex structures and algorithms are
adopted.

In order to satisfy the above objectives of study, some questions on how to
accomplish the four characterizations of BASS arise:

Q1) What are the design principles to map such simple and straightforward
linear structure and algorithm to hardware?

Q2) How can space be efficiently handled in ways that improves memory
access?

Q3) How does BASS benefit over conventional software architectures?

3. Methods for the proposed reference architecture
This study proposes a reference architecture of BASS that mimics simplicity of the

human body. Two propositions are established based on the observation from Figure 1
as follows:

Proposition 1: There are simple building blocks on which software components
can be built to constitute the software systems.

Proposition 2: System components must maintain a direct reference to the basic
building blocks.

From the human analogy, the body is made of smaller organs which in turn are

made of cells. The basic building blocks of these cells are nucleotides. A uni-cell life
form demonstrates how a single natural building block can survive and grow. By the
same token, the basic building blocks of BASS are components which make up the
systems as shown in Figure 2. The design principle is to keep all components as simple

as the uni-cell life form, i.e., by adhering to H1 and H5 that will permit fast access and
disposal just like cells.

nucleotide
nucleotide

File block

organs cellb
o

d
y

cell

component File block

nucleotide

File block

...

component

component ...

Bio-like Software systems

Biological systems

B
A

S
S

component

Figure 2. The proposed software systems architecture.

The propositions are elucidated descriptively to follow the above forerunners,

namely, modular design [4], data and tools abstraction, software engineering

environments and reference model integration [12], uniqueness of DNA string, and
simple FIFO discipline. Details on how software components and their environments
are laid out will be described in three aspects, namely, structure, function, and behavior.

3.1 Structural aspect of system architecture
As evident abound in archeology, many creatures were extinct while many evolved over
the years. Conjectures on what the world centuries and millennia from now would look
like have been attempted. One proposition that stood out from such predictions was the

survival of cockroaches [7]. The fact that they are biologically simple renders them
survive all adversaries as they could adapt to endure various environmental
transformations. By the same token, the structural aspect of hardware and software can
mimic such endurance by adhering to their simple building blocks, i.e., gates in

hardware and bits in software. As such, they can maintain their close relationship to
each other. In the meantime, the intermediate and high-level constructs fade in and out
as computer system architecture evolves. For example, vacuum tubes, transistors, on the
hardware side, and APL programming, HIPO chart, on the software side, became

rarities and were replaced by integrated circuits and high-level languages or software
design patterns. If one were to apply Proposition 1 to these progressive levels of
abstraction, one could accumulatively create building blocks in the same manner as the
biological DNA that makes up the cells, tissues, organs, and eventually the body. The

creation process is subject to a set of basic premises that govern the configuration of the
proposed architecture as follows:

1. Artifacts are countably finite and take the form of a component which represents
the system construct of stored objects.

2. All sizes of component substructures are fixed to permit maximal provision for
hardware level implementation.

3. Simple methods/algorithms are deployed to support the first two premises.
In order for the proposed architecture to support the above propositions, it is

essential that design of the software systems be compatible with their environments.
The basis of BASS component is characterized by its typing as shown in Figure 3.

basic (E)

composite (G) U-defined (H) special/reserved (S)

Figure 3. Component type hierarchy.

 basic types (E) such as int (A), binary (B), char (C), note (D) that denotes sound
attributes such as intensity and frequency;

 composite type (G) which denotes combinations of the basic types;

 user defined type (H); and

 special/reserved type (S).

The difference between composite and user defined types is that the former

builds a new component by combining several basic types, while the latter could be
built from extending existing basic types or a new type defined by the user. For
example, a composite type component could be composed of int (A), binary (B), and
char (C). A U-defined component could be composed of extended binary type with a

create-your-own method to manipulate the component or a new U-defined type for each
5-sense component representation.

The above set up only takes care of sight (text and image) and sound (audio)
contents of file representations. The remaining three senses are more involved and

complicated to represent. For example, touch includes texture, temperature, hardness;
smell or scent includes odor, temperature; and taste includes temperature, flavor,
texture, etc. These representations are left as future work.

Two rules are established for such transformation regulatory mandate: (1) all

basic component types cannot be added or altered to prevent creation of new basic
types, and (2) other component types can be freely disposed of, altered, redefined, or
added. The first rule preserves the integrity of the entire “life form” to keep the basic
construct simple and unchanged. Imagine if the DNA kept evolving and breeding new

types of nucleotides other than ATCG, all human races on earth would flourish beyond
anyone could imagine. The second rule supports cell growth or die. This allows
components to be created as the system runs.

A BASS component is designed to be a fixed size linear array in accordance

with the cell structure, i.e., from nucleotide to codon to chromosome and cell. Each
hierarchy represents the characteristics of basic building blocks. The overview of a
software component is depicted in Figure 4.

 method

CID size info file basic operation derived
operation

reserved

Figure 4. Overview of a BASS component.

 componentID (CID), to uniquely identify the component by incorporating
timestamp generated by the global clock (which is analogous to the body

clock) and information from the info field;

 info, to hold typical component information such as date of creation, last
modification, owner, TTL which delimits the duration of component existence;

 size, to specify the (fixed) length of the method_set;

 file, to hold the contents of the component;

 basic operation, to hold operations that defines on the basic types;

 derived operation, to hold methods that are defined by the users.

 reserved for future extension.

 The rationale for the above flat nested fixed size blocks is to simplify and

increase data access and retrieval by hardware implementation. This construct also

permits replacement in situ of an expired component by a new one. Thus, memory wall
and I/O-bound problems can be lessened.

reference

pointer

0/1

file name (ID) and

header info

n m k

1 2 n

1 2 3 m

k1 2 3

file name (ID) and

header info
1 2 n

in
di

re
ct

io
n

3

3 …

…

…

…

1

0
reference

pointer (NIL)

encoding string content string

32 bits 32 bits

type

0
/1

0
/1

30 bits

header (256) body

data block

bodyheader (256)

R
o

o
t

b
lo

ck
in

d
ir

ec
t

b
lo

ck

ch
ec

k

chromosome

codon

(signature)

nucleotide

g
ro

u
p

Figure 5. Structure of a file.

 An overview of file structure is depicted in Figure 5. The first block is a directly
accessible root block to permit hardware implementable access and retrieval operations.
A file consists of two parts, namely, header and body. The header of size 256 bytes
contains file name or ID and header information such as file location, owner, date of

creation/modification. The next four values are set as follows:

 indirection bit (0/1), where 0 denotes direct, 1 denotes indirect reference of
additional file blocks;

 multiplicity (n), whose values are either 1 (default value) or 2…n. These blocks

analogously denote the chromosomes;

 system addressable size (m), whose value is divisible by group. This block size
analogously denotes the codon. The value of group designates the number of

nucleotides that constitutes units of file. The default value is 3 to conform to
natural codon; and

 number of data blocks per process (k), whose value is power of 2, the default
value is 4 blocks to mimic the natural A, T, C, G code. A check byte is appended

at the end of each block as the sentinel value for its signature. These blocks
analogously denote the nucleotides.

Note that the first two bits of every data block identify the component types, namely,
00, 01, 10, and 11 for type E, G, H, and S, respectively. The last value of header block

is a reference pointer, which is set according to the indirection bit. If the indirection bit
is 1, the reference pointer will hold the address of the next file block which is
structurally identical to the root block. Otherwise, indirection bit is 0 and the reference
pointer is set to NIL.

This layered multiplicity blocks stored in chromosome, codon, and nucleotide
levels are made to hold component data that are working together. That means each
component can execute several methods, while each method from different components
interoperates with one another concurrently.

3.2 Functional aspect of system architecture
The most important functions of the proposed architecture are the global clock and type
derivation. The global clock regulates all component activities and establishes the

limiting TTL to prevent their execution from FIFO infamous starvation problem. This is
analogous to the heart that generates pluses to regulate all the body functions.

Table 1. Summary of type description.

Type OpCode Operation

 E
int (A) ADD, SUB add, subtract
binary (B) AND, OR, NOT, COM,

SHT, XOR, BDD

bitwise and, or, not, complement, shift, exclusive-

OR, binary add
char (C) ORD lexical order

note (D) ITS, FRQ intensity, frequency
 G
A,B,C,D - composition of type E

 H
U-defined - user define type
 S

reserved - -

Table 1 summarizes each software component type and its associated operations
to function as a unified entity. Thus, an integer component can operate with another
integer component directly via ADD/SUB operations. Operations of composite and U-

defined types can be constructed from basic types and combined to form complex
components in the same manner as organs that are built on cells. These add-on
constructs enhance the characteristics of Proposition 2 that will be established
subsequently in Note 1 and 2.

3.3 Behavioral aspect of system architecture
An important behavioral dynamicity is software component life cycle. Conventional
systems will perform a “context switch” to preserve all process states and contents

before swapping this completing/expiring process out. BASS performs component
reproduction (creation) of new components to handle whatever functions are required to
continue processing (sustainment) while its TTL diminishes. The expiring component is
then disposed of (cessation). The new components perform replacement in situ to the

expired ones. No context switch, storage reclamation, and house-keeping tasks are
required. This is similar to old skin cells are replaced by the new cells as shown in
Figure 6. In an event when the component is engaging in some lengthy processing, the
expiring TTL can be renewed by setting a new TTL limit so that the component is

operating afresh and autonomously. Consequently, minimal overhead is involved in the
system dynamicity.

cell

cell2

reproduce

component split

cell1

component1

component2

dispose component2

die cell2

su
st

ai
n

Figure 6. Cell (component) create (split), sustain, and cease (dispose).

 Figure 7 illustrates the reproduction process of a new component, where the
original component splits to form two components, namely, ORIG and SPLIT_1,

having CID and CID’ as their ComponentID, respectively. The new CID’ is derived
from the original CID plus timestamp information to keep it unique.

ComponentID

(CID)
info basicOP newM_1 reservedsize file newM_k...

newly derived operations

CID’ info basicOP newM_1 reservedsize file newM_k... SPLIT_1newM_k+1 newM_k+r...

ORIG

derived operations

Figure 7. Component reproduction to become two components.

Note that SPLIT_1 can be enhanced with additional derived operations to accommodate
new capabilities. The provision of n, m, k can readily support system expansion with
less reconfiguration or modification effort.

One arguable issue when taking structural and functional considerations into
account is the way components grow in the same manner as cells do. As DNA induces
run-on strings of A, T, C, and G, identification or matching is tedious and time-
consuming. Consequently, the DNA strands can be excessively long which somehow

offset their uniqueness of identification advantage. On the contrary, identification of
component under BASS scheme is confined to the structural architecture: fixed size,
finite number of components, and well-defined methods. Thus, processing is fast and
enumerable to terminate.

The second proposition conveys one very important architectural design

principle, that is, component autonomy. It implies that each software component is self-
contained. Yet its behavioral capability depends on how it is designated to function. For

example, graphic components will be equipped with basic type operations, such as A, B,
and C to support the sight sensory. On the other hand, communication components will
contain protocol related operations encompassing E, G, H, and S to support different
operations. Since each software component must operate to practically “survive” on its

own, loose integration (coupling) is the basis for the design principle. They essentially
have virtually no relation except a direct reference that ties them to the software system
building blocks. Such independent constructs make homo-function software component
interchangeable. By the same token, related or hetero-function software components

interoperate to exchange or share results required by the sub-system to which they
belong. For example, the print method that accepts text inputs, namely, int (A) and char
(C) and prints them out on the paper must invoke text component to open and retrieve
the data content. This can be summarized in two enhanced constructional and

operational characteristics of software components.
Note 1: All components are interchangeable and interoperable.
Note 2: Software engineering components can be composed from the basic
building blocks in such a way that they comply with the underlying architecture.

Proofs of both notes will be postponed until Section 3.5. At any rate, the distinctions for
architectural design of BASS from object-oriented (OO) paradigm are summarized in
Table 2.

Table 2. Summary of BASS vs Objected-Oriented architectural differences.

BASS (X) O-O paradigm (Y) Remark (denoted by X and Y for brevity)

creation, sustainment,

cessation

Abstraction main aspect of X, Y depends on disciplinary

design by programmer

type attribute X is confined to fixed hierarchy, but Y must

obey the language construct

component class X is predefined, but Y depends on

programmer

component sub-class X reproduces component, Y uses language
support

group of components nested classes X combines components, Y combines classes

file object instance and expire (X), instance but explicit

deletion (Y)

simplicity complexity goal of X, Y depends on programmer

component inheritance, polymorphism X is autonomous, Y uses language support

component encapsulation, modularity X is mandatory, Y depends on programmer

component information hiding X is mandatory, Y is done by programmer

reproduction instantiation X splits, Y creates object from class

- association, overloading X is autonomous, Y uses language construct

- concurrency X is autonomous, Y uses language construct

- IDE X is self-contained, Y requires its support

TTL persistence X is self-limiting, Y uses language construct

The main distinction of BASS from OO paradigm is the three-stage cycle that
sets BASS artifacts to be autonomous. This design feature lessens the overhead burden
of system support, while existing design paradigms encompass heavy overhead such as
compiler, libraries, application program interfaces (APIs), and integrated development

environment (IDE).

3.4 Verification of Proposition 1

A corroboration of formal verification can be demonstrated as follows. Let e  E, g 

G, h  H, and s  S denote basic, composite, U-defined, and special/reserved
component types and their corresponding sets, respectively. The relation  denotes
composed of, i.e., n  e|g|h|s|{g, h, s} designates a component n to be composed of

either pure e, g, h, s, or mixture of g, h, s, where {..} denotes mixture of types. By the

component type hierarchy in Figure 3, g, h, s, g = ⋃ 𝑒x
i=1 i, h = ⋃ 𝑒

y
i=1 i, and s = ⋃ 𝑒z

i=1 i,

where x, y, z are arbitrary typing counts such that for any component n, the architectural
construct must satisfy the first condition (i)* plus one of the following conditions:

(i)* n  e ≠  /* basic types */

(ii) n  g =  or n  g ≠  /* composite */

(iii) n  h =  or n  h ≠  /* U-defined */

(iv) n  s =  or n  s ≠  /* special/reserved */

(I) n  (g  h) =  or n  (g  h) ≠  /* composite/U-def */

(II) n  (g  s) =  or n  (g  s) ≠  /* composite/reserved */

(III) n  (h  s) =  or n  (h  s) ≠  /* U-def/reserved */

(IV) n  (g  h  s) =  or n  (g  h  s) ≠  /* compo/U-def/reserved */

The first condition (i)* is mandatory for all components constructed since they must
comply with the proposed scheme. This is in concert with the A, T, C, G nucleotides

that make up the DNA. One of the remaining conditions could hold if the component so
constructed is made up of additional types. That is to say, conditions (ii) to (iv)
represent pure composite, U-defined, or special/reserved type, while conditions (I) to
(IV) represent composite/U-defined type, composite/reserved type, U-defined/reserved

type, and composite/U-defined/reserved type, respectively. For example, define a
composite component type (n1)  (A, C) and a user define component type (n2) 
(extended-int, B, C). In this case, the counts of n1 and n2 become x = 2 and y = 3,

respectively, and n1  n2 ≠  which is equal to char (C). Hence, the component having

n1  n2 as its typing basis satisfies conditions (i)* and (I). On the other hand, if n3 

(extended-int, B, D), then n1  n3 = . This means that the component having n1  n3
as its typing basis also satisfies conditions (i)* and (I).

Now suppose a new component type (m) is created by combining int (A), binary
(B), and (n1 and n2), or m  (A, B, n1, n2) as a special type having the count z = 4, there
are two possible formulation conditions to be deployed:

 conditions (i)* and (I), i.e., consider A and B separately satisfying (i)* and the n1

and n2 satisfying (I), that is, m  A  B  (n1  n2) ≠ , or

 conditions (ii) and (I), i.e., consider A and B as a composite type (A  B)

satisfying (ii) which implicitly satisfies (i)*, and the entire group satisfies (IV),

that is, m  (A  B)  (n1  n2) ≠ .
It can be inferred from the above formulation that the simple building blocks make up
larger components under the proposed scheme.

3.5 Verification of Proposition 2 and its Notes
Let l denote the height of the component type hierarchy measured from basic type
which serves as the root level. Define l = 0 for the basic types. Since all component

types are derived directly from the basic types which is one level away, the height
becomes max(l) = 1.

As for Note 1 goes, given p is a newly created component. There are two

scenarios to consider. Firstly, p  G|H|S, i.e., p is either a composite, U-defined, or

special/reserved type. According to Proposition 1, the condition (i)* must hold for all
components, i.e., the portion of p that is made up by basic types is known by all other
components. The remaining portion that is not pure basic types must either be pure

composite, U-defined, special/reserved type, or mixture of composite/U-defined,
reserved/composite, reserved/U-defined, reserved/composite/U-defined. In either case,
the conditions (ii) to (iv) or (I) to (IV) apply. Thus, data exchange and interaction

among them are straightforward. Secondly, p  G|H|S. Only the basic portion applies to

p. This implies that the remaining portion of p does not reuse any existing types and

methods and is foreign to other components. In order for p to exchange or interact with
others, p must deposit its type and corresponding method to the shared component
repository. As a consequent, Note 1 holds.

Proof of Note 2 also follows in a similar manner. From Proposition 1, all

software components must be created having at least condition (i)*, and so is the
underlying architecture. Otherwise, Proposition 1 will not hold and the system cannot
operate. Thus, the smallest composition of software artifact complies with the proofs
and is able to operate properly. As these software components grow, the newly added

constituents of type {G, H, S}, as well as their corresponding methods, must be declared
and deposited in the shared component repository. At which point, each added artifact
can be accessed and interoperated with other existing components. Consequently, Note
2 holds.

4. Simulation
A simulation module was devised to exercise the performance of BASS since it is a
novel prospectus having no forerunner to compare. Thus, the simulation would focus on

memory utilization since it is one of the most important operations for any support
environments.
 The simulation began by manually creating the first component to initiate the
process. This component contained necessary contents, namely, CID, info, size, file,

and DEFAULT number of core operations but no derived operation (r=0). Then the
reproduction process began. The first off-spring had no derived operation because the
first reproduction (cell split) yielded an identical copy to the first component. The
immediate step randomized the value of r for the new generation off-spring to mimic

cell evolution process, wherein derived operations came into play for subsequent
simulation runs, that is, created CID’, process component, and randomized r. The
simulation procedure was laid out as follows:

Procedure sim_test

create FIRST component /* handcraft the FIRST component */

set LIMIT /* set no. of simulation runs */

X  FIRST, r  0

reproduce: /* recursively create until LIMIT */

repeat def_op (newM_w) /* w = basic operations */

create CID’ from CID + timestamp

init_defaults /* all defaults initialization */

process_component (X) /* r = 0, no derived operation */

assign_component (X) /* deposit in FIFO memory */

run_service()

TTL_check() /* expiration */

until w > DEFAULT

end Procedure

Table 3 summarizes the estimation of parameter setup. Some parameters

deployed in the simulation were experimentally tried and predicted using exponential

decay (Eq 1) and the 37% Method [20] to simulate cell reproduction process, that is,

 N(t) = N0 e

(-t/τ)
 (1)

where τ = 1/λ, λ denotes the creation rate.

Table 3. Simulation parameter setup.

Parameter Setup value Remark

mean life time (τ) 500 475 rounded up
initial component (N0) 1 first component

simulation run (t) 2000 round up
processing repetition (N) 10000 arbitrary selected

The proposed design was written in C running on Intel
®

 Core i5, CPU M 520 @2.1
GHz x 4, Ubuntu 16.04 LTS system to simulate BASS memory allocation scheme. The

execution performed basic arithmetic and modulo computations of 10,000 repetitions.
Components were created, sustained (executed), and disposed of (written to disk) very
rapidly. For the first hundred repetitions, memory allocation calls in C were performed
repeatedly in user mode. This inevitably induced high overhead to set up the component

and file structures which sporadically took several clock ticks during each simulation
run, i.e., 3, 5, 10, 12, 13, 17, 18, 20. An extended looping of 500,000 repetitions was
then conducted in each run to observe whether any steady states would result. It could
be seen that more repetitions induced the OS to prolong the process in core so that

execution would be completed faster. In other words, memory blocks were replaced in
situ and fewer swaps of the running process out, hence faster process completion. The
total execution time of subsequent calls was negligible. This is shown in Figure 8,
where the tail flattens down considerably.

Time measurements were done by system clock ticks via struct tms. The
variables duration denotes the time of simulation run (sim_test), DFutime denotes
component cycle time (step 1-7), and DFstime denotes the time spent on instructions of
the user calling process (memory allocation calls in C).

Figure 8. Memory allocation looping of 10k and 500k after 21 runs.

5. Discussions
The proposed BASS architecture establishes an unconventional basis for building
software systems. The design framework based on H1-H6 made it easy for software
resource utilization in an integrated development environment.

5.1 Practical applications
Conventional software systems from the highest level of abstraction such as
architecture, model, software system design, computing representations, and program

organization, are all transpired to 0 and 1 to run on hardware. BASS is no different but
takes the biological-like mapping of bodily architecture and cell model fundaments to
synthesize the components into three stages, construction (creation), operation
(sustainment), and disposal (cessation) processes. A suitable snapshot of testing these

novelty mixes is to measure the concrete existence of components, i.e., memory
allocation, deallocation, and process execution of components. Figure 9 shows the
transformation from conceptual model to BASS model whose image of execution

duration0
2

1 4 7 10 13 16 19

10,000 repetitions

duration DFutime DFstime

duration0
20

1 4 7 10 13 16 19 22

500,000 repetitions

duration DFutime DFstime

resides and transforms in memory. The reasons are two folds. First, it is a concrete
evident to objectively measure BASS performance in software systems; and second, the
framework can be exercised in real use to mitigate the infamous “memory wall”
problem. Under H1 and H6, the memory test scheme will not make use of NUMA to

complicate the access and retrieval processing since there is no shared resource to begin
with.

architecture model

software

system design

computing

representation

program

organization

hardware

organization

memory management

(target of test)

biological-like

fundaments
BASS

hardware organization

Theories of computer

architecture and

operating systems

conceptual model

BASS model

. . .

co
m

p
o

n
en

t

co
m

p
o

n
en

t

co
m

p
o

n
en

t

construction/operation/disposal

Figure 9. A mix of architectural constructs to hardware realization of BASS.

As part of the on-going investigations, the simulation results [25] have shown

that TTL-FIFO and replacement in situ schemes saved 21% cost over the Least
Recently Used (LRU) built-in algorithm of the memory chipset. Consequently, the
novelty of BASS could, at present, be empirically gauged by how well it manages the
memory in comparison with the state-of-the-practice memory management methods.

Another area of application that increasingly gains research interest is
computing structure. Many data gathering techniques are developed to handle massive
data storage and computations such as data warehouse and big data. Rack scale
architecture [12], co-locating data storage and processing [6], computing virtualization

[13], scalable synchronization on shared memory multiprocessor [16], and transient
servers [17], are a few prominent examples. Unfortunately, these classical paradigms
rest on stored program architecture that requires increasing memory, computing power,
and complex algorithms that eventually create the memory wall. BASS, on the contrary,

offers a pool of short-lived resources to handle data processing in the similar manner as
the human analogy. Figure 10 depicts the conceptual framework of BASS data pipeline
that echoes the above multimedia processing argument.

data1

method1

. . .

receptor1

filter1 filter2 filterN

. . .

. . .

Integration &

processing

signal2signal1 signalN

m u l t i m e d i a

output information

lo
ca

l
si

m
u

lt
a

n
e
o
u

s
p

r
o
c
e
ss

in
g

e
m

b
ed

e
d

c
ap

ab
il

it
y

data2

method2

receptor2

dataN

methodN

receptorN

. . .

Figure 10. Data pipeline: signal reception by specific input receptors.

For example, receptor1 could denote the eyes to receive image (signal1), while
receptor2 could denote the ears to receive sound (signal2), and so on. This in turn is
filtered by the respective method (filter1/filter2) to extract useful information from the
brain archive for proper integration and processing.

The important issues for the filtering process are two folds, coverage and
tracking. Coverage ensures that the system could provide proper receptors to
accommodate different input signals. There will be no mismatch as to receptor1 takes
signal2 and receptor2 takes signal1 since their corresponding filter1 and filter2 are

unable to cover incorrect input data type.
Tracking, on the other hand, must ensure that the input data are recognizable or

failed otherwise. For instance, a Latin voice signal might be handled by the coverage of
receptor2. However, tracking could not retrieve related information from the brain (as

the person did not learn Latin) to recognize it and thus failed to understand what the
input voice meant.

The last example reiterates the compatibility with both propositions, namely, (1)
no typing mismatch since the underlying architecture separates receptors for different

input types and operations process them accordingly, (2) retrieval without conversion
since each receptor is built to handle a specific input type, (3) simple building blocks
and direct reference, and (4) simultaneous integration and processing as all inputs are
processed to yield an immediate outcome.

5.2 Limitations
To operate this novel proposed architecture by way of Figure 2, memory allocation for
BASS components on the underlying hardware may be set up in accordance with bodily

priority. That is, dedication of system space for urgent functions as oppose to user space
for mundane functions. Consider the scenario shown in Figure 11.

system space user space

D E F P Q R S
G

system space user space

D E F P Q R S

Figure 11. memory allocation for system and user components.

Suppose the memory blocks are allocated for system and user spaces in fixed-size
blocks D, E, F and P, Q, R, S, respectively. All component method execution is
regulated by the global clock in a First-In-First-Out (FIFO) queueing discipline.
Suppose block D is assigned to the heart process, E to kidneys process, and F to lungs

and respiratory process, while P, Q, R, and S are assigned to jogging, hand-swinging,
listening to music (from wearable device), and singing along processes, respectively.
Suddenly, the body gets wind-headed which is another system process (called G) that
calls for an immediate service. Process G will be put to execute in memory by

overriding user process P in the FIFO fashion since G cannot override D, E, and F
processes. Thus, the remaining mutual dependent Q, R, and S processes to P also get
terminated. This is similar to real body handles the situation as it can no longer sustain
the sudden severe condition and must stop the jogging (P), hand-swinging (Q), listening

to music (R), and singing along (S) activities.
 The above practical applications and limitations open the horizon of SEE to
encompass the four characterizations that help answer the above questions as follows:

Q1: The above simulation and the simulation results obtained by Lergchinnaboot et al.
[25] reaffirmed the technology transfer at memory level. The importance of H6
excludes the use of logical level complexity such as NUMA, DNA and quantum
computing. These architectural constructs could not be mapped directly to simple gate

level implementation. On the contrary, the fixed size linear configuration of BASS
components will structurally map to hardware implementation, while the simple TTL-
FIFO memory access will functionally run in the memory chipset with replacement in
situ scheme. As a consequence, the four characterizations of this study are satisfied.

Q2: By virtue of component and file designs, BASS expands its capacity when
execution context grows by creating a new component to handle and shrinks when
execution completes by ceasing the expiring component that is regulated by a TTL

limit. Thus, memory occupation by system environment is efficiently arranged with
little software overhead since every BASS component run autonomously.

Q3: The benefits advocate new system construction by several folds:

1. Fast access and retrieval to component configuration since its structure is fixed
size and arranged linearly. This setup makes it ideal for table lookup or base-
register and offsetting implementation at hardware level.

2. Components are governed by predetermined TTL. Thus, all components come and

go. There is virtually no burden left over for garbage collection.
3. Components are self-contained and operationally autonomous. It is thus portable

to different support environments.
4. The needs for large, preset, and long-term availability of resources such as storage

space or processing units are unnecessary. By virtue of the first and second
benefits above, these resource requirements can be established on demand and
released once execution is completed. Thus, energy conservation can be
substantial.

5. Lessen the burden of release engineering as new components can be tailored to fit
a specific locale or “ecosystem” as Rossi put it [8] without having to maintain
continuous delivery across the board. This flexibility is similar to organ transplant
that is performed on a case-by-case basis as deemed necessary.

6. Conclusion
The biological-like architecture for software systems (BASS) were proposed to
revolutionize how software systems would operate. By imitating cell life cycle, the
proposed architecture creates components that live, work, reproduce, and die as natural

as they can be. The prospectus was justified by three architectural constructs, namely,
structural, functional, and behavioral. Two propositions were precipitated to govern the
architecture of BASS. The most fruitful result of BASS was an autonomous entity that
was self-reliance and independent among themselves.

Therefore, BASS and its components could grow and die in the same way as the
body with little overhead. As a man was born and passed away, so was BASS
components created and deleted. This very notion would maintain the dynamicity of
computer applications in the same manner as the human society, but less congested to

make room for new application generations to live and run for the existence of the
computer systems.

An important consideration on future work is the design quality of BASS
components, in particular, Measure of Aggregation (MoA) [19]. This metric will be

deployed to measure how composite and U-def types will permit flexibility and
effectiveness of attributes to support component autonomy.
Finally, one of the important problems is autonomous method execution. Since
researchers still cannot uncover the secrets of DNA that would shed lights on these

issues, how different methods of a designated artifact can run in different environments
where it resides still remains to be reckoned with. The hardware solution at cache level
where the basic types live is under investigation. This viable solution will hopefully
bring about BASS to a new level of ubiquitous architecture for any operating

environments.

Declarations
1. List of abbreviations is provided below.

Abbreviation Full text

BASS Biological-like Architecture for Software Systems
TTL Time-To-Live

FIFO First-In First-Out
DNA Deoxyribonucleic Acid
SEE Software Engineering Environment

E Basic type
G Composite type

H User defined type
S Special/reserved type
NUMA non-uniform memory access

2. Availability of data and materials

Not applicable.

3. Competing interests

Not applicable.

4. Funding
Not applicable.

5. Authors’ contributions

Not applicable.

6. Acknowledgements

Not applicable.

7. Authors’ information
Peraphon Sophatsathit received the B.E. degree in industrial engineering from

Chulalongkorn University. Bangkok, Thailand, M.S. degrees in industrial engineering
and computer science from University of Texas at Arlington, USA, and Ph.D. degree in

computer science from Arizona State University, USA. He worked at the National

Electronics and Computer Technology Center (NECTEC), Bangkok, Thailand. At

present, he is working at Advanced Virtual and Intelligent Computing (AVIC) Center,

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn

University. His major research interests are software engineering, operating systems,
and distributed & parallel computing.

6. References

[1] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley,
2003.

[2] Ernst Mayr, The Growth of Biological Thought—Diversity, Evolution, and
Inheritance. The Belknap Press of Harvard University Press, 1982.

[3] J.D. Meierk, David Hill, Alex Homer, Jason Taylor, Prashant Bansode, Lonnie
Wall, Rob Boucher Jr., and Akshay Bogawat, Microsoft Application Architecture
Guide, Patterns & Practices, 2nd Edition, 2009.

[4] D. Parnas, On the Criteria to be used in Decomposing Systems into Modules,

Communications of the ACM, December 1972, vol. 15, no 12, pp. 1053-1058.
[5] Morris Foster and Richard Sharp, Race, Ethnicity, and Genomics: Social

Classifications as Proxies of Biological Heterogeneity, Cold Spring Harbor
Laboratory Press, 12: 2002, pp. 844-850.

[6] Aisling O’Driscoll, Jurate Daugelaite, and Roy Sleator, ‘Big data’ Hadoop and
cloud computing in genomics, Journal of Biomedical Informatics, 46 (2013), pp.
774–781.

[7] Cockroaches Survive Nuclear Explosion, mythbusters database,

http://dsc.discovery.com/tv-shows/mythbusters/mythbusters-
database/cockroaches-survive-nuclear-explosion.htm, accessed on October 29,
2018.

[8] Bram Adams, Stephany Bellomo, Christian Bird, Tamara Marsheall-Keim, Foutse

Khomh, and Kim Moir, The Practice and Future of Release Engineering, A
Roundtable with Three Release Engineers, IEEE Software, March/April 2015, pp.
42-49.

[9] Ashley Saulsbury, Fong Pong, Andreas Nowatzyk, Missing the Memory Wall:

The Case for Processor/Memory Integration, Proceedings of the 23rd annual
International Symposium on Computer Architecture (1996), Philadelphia, USA,
May 22 - 24, 1996, pp. 90-101.

[10] Scott Rixner, William Dally, Ujval Kapasi, Peter Mattson, and John Owens,

Memory Access Scheduling, Proceedings of the 27th Annual International
Symposium on Computer Architecture (2000), Vancouver, Canada, pp. 128-138.

[11] Reference Model for Framework of Software Engineering Environments, Edition
3 of Technical Report ECMA TR/55, NIST Special Publication 500-211, August,

1993.

[12] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash, R2C2: A Network
Stack for Rack-scale Computers, SIGCOMM ’15, August 17 - 21, 2015, London,
pp. 551-564.

[13] Magnus Heitzler, Jürgen Hackl, Bryan Adey, Ionut Iosifescu-Enescu, Juan Carlos

Lam, and Lorenz Hurni, A method to visualize the evolution of multiple
interacting spatial systems, Journal of Photogrammetry and Remote Sensing, 117
(2016), pp. 217–226.

[14] Junzo Watada, Rohani binti abu Bakar, DNA Computing and Its Applications,

Eighth International Conference on Intelligent Systems Design and Applications,
2008, pp. 288-294.

[15] Leonard Adleman, Molecular Computation of Solutions to Combinatorial
Problems, Science, New Series, vol. 266, no. 5187, November 11, 1994, pp.

1021-1024.
[16] John Mellor_Crummey and Michael Scotty, Algorithms for Scalable

Synchronization on Shared Memory Multiprocessors, ACM Transactions on
Computer Systems, Vol. 9, No. 1, February 1991, pp. 21-65.

[17] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K. Ramakrishnan, Here Today,
Gone Tomorrow: Exploiting Transient Servers in Datacenters, IEEE Internet
Computing, July/August 2014, pp. 22-29.

[18] G. Lergchinnaboot and P. Sophatsathit, A Biological-like Memory Allocation

Scheme using Simulation, Proceedings of the 2nd International Conferences on
Information Technology on Information Technology, Information Systems and
Electrical Engineering (2017), November 1-3, 2017, Yogyakarta, Indonesia, pp.
425-428.

[19] Jagdish Bansiya and Carl Davis, A Hierarchical Model for Object-Oriented
Design Quality Assessment, IEEE Transactions on Software Engineering, Vol.
28, No. 1, January 2002, pp. 4-17.

[20] Leo Breiman, Randomizing Outputs to Increase Prediction Accuracy in Machine

Learning, vol. 40, 2000, pp. 229–242.
[21] Neil Gershenfeld and Isaac Chuang, Quantum Computing with Molecules,

Scientific American, June 1998, pp. 66-71.
[22] Ravinderjit Braich, Nickolas Chelyapov, Cliff Johnson, Paul Rothemund, and

Leonard Adleman, Solution of a 20-Variable 3-SAT Problem on a DNA
Computer, SCIENCE, vol 296, 19 Aril 2002, pp. 499-502.

[23] Leonard Adleman, Computing with DNA, Scientific American, August 1998, pp.
54-61.

[24] Sergey Blagodurov, Alexandra Fedorova, Sergey Zhuravlev, and Ali Kamali, A
case for NUMA-aware contention management on multicore systems,
Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, Sept 11-15, 2010, Vienna, Austria.

[25] G. Lergchinnaboot, P. Sophatsathit, and S. Maneeroj, In Situ Caching using
Combined TTL-FIFO Algorithm, 2019 IEEE 5th International Conference on
Computer and Communications, Chengdu, China, 2019, pp. 437-441.

https://ieeexplore.ieee.org/author/38252617100
https://ieeexplore.ieee.org/author/38490939000
https://ieeexplore.ieee.org/author/38490939000
https://ieeexplore.ieee.org/author/37085352268
https://ieeexplore.ieee.org/xpl/conhome/7840536/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7840536/proceeding

