
A biological-like synthesis framework for software engineering 
environment 

 
Peraphon Sophatsathit 
speraphon@gmail.com 

 

Abstract 
Background: Software architecture consists of many artifacts that encompass their own 
architectures. These architectures evolve over the software lifetime. Some are replaced 
by new versions, others are obsolete and disposed of. At any rate, they suffer from 

complexities and interoperability. The human body, on the contrary, is a natural wonder 
that works seamlessly and intelligently. By imitating the biology of a uni-cellular life 
form and the body’s building blocks or DNA, this prospectus will furnish an 
autonomous software system that is independent of its working environment. 

Methods: In this paper, we propose a Biological-like Architecture for Software 
Systems (BASS) that mimic the simplicity of a uni-cellular life form. The basic 
construct consists of fixed size components holding their attributes and operations 
arranged in a one-dimension array akin to DNA strings. This permits self-execution 

without external support. Since uni-cellular life form is short-live, so are the 
components modeled to undergo a three-stage life cycle, namely, creation, sustainment, 
and cessation that must be completed within a predefined Time-To-Live (TTL) limit. In 
the meantime, a new component is cloned to replace the ceasing one in situ. Since there 

is no comparable architecture to benchmark the proposed novel architecture, it is 
simulated to gauge the performance statistics of BASS. 
Results: The combinations of fixed size, direct access, and linearly arranged like DNA 
string are purposely planned to advocate hardware implementation. The results show 

that memory occupation remains relatively low by virtue of this organization and 
replacement in situ scheme. 
Conclusions: The contribution of the proposed software architecture is an autonomous 
system that serves as an efficient portable environment and can lessen software systems 

resource utilization considerably. 
Keywords: autonomous system, fixed size, short-live, creation, sustainment, cessation, 
replacement in situ. 
 

1. Introduction 
Traditional software architecture presets many constituent components that possess a 
number of design attributes. For example, an architectural construct of a utility set could 
be a temporary or permanent attribute, while the functional characteristics might be 

specifically derived from some basic requirements. An operating system (OS) is a 
comprehensive case to echo the above argument. The temporary components are 
numerous, namely, caches, buffers, processes, pipes and filters, etc., whereas the 
permanent ones are files, directories, bootstrap program, devices, etc. The functional 

characteristics can range from general utilities such as shell commands, editor, to 
special programs such as text formatting programs, network APIs, device drivers, etc. 
Fowler [1] outlines software architecture as follows  

“There are two common elements: One is the highest-level breakdown of a system 

into its parts; the other, decisions that are hard to change. It's also increasingly 
realized that there isn't just one way to state a system's architecture; rather, there 
are multiple architectures in a system, and the view of what is architecturally 
significant is one that can change over a system's lifetime.”  



The above arguments represent man-made complex artifacts that are theoretically 
well-structured, configurable, and can run indefinitely. Unfortunately, one of the 
shortfalls of this construct is its limitations induced by its own creating principles such 
as time and space complexities. This study looks into the basic building blocks of 

software architecture if there are alternatives to build software systems in a way 
mimicking natural artifacts, thereby the theory-ridden design process can be avoided.  
From the oriental belief, the human body is made up of four substances, namely, earth, 
water, air, and fire. What makes it work is the soul that controls this living contraption. 

The hardware and software systems are analogous to the body as depicted in Figure 1. 
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Figure 1. The human body VS the computer system. 

 
The intricacy of architectural relationships to be drawn from this analogy begins 

at the highest level of body abstraction. The basic five senses, namely, sight, smell, 
touch, taste, and hearing, functioned by the input organs are the natural marvel that no 

artificially man-made devices can substitute. An even more intricacy is their integrated 
operations that consolidate all forms of input senses for instantaneous processing by the 
brain, subconscious mind, and instinct. The result is then interpreted, responded, or 
acted on accordingly. All these activities are completed in splits of a second. A further 

research deep into the structural construct of these organs unveils one common building 
block, i.e., the Deoxyribonucleic Acid (DNA) which is fundamentally composed of 
Adenine (A), Thymine (T), Cytosine (C), and Guanine (G) nucleotides. The functional 
aspect of each organ has long been discovered and established. From Figure 1, hardware 

and software exhibit simple design principles that map directly from 0 and 1 to AND, 
OR, NOT gates and software type hierarchy (see Figure 3). No qubit and superposition 
of quantum computing [21] or full library support of DNA computing [22] constructs to 
complicate the structure, function, and behavior of the proposed system. However, 

Adleman [23] proposed one good DNA computing prospect that could encode the 
Hamiltonian path to solve it in a single molecule. 

The objective of study is to propose a Biological-like Architecture for Software 
Systems (BASS) that will attain the following four characterizations: (1) simple and 

straightforward linear structure and algorithm design for technology transfer to 
hardware, (2) fixed size to entail fast access and retrieval, (3) simple in situ replacement 
for space efficiency, and (4) no complex theoretical imposition. 

This paper is organized as follows. Section 2 recounts some relevant researches 
that will be further exploited. Section 3 describes the methods for BASS architectural 

propositions in three aspects, namely, structure, function, and behavior. A concise 
verification of both propositions is also presented. Section 4 explains the simulation 
experiment. Section 5 explains some practical applications of this novel prospectus, 
limitations, and research questions. Some final thoughts are given in Section 6. 

 

2. Related work 
Race and ethnicity have long been used but were controversial and misunderstood of 
human classification. Mayr [2] was critical of the use of races. Foster et al. [5] 



explained the multi-dimensional of genetic variations by genomic resources in human 
populations. Whatever the classifications might be, biological heterogeneity offers a 
range of human genetic compositions. Such constructs, complicated as they appear, are 
made up of the aforementioned DNA to carry the genetic code of living cells. This 

notion, though has not yet been adopted in software systems, can be drawn as an 
analogy to software architecture that has varieties of patterns composing the software 
systems.  

One of the well-established architectural constructs is modularization. Parnas [4] 

discussed related criteria using Keyword in Context (KWIC) as an example that 
consisted of (1) the task which was to build a contextualized index for the text, (2) input 
which was a set of lines of text, and (3) Output which was the set of all circular shifts of 
all lines in alphabetical order. These in turn entailed several flexible software 

architectural designs such as function-based, action-based, pipe and filter, event-
condition-action, and implicit invocation. 

Meierk et al. [3] explained some key architectural designs, for instance, built to 
change instead of building to last models to analyze and reduce risks, used model and 

visualization, as a communication and collaboration tool, and identified key engineering 
decisions. Both suggestions pointed to flexible design considerations and decisions for a 
well-planned system architecture. Research endeavors on Software Engineering 
Environment (SEE) support [11] attempted to establish a framework of reference model 

(RM) for architectural standardization process, encompassing platform suppliers, 
environment suppliers, tool suppliers, and users. The underlying RM provided service 
groups as follows: (1) object management services, such as metadata, storage, 
persistence, archive, backup, relationship, name, distribution, location, replication, 

transaction, concurrency, synchronization, process support, access control, common 
schema, composite object, data interchange; (2) process management services, such as 
development, enactment, resource, monitoring, transaction; (3) communication services, 
such as data sharing, inter-process communication, network, message, event 

notification; (4) operating system services, such as synchronization, input and output, 
file storage, memory management; (5) user interface services, such as metadata, session, 
dialog, presentation, security, internationalization; (6) policy enforcement, such as 
identification and authentication, mandatory and discretionary access control, audit; and 

(7) framework administration services, such as registration, metrication, sub-
environment, license management.  

From hardware support standpoint, the contents of software are stored in 
memory waiting for execution. BASS is set out to simplify hardware constructs that 

support the software system operations, in particular, memory management systems. 
Saulsbury et al. [9] proposed the process and memory integration to solve the memory 
wall problem. Rixner et al. [10] introduced a memory access scheduler consisting of a 
comprehensive memory access scheduling architecture that supposedly alleviated 

memory bandwidth bottleneck. Current research and development efforts have 
established various techniques to efficiently handle such outgrown storage problems, 
leading to contention for shared resources on distributed environments such as non-
uniform memory access (NUMA) [24]. However, the insatiable demands for massive 

storage do not dwindle down, cluttering the memory pool, and demanding more 
computational power of multiple tightly-coupled computer systems. Lergchinnaboot et 
al. [18] simulated the biological-like memory architecture using modified FIFO scheme 
and TTL as a limiting factor to gauge how the scheme stacked up against well-

established memory allocation algorithms such as pure FIFO, shortest remaining time 
first (SRTF), and round-robin (RR). The prospect proved to out-pace all schemes except 



pure FIFO due to context switch problem. Moreover, the modified FIFO scheme was 
starvation free and suitable for hardware implementable without any supporting 
complex allocation algorithms as oppose to other comparable schemes. 

Recent development of DNA computing [14, 15, 23] shed some lights to the 

adoption of biological approach for solving classical computing problems such as NP 
problems. A number of intrinsically complex problems that could not be efficiently 
solved by conventional electronic computers were handled by DNA computing. 
Adleman [15, 23] exploited the sequential code of 0’s and 1’s data in the computer to be 

adapted on the DNA computing storage scheme. The revolutionary hindsight instills 
more research endeavors on biological adaptation of efficient and effective computing 
capability. All these prior works constitute the framework for the design of BASS. They 
are: 

H1) component adheres to uni-cellular structure, that is, autonomy; 
H2) component splits to create new ones (creation), undergoes some activities 

(sustainment), and finally goes away (cessation); 
H3) component lasts only TTL duration just as uni-cellular life form has limited 

short life span. A renewal is allowed only in a long processing situation; 
H4) basic types are the mandatory composition of component; 
H5) component is linearly modeled after nature cellular structure, that is, 

nucleotide, codon, chromosome and cell; and 

H6) nature is simple, so should BASS. No complex structures and algorithms are 
adopted. 

In order to satisfy the above objectives of study, some questions on how to 
accomplish the four characterizations of BASS arise: 

Q1) What are the design principles to map such simple and straightforward 
linear structure and algorithm to hardware? 

Q2) How can space be efficiently handled in ways that improves memory 
access? 

Q3) How does BASS benefit over conventional software architectures? 
 

3. Methods for the proposed reference architecture  
This study proposes a reference architecture of BASS that mimics simplicity of the 

human body. Two propositions are established based on the observation from Figure 1 
as follows: 

Proposition 1: There are simple building blocks on which software components 
can be built to constitute the software systems. 

Proposition 2: System components must maintain a direct reference to the basic 
building blocks. 
 
From the human analogy, the body is made of smaller organs which in turn are 

made of cells. The basic building blocks of these cells are nucleotides. A uni-cell life 
form demonstrates how a single natural building block can survive and grow. By the 
same token, the basic building blocks of BASS are components which make up the 
systems as shown in Figure 2. The design principle is to keep all components as simple 

as the uni-cell life form, i.e., by adhering to H1 and H5 that will permit fast access and 
disposal just like cells. 
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Figure 2. The proposed software systems architecture. 

 
The propositions are elucidated descriptively to follow the above forerunners, 

namely, modular design [4], data and tools abstraction, software engineering 

environments and reference model integration [12], uniqueness of DNA string, and 
simple FIFO discipline. Details on how software components and their environments 
are laid out will be described in three aspects, namely, structure, function, and behavior. 
 

3.1 Structural aspect of system architecture 
As evident abound in archeology, many creatures were extinct while many evolved over 
the years. Conjectures on what the world centuries and millennia from now would look 
like have been attempted. One proposition that stood out from such predictions was the 

survival of cockroaches [7]. The fact that they are biologically simple renders them 
survive all adversaries as they could adapt to endure various environmental 
transformations. By the same token, the structural aspect of hardware and software can 
mimic such endurance by adhering to their simple building blocks, i.e., gates in 

hardware and bits in software. As such, they can maintain their close relationship to 
each other. In the meantime, the intermediate and high-level constructs fade in and out 
as computer system architecture evolves. For example, vacuum tubes, transistors, on the 
hardware side, and APL programming, HIPO chart, on the software side, became 

rarities and were replaced by integrated circuits and high-level languages or software 
design patterns. If one were to apply Proposition 1 to these progressive levels of 
abstraction, one could accumulatively create building blocks in the same manner as the 
biological DNA that makes up the cells, tissues, organs, and eventually the body. The 

creation process is subject to a set of basic premises that govern the configuration of the 
proposed architecture as follows: 

1. Artifacts are countably finite and take the form of a component which represents 
the system construct of stored objects. 

2. All sizes of component substructures are fixed to permit maximal provision for 
hardware level implementation. 

3. Simple methods/algorithms are deployed to support the first two premises. 
In order for the proposed architecture to support the above propositions, it is 

essential that design of the software systems be compatible with their environments. 
The basis of BASS component is characterized by its typing as shown in Figure 3. 

 

basic (E)

composite (G) U-defined (H) special/reserved (S)
 

 
Figure 3. Component type hierarchy. 

 



 basic types (E) such as int (A), binary (B), char (C), note (D) that denotes sound 
attributes such as intensity and frequency; 

 composite type (G) which denotes combinations of the basic types; 

 user defined type (H); and 

 special/reserved type (S). 
 

The difference between composite and user defined types is that the former 

builds a new component by combining several basic types, while the latter could be 
built from extending existing basic types or a new type defined by the user. For 
example, a composite type component could be composed of int (A), binary (B), and 
char (C). A U-defined component could be composed of extended binary type with a 

create-your-own method to manipulate the component or a new U-defined type for each 
5-sense component representation. 

The above set up only takes care of sight (text and image) and sound (audio) 
contents of file representations. The remaining three senses are more involved and 

complicated to represent. For example, touch includes texture, temperature, hardness; 
smell or scent includes odor, temperature; and taste includes temperature, flavor, 
texture, etc. These representations are left as future work. 

Two rules are established for such transformation regulatory mandate: (1) all 

basic component types cannot be added or altered to prevent creation of new basic 
types, and (2) other component types can be freely disposed of, altered, redefined, or 
added. The first rule preserves the integrity of the entire “life form” to keep the basic 
construct simple and unchanged. Imagine if the DNA kept evolving and breeding new 

types of nucleotides other than ATCG, all human races on earth would flourish beyond 
anyone could imagine. The second rule supports cell growth or die. This allows 
components to be created as the system runs.  

A BASS component is designed to be a fixed size linear array in accordance 

with the cell structure, i.e., from nucleotide to codon to chromosome and cell. Each 
hierarchy represents the characteristics of basic building blocks. The overview of a 
software component is depicted in Figure 4. 
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Figure 4. Overview of a BASS component. 
 

 componentID (CID), to uniquely identify the component by incorporating 
timestamp generated by the global clock (which is analogous to the body 

clock) and information from the info field; 

 info, to hold typical component information such as date of creation, last 
modification, owner, TTL which delimits the duration of component existence; 

 size, to specify the (fixed) length of the method_set; 

 file, to hold the contents of the component; 

 basic operation, to hold operations that defines on the basic types; 

 derived operation, to hold methods that are defined by the users. 

 reserved for future extension. 
 
 The rationale for the above flat nested fixed size blocks is to simplify and 

increase data access and retrieval by hardware implementation. This construct also 



permits replacement in situ of an expired component by a new one. Thus, memory wall 
and I/O-bound problems can be lessened.  
 

reference

pointer

0/1

file name (ID) and 

header info

n m k

1 2 n

1 2 3 m

k1 2 3

file name (ID) and 

header info
1 2 n

in
di

re
ct

io
n

3

3 …

…

…

…

1

0
reference

pointer (NIL)

encoding string content string

32 bits 32 bits

type

0
/1

0
/1

30 bits

header (256) body

data block

bodyheader (256)

R
o

o
t 

b
lo

ck
in

d
ir

ec
t

b
lo

ck

ch
ec

k

chromosome

codon

(signature)

nucleotide

g
ro

u
p

 
Figure 5. Structure of a file. 

 

 An overview of file structure is depicted in Figure 5. The first block is a directly 
accessible root block to permit hardware implementable access and retrieval operations. 
A file consists of two parts, namely, header and body. The header of size 256 bytes 
contains file name or ID and header information such as file location, owner, date of 

creation/modification. The next four values are set as follows: 

 indirection bit (0/1), where 0 denotes direct, 1 denotes indirect reference of 
additional file blocks; 

 multiplicity (n), whose values are either 1 (default value) or 2…n. These blocks 

analogously denote the chromosomes; 

 system addressable size (m), whose value is divisible by group. This block size 
analogously denotes the codon. The value of group designates the number of 

nucleotides that constitutes units of file. The default value is 3 to conform to 
natural codon; and 

 number of data blocks per process (k), whose value is power of 2, the default 
value is 4 blocks to mimic the natural A, T, C, G code. A check  byte is appended 

at the end of each block as the sentinel value for its signature. These blocks 
analogously denote the nucleotides.  

Note that the first two bits of every data block identify the component types, namely, 
00, 01, 10, and 11 for type E, G, H, and S, respectively. The last value of header block 

is a reference pointer, which is set according to the indirection bit. If the indirection bit 
is 1, the reference pointer will hold the address of the next file block which is 
structurally identical to the root block. Otherwise, indirection bit is 0 and the reference 
pointer is set to NIL. 

This layered multiplicity blocks stored in chromosome, codon, and nucleotide 
levels are made to hold component data that are working together. That means each 
component can execute several methods, while each method from different components 
interoperates with one another concurrently. 

 
3.2 Functional aspect of system architecture 
The most important functions of the proposed architecture are the global clock and type 
derivation. The global clock regulates all component activities and establishes the 



limiting TTL to prevent their execution from FIFO infamous starvation problem. This is 
analogous to the heart that generates pluses to regulate all the body functions. 
 

Table 1. Summary of type description. 

Type OpCode Operation 

 E  
int (A) ADD, SUB add, subtract 
binary (B) AND, OR, NOT, COM, 

SHT, XOR, BDD 

bitwise and, or, not, complement, shift, exclusive-

OR, binary add 
char (C) ORD lexical order 

note (D) ITS, FRQ intensity, frequency 
 G  
A,B,C,D - composition of type E 

 H  
U-defined - user define type 
 S  

reserved - - 

 

Table 1 summarizes each software component type and its associated operations 
to function as a unified entity. Thus, an integer component can operate with another 
integer component directly via ADD/SUB operations. Operations of composite and U-

defined types can be constructed from basic types and combined to form complex 
components in the same manner as organs that are built on cells. These add-on 
constructs enhance the characteristics of Proposition 2 that will be established 
subsequently in Note 1 and 2. 

 
3.3 Behavioral aspect of system architecture 
An important behavioral dynamicity is software component life cycle. Conventional 
systems will perform a “context switch” to preserve all process states and contents 

before swapping this completing/expiring process out. BASS performs component 
reproduction (creation) of new components to handle whatever functions are required to 
continue processing (sustainment) while its TTL diminishes. The expiring component is 
then disposed of (cessation). The new components perform replacement in situ to the 

expired ones. No context switch, storage reclamation, and house-keeping tasks are 
required. This is similar to old skin cells are replaced by the new cells as shown in 
Figure 6. In an event when the component is engaging in some lengthy processing, the 
expiring TTL can be renewed by setting a new TTL limit so that the component is 

operating afresh and autonomously. Consequently, minimal overhead is involved in the 
system dynamicity. 
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Figure 6. Cell (component) create (split), sustain, and cease (dispose). 

 
 Figure 7 illustrates the reproduction process of a new component, where the 
original component splits to form two components, namely, ORIG and SPLIT_1, 



having CID and CID’ as their ComponentID, respectively. The new CID’ is derived 
from the original CID plus timestamp information to keep it unique. 
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Figure 7. Component reproduction to become two components. 

 
Note that SPLIT_1 can be enhanced with additional derived operations to accommodate 
new capabilities. The provision of n, m, k  can readily support system expansion with 
less reconfiguration or modification effort. 

One arguable issue when taking structural and functional considerations into 
account is the way components grow in the same manner as cells do. As DNA induces 
run-on strings of A, T, C, and G, identification or matching is tedious and time-
consuming. Consequently, the DNA strands can be excessively long which somehow 

offset their uniqueness of identification advantage. On the contrary, identification of 
component under BASS scheme is confined to the structural architecture: fixed size, 
finite number of components, and well-defined methods. Thus, processing is fast and 
enumerable to terminate. 

 
The second proposition conveys one very important architectural design 

principle, that is, component autonomy. It implies that each software component is self-
contained. Yet its behavioral capability depends on how it is designated to function. For 

example, graphic components will be equipped with basic type operations, such as A, B, 
and C to support the sight sensory. On the other hand, communication components will 
contain protocol related operations encompassing E, G, H, and S to support different 
operations. Since each software component must operate to practically “survive” on its 

own, loose integration (coupling) is the basis for the design principle. They essentially 
have virtually no relation except a direct reference that ties them to the software system 
building blocks. Such independent constructs make homo-function software component 
interchangeable. By the same token, related or hetero-function software components 

interoperate to exchange or share results required by the sub-system to which they 
belong. For example, the print method that accepts text inputs, namely, int (A) and char 
(C) and prints them out on the paper must invoke text component to open and retrieve 
the data content. This can be summarized in two enhanced constructional and 

operational characteristics of software components. 
Note 1: All components are interchangeable and interoperable. 
Note 2: Software engineering components can be composed from the basic 
building blocks in such a way that they comply with the underlying architecture. 

Proofs of both notes will be postponed until Section 3.5. At any rate, the distinctions for 
architectural design of BASS from object-oriented (OO) paradigm are summarized in 
Table 2. 
  



 
Table 2. Summary of BASS vs Objected-Oriented architectural differences. 

BASS (X) O-O paradigm (Y) Remark (denoted by X and Y for brevity) 

creation, sustainment, 

cessation 

Abstraction main aspect of X, Y depends on disciplinary 

design by programmer 
   
type attribute X is confined to fixed hierarchy, but Y must 

obey the language construct 
   
component class X is predefined, but Y depends on 

programmer 
   

component sub-class X reproduces component, Y uses language 
support 

   

group of components nested classes X combines components, Y combines classes 
   
file object instance and expire (X), instance but explicit 

deletion (Y) 
   

simplicity complexity goal of X, Y depends on programmer 
   
component inheritance, polymorphism X is autonomous, Y uses language support 

   
component encapsulation, modularity X is mandatory, Y depends on programmer 
   

component information hiding X is mandatory, Y is done by programmer 
   

reproduction instantiation X splits, Y creates object from class  
   
- association, overloading X is autonomous, Y uses language construct 

   
- concurrency X is autonomous, Y uses language construct 
   

- IDE X is self-contained, Y requires its support 
   

TTL persistence X is self-limiting, Y uses language construct 

 

The main distinction of BASS from OO paradigm is the three-stage cycle that 
sets BASS artifacts to be autonomous. This design feature lessens the overhead burden 
of system support, while existing design paradigms encompass heavy overhead such as 
compiler, libraries, application program interfaces (APIs), and integrated development 

environment (IDE). 
 
3.4 Verification of Proposition 1 

A corroboration of formal verification can be demonstrated as follows. Let e  E, g  

G, h  H, and s  S denote basic, composite, U-defined, and special/reserved 
component types and their corresponding sets, respectively. The relation  denotes 
composed of, i.e., n  e|g|h|s|{g, h, s} designates a component n to be composed of 

either pure e, g, h, s, or mixture of g, h, s, where {..} denotes mixture of types. By the 

component type hierarchy in Figure 3, g, h, s, g = ⋃ 𝑒x
i=1 i, h = ⋃ 𝑒

y
i=1 i, and s = ⋃ 𝑒z

i=1 i, 

where x, y, z are arbitrary typing counts such that for any component n, the architectural 
construct must satisfy the first condition (i)* plus one of the following conditions: 
  



 

(i)* n  e ≠   /* basic types */ 

(ii) n  g =  or n  g ≠  /* composite */ 

(iii) n  h =  or n  h ≠  /* U-defined */ 

(iv) n  s =  or n  s ≠  /* special/reserved */ 

(I) n  (g  h) =  or n  (g  h) ≠  /* composite/U-def */ 

(II) n  (g  s) =  or n  (g  s) ≠  /* composite/reserved */ 

(III) n  (h  s) =  or n  (h  s) ≠  /* U-def/reserved */ 

(IV) n  (g  h  s) =  or n  (g  h  s) ≠  /* compo/U-def/reserved */ 
 
The first condition (i)* is mandatory for all components constructed since they must 
comply with the proposed scheme. This is in concert with the A, T, C, G nucleotides 

that make up the DNA. One of the remaining conditions could hold if the component so 
constructed is made up of additional types. That is to say, conditions (ii) to (iv) 
represent pure composite, U-defined, or special/reserved type, while conditions (I) to 
(IV) represent composite/U-defined type, composite/reserved type, U-defined/reserved 

type, and composite/U-defined/reserved type, respectively. For example, define a 
composite component type (n1)  (A, C) and a user define component type (n2)  
(extended-int, B, C). In this case, the counts of n1 and n2 become x = 2 and y = 3, 

respectively, and n1  n2 ≠  which is equal to char (C). Hence, the component having 

n1  n2 as its typing basis satisfies conditions (i)* and (I). On the other hand, if n3  

(extended-int, B, D), then n1  n3 = . This means that the component having n1  n3 
as its typing basis also satisfies conditions (i)* and (I). 

Now suppose a new component type (m) is created by combining int (A), binary 
(B), and (n1 and n2), or m  (A, B, n1, n2) as a special type having the count z = 4, there 
are two possible formulation conditions to be deployed: 

 conditions (i)* and (I), i.e., consider A and B separately satisfying (i)* and the n1 

and n2 satisfying (I), that is, m  A  B  (n1  n2) ≠ , or 

 conditions (ii) and (I), i.e., consider A and B as a composite type (A  B) 

satisfying (ii) which implicitly satisfies (i)*, and the entire group satisfies (IV), 

that is, m  (A  B)  (n1  n2) ≠ . 
It can be inferred from the above formulation that the simple building blocks make up 
larger components under the proposed scheme. 

 
3.5 Verification of Proposition 2 and its Notes 
Let l denote the height of the component type hierarchy measured from basic type 
which serves as the root level. Define l = 0 for the basic types. Since all component 

types are derived directly from the basic types which is one level away, the height 
becomes max(l) = 1. 

As for Note 1 goes, given p is a newly created component. There are two 

scenarios to consider. Firstly, p  G|H|S, i.e., p is either a composite, U-defined, or 

special/reserved type. According to Proposition 1, the condition (i)* must hold for all 
components, i.e., the portion of p that is made up by basic types is known by all other 
components. The remaining portion that is not pure basic types must either be pure 

composite, U-defined, special/reserved type, or mixture of composite/U-defined, 
reserved/composite, reserved/U-defined, reserved/composite/U-defined. In either case, 
the conditions (ii) to (iv) or (I) to (IV) apply. Thus, data exchange and interaction 

among them are straightforward. Secondly, p  G|H|S. Only the basic portion applies to 

p. This implies that the remaining portion of p does not reuse any existing types and 



methods and is foreign to other components. In order for p to exchange or interact with 
others, p must deposit its type and corresponding method to the shared component 
repository. As a consequent, Note 1 holds. 

Proof of Note 2 also follows in a similar manner. From Proposition 1, all 

software components must be created having at least condition (i)*, and so is the 
underlying architecture. Otherwise, Proposition 1 will not hold and the system cannot 
operate. Thus, the smallest composition of software artifact complies with the proofs 
and is able to operate properly. As these software components grow, the newly added 

constituents of type {G, H, S}, as well as their corresponding methods, must be declared 
and deposited in the shared component repository. At which point, each added artifact 
can be accessed and interoperated with other existing components. Consequently, Note 
2 holds. 

 

4. Simulation 
A simulation module was devised to exercise the performance of BASS since it is a 
novel prospectus having no forerunner to compare. Thus, the simulation would focus on 

memory utilization since it is one of the most important operations for any support 
environments.  
 The simulation began by manually creating the first component to initiate the 
process. This component contained necessary contents, namely, CID, info, size, file, 

and DEFAULT number of core operations but no derived operation (r=0). Then the 
reproduction process began. The first off-spring had no derived operation because the 
first reproduction (cell split) yielded an identical copy to the first component. The 
immediate step randomized the value of r for the new generation off-spring to mimic 

cell evolution process, wherein derived operations came into play for subsequent 
simulation runs, that is, created CID’, process component, and randomized r. The 
simulation procedure was laid out as follows: 
 
Procedure sim_test 

create FIRST component /* handcraft the FIRST component */ 

set LIMIT /* set no. of simulation runs */ 

X  FIRST, r  0 

reproduce: /* recursively create until LIMIT */ 

repeat def_op (newM_w) /* w = basic operations */ 

create CID’ from CID + timestamp 

init_defaults /* all defaults initialization */ 

process_component (X) /* r = 0, no derived operation */ 

assign_component (X) /* deposit in FIFO memory */ 

run_service()  

TTL_check() /* expiration */ 

until w > DEFAULT 

end Procedure 

 
Table 3 summarizes the estimation of parameter setup. Some parameters 

deployed in the simulation were experimentally tried and predicted using exponential 

decay (Eq 1) and the 37% Method [20] to simulate cell reproduction process, that is, 
 
 N(t) = N0 e

(-t/τ)
    (1) 

 

where τ = 1/λ, λ denotes the creation rate. 
 



Table 3.  Simulation parameter setup. 

Parameter Setup value Remark 

mean life time (τ) 500 475 rounded up 
initial component (N0) 1 first component 

simulation run (t) 2000 round up 
processing repetition (N) 10000 arbitrary selected 

 

The proposed design was written in C running on Intel
®

 Core i5, CPU M 520 @2.1 
GHz x 4, Ubuntu 16.04 LTS system to simulate BASS memory allocation scheme. The 

execution performed basic arithmetic and modulo computations of 10,000 repetitions. 
Components were created, sustained (executed), and disposed of (written to disk) very 
rapidly. For the first hundred repetitions, memory allocation calls in C were performed 
repeatedly in user mode. This inevitably induced high overhead to set up the component 

and file structures which sporadically took several clock ticks during each simulation 
run, i.e., 3, 5, 10, 12, 13, 17, 18, 20. An extended looping of 500,000 repetitions was 
then conducted in each run to observe whether any steady states would result. It could 
be seen that more repetitions induced the OS to prolong the process in core so that 

execution would be completed faster. In other words, memory blocks were replaced in 
situ and fewer swaps of the running process out, hence faster process completion. The 
total execution time of subsequent calls was negligible. This is shown in Figure 8, 
where the tail flattens down considerably. 

Time measurements were done by system clock ticks via struct tms. The 
variables duration denotes the time of simulation run (sim_test), DFutime denotes 
component cycle time (step 1-7), and DFstime denotes the time spent on instructions of 
the user calling process (memory allocation calls in C). 

 

  
Figure 8. Memory allocation looping of 10k and 500k after 21 runs. 

 

5. Discussions 
The proposed BASS architecture establishes an unconventional basis for building 
software systems. The design framework based on H1-H6 made it easy for software 
resource utilization in an integrated development environment.  

 
5.1 Practical applications 
Conventional software systems from the highest level of abstraction such as 
architecture, model, software system design, computing representations, and program 

organization, are all transpired to 0 and 1 to run on hardware. BASS is no different but 
takes the biological-like mapping of bodily architecture and cell model fundaments to 
synthesize the components into three stages, construction (creation), operation 
(sustainment), and disposal (cessation) processes. A suitable snapshot of testing these 

novelty mixes is to measure the concrete existence of components, i.e., memory 
allocation, deallocation, and process execution of components. Figure 9 shows the 
transformation from conceptual model to BASS model whose image of execution 
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resides and transforms in memory. The reasons are two folds. First, it is a concrete 
evident to objectively measure BASS performance in software systems; and second, the 
framework can be exercised in real use to mitigate the infamous “memory wall” 
problem. Under H1 and H6, the memory test scheme will not make use of NUMA to 

complicate the access and retrieval processing since there is no shared resource to begin 
with. 
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Figure 9. A mix of architectural constructs to hardware realization of BASS. 
 

As part of the on-going investigations, the simulation results [25] have shown 

that TTL-FIFO and replacement in situ schemes saved 21% cost over the Least 
Recently Used (LRU) built-in algorithm of the memory chipset. Consequently, the 
novelty of BASS could, at present, be empirically gauged by how well it manages the 
memory in comparison with the state-of-the-practice memory management methods. 

Another area of application that increasingly gains research interest is 
computing structure. Many data gathering techniques are developed to handle massive 
data storage and computations such as data warehouse and big data. Rack scale 
architecture [12], co-locating data storage and processing [6], computing virtualization 

[13], scalable synchronization on shared memory multiprocessor [16], and transient 
servers [17], are a few prominent examples. Unfortunately, these classical paradigms 
rest on stored program architecture that requires increasing memory, computing power, 
and complex algorithms that eventually create the memory wall. BASS, on the contrary, 

offers a pool of short-lived resources to handle data processing in the similar manner as 
the human analogy. Figure 10 depicts the conceptual framework of BASS data pipeline 
that echoes the above multimedia processing argument.  
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Figure 10. Data pipeline: signal reception by specific input receptors. 

 

For example, receptor1 could denote the eyes to receive image (signal1), while 
receptor2 could denote the ears to receive sound (signal2), and so on. This in turn is 
filtered by the respective method (filter1/filter2) to extract useful information from the 
brain archive for proper integration and processing. 

The important issues for the filtering process are two folds, coverage and 
tracking. Coverage ensures that the system could provide proper receptors to 
accommodate different input signals. There will be no mismatch as to receptor1 takes 
signal2 and receptor2 takes signal1 since their corresponding filter1 and filter2 are 

unable to cover incorrect input data type. 
Tracking, on the other hand, must ensure that the input data are recognizable or 

failed otherwise. For instance, a Latin voice signal might be handled by the coverage of 
receptor2. However, tracking could not retrieve related information from the brain (as 

the person did not learn Latin) to recognize it and thus failed to understand what the 
input voice meant.  

The last example reiterates the compatibility with both propositions, namely, (1) 
no typing mismatch since the underlying architecture separates receptors for different 

input types and operations process them accordingly, (2) retrieval without conversion 
since each receptor is built to handle a specific input type, (3) simple building blocks 
and direct reference, and (4) simultaneous integration and processing as all inputs are 
processed to yield an immediate outcome. 

 
5.2 Limitations 
To operate this novel proposed architecture by way of Figure 2, memory allocation for 
BASS components on the underlying hardware may be set up in accordance with bodily 

priority. That is, dedication of system space for urgent functions as oppose to user space 
for mundane functions. Consider the scenario shown in Figure 11. 
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Figure 11. memory allocation for system and user components. 
 



Suppose the memory blocks are allocated for system and user spaces in fixed-size 
blocks D, E, F and P, Q, R, S, respectively. All component method execution is 
regulated by the global clock in a First-In-First-Out (FIFO) queueing discipline. 
Suppose block D is assigned to the heart process, E to kidneys process, and F to lungs 

and respiratory process, while P, Q, R, and S are assigned to jogging, hand-swinging, 
listening to music (from wearable device), and singing along processes, respectively. 
Suddenly, the body gets wind-headed which is another system process (called G) that 
calls for an immediate service. Process G will be put to execute in memory by 

overriding user process P in the FIFO fashion since G cannot override D, E, and F 
processes. Thus, the remaining mutual dependent Q, R, and S processes to P also get 
terminated. This is similar to real body handles the situation as it can no longer sustain 
the sudden severe condition and must stop the jogging (P), hand-swinging (Q), listening 

to music (R), and singing along (S) activities. 
 The above practical applications and limitations open the horizon of SEE to 
encompass the four characterizations that help answer the above questions as follows: 
 

Q1: The above simulation and the simulation results obtained by Lergchinnaboot et al. 
[25] reaffirmed the technology transfer at memory level. The importance of H6 
excludes the use of logical level complexity such as NUMA, DNA and quantum 
computing. These architectural constructs could not be mapped directly to simple gate 

level implementation. On the contrary, the fixed size linear configuration of BASS 
components will structurally map to hardware implementation, while the simple TTL-
FIFO memory access will functionally run in the memory chipset with replacement in 
situ scheme. As a consequence, the four characterizations of this study are satisfied. 

 
Q2: By virtue of component and file designs, BASS expands its capacity when 
execution context grows by creating a new component to handle and shrinks when 
execution completes by ceasing the expiring component that is regulated by a TTL 

limit. Thus, memory occupation by system environment is efficiently arranged with 
little software overhead since every BASS component run autonomously. 
 
Q3: The benefits advocate new system construction by several folds: 

1. Fast access and retrieval to component configuration since its structure is fixed 
size and arranged linearly. This setup makes it ideal for table lookup or base-
register and offsetting implementation at hardware level. 

2. Components are governed by predetermined TTL. Thus, all components come and 

go. There is virtually no burden left over for garbage collection.  
3. Components are self-contained and operationally autonomous. It is thus portable 

to different support environments. 
4. The needs for large, preset, and long-term availability of resources such as storage 

space or processing units are unnecessary. By virtue of the first and second 
benefits above, these resource requirements can be established on demand and 
released once execution is completed. Thus, energy conservation can be 
substantial. 

5. Lessen the burden of release engineering as new components can be tailored to fit 
a specific locale or “ecosystem” as Rossi put it [8] without having to maintain 
continuous delivery across the board. This flexibility is similar to organ transplant 
that is performed on a case-by-case basis as deemed necessary. 

 

  



6. Conclusion 
The biological-like architecture for software systems (BASS) were proposed to 
revolutionize how software systems would operate. By imitating cell life cycle, the 
proposed architecture creates components that live, work, reproduce, and die as natural 

as they can be. The prospectus was justified by three architectural constructs, namely, 
structural, functional, and behavioral. Two propositions were precipitated to govern the 
architecture of BASS. The most fruitful result of BASS was an autonomous entity that 
was self-reliance and independent among themselves. 

Therefore, BASS and its components could grow and die in the same way as the 
body with little overhead. As a man was born and passed away, so was BASS 
components created and deleted. This very notion would maintain the dynamicity of 
computer applications in the same manner as the human society, but less congested to 

make room for new application generations to live and run for the existence of the 
computer systems. 

An important consideration on future work is the design quality of BASS 
components, in particular, Measure of Aggregation (MoA) [19]. This metric will be 

deployed to measure how composite and U-def types will permit flexibility and 
effectiveness of attributes to support component autonomy. 
Finally, one of the important problems is autonomous method execution. Since 
researchers still cannot uncover the secrets of DNA that would shed lights on these 

issues, how different methods of a designated artifact can run in different environments 
where it resides still remains to be reckoned with. The hardware solution at cache level 
where the basic types live is under investigation. This viable solution will hopefully 
bring about BASS to a new level of ubiquitous architecture for any operating 

environments. 
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