
Ontology-based Metadata Dictionary for Integrating

Heterogeneous Information Sources on the WWW

Ngamnij Arch-int1,* Peraphon Sophatsathit1 Yuefeng Li2

1Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
2School of Software Engineering and Data Communications, Queensland University of Technology,

Brisbane, Australia

Email: ngamnij@kku.ac.th, Peraphon.S@chula.ac.th, y2.li@qut.edu.au

Abstract

Semantic heterogeneity has always been one of the most important problems to overcome.

A number of systems have been proposed to address this problem, ranging from mediator-

based systems to description logic-based systems to content-descriptive metadata systems.

In this paper, we propose an ontology-based metadata dictionary as a basis for solving

semantic heterogeneity. First, the ontology-based metadata dictionary is modeled on the

basis of a bottom-up design approach. Next, an XML-based data model is employed to

manipulate and express the metadata dictionary contents to demonstrate how the proposed

ontology-based metadata dictionary can be applied to a practical implementation. We also

present the transformation of the ontology-based metadata dictionary into an XML-based

metadata dictionary representation. Finally, the proposed approach is applied to a practical

case study along with some related query processing to demonstrate the viability of model

realization.

Keywords: Heterogeneous Information Sources, Domain Ontology, XML-based Metadata

Dictionary, Query Processing.

1 Introduction

Consolidation of data from Heterogeneous Information Sources (hereafter HIS) has always

been one of the most challenging problems for distributed processing. One problem arising

from integration of data heterogeneity is semantic heterogeneity. Such a problem occurs

when there is a disagreement about the meaning, interpretation, or intended use of the same

or related data (Sheth and Larson, 1990). Semantic heterogeneity can be classified into

four types as follows:

 Naming conflicts, encompassing two different kinds of conflict, namely, synonym

and homonym conflicts. Synonym conflicts are concerned with semantically

equivalent concepts (i.e., entities) or properties (i.e., attributes) defined by different

names. Homonym conflicts, on the other hand, are concerned with semantically

unrelated concepts or properties defined by the same name;

 Data Type conflicts, concerning semantically equivalent properties that are defined

with different data types;

* Part of this work has been conducted while the author was a visiting academic at Queensland University of Technology, Brisbane, Australia

 2

 Scaling conflicts, concerning semantically equivalent properties that are defined

with different scales or units of measure; and

 Generalization conflicts, concerning semantically related concepts that are defined

in different systems where the concepts in one system subsume the concepts in

another system.

Our approach is to model and design a metadata dictionary, which is an extension of

a reference architecture proposed by Arch-int and Sophatsathit (2002). The metadata

dictionary is based on domain specific metadata, using ontology (Fensel, 2001; Gruber,

1993; Uschold and Gruninger, 1996) as an assistant mechanism for accessing and

integrating data represented by different data models into a homogeneous logical view.

The primary objectives of the proposed approach are:

 Solving semantic heterogeneity problems;

 Providing an abstract view for the application domain by hiding the contents,

structures, and locations of real data;

 Providing a mapping mechanism to bridge the heterogeneous data to a

homogeneous data group;

 Providing a flexible way to manipulate metadata dictionary contents when there is a

need to control the consistency of the metadata dictionary;

 Providing information for users on the WWW to support system-wide

interoperability; and

 Providing a global query model for users to access and integrate HIS.

 In order to support system-wide interoperability suitable for a Web-based

environment, we choose XML as the language for expressing the metadata dictionary

contents, as well as providing flexibility and scalability in building and manipulating the

ontology terminologies. The XML flexible data model also provides a means to

consolidate data retrieved from various sources, while retaining consistent identification of

the data semantics. The proposed metadata dictionary is also applied to a practical case

study and query processing to demonstrate the viability of model realization.

 The remainder of the paper is structured as follows. Section 2 presents the

ontology-based metadata dictionary modeling technique and ontology extraction. Section 3

presents the structure of the XML-based metadata dictionary derived from the ontology-

based metadata dictionary components. The XML-DTD metadata obtained in the process

is also illustrated. Section 4 demonstrates how the proposed metadata dictionary solves

semantic heterogeneity through a case study. Section 5 presents the query processing to

access and integrate the HIS with the help of the metadata dictionary. Section 6 describes

closely related works and how the proposed approach differs from other approaches.

Section 7 concludes the paper and suggests further research extension.

 3

2 The Ontology-based Metadata Dictionary

The ontology-based metadata dictionary is modeled on the basis of a bottom-up design

approach (Castano, Antonellis and Vimercati, 2001; Özsu and Valdurie, 1999; Vet and

Mars, 1998) to extract conceptual specification from the underlying physical information

sources for explicit representations, thus forming a domain ontology model. The extraction

of the ontology-based metadata dictionary by domain ontology modeling process is

depicted in Figure 1 and summarized below.

(1) Schema Translation. This step involves translating or mapping the underlying

physical information source schemas represented in various data models to

intermediate schemas denoted by the canonical data models such as the E-R model

(Chen, 1976). The physical information source schemas have been modeled to entities,

attributes, relationships, and constraints. Other modeling considerations are type of

relationship (e.g., one-to-one, one-to-many, and many-to-many) and attributes such as

primary keys and foreign keys.

(2) Schema Restructuring. This step involves restructuring each intermediate schema to

eliminate structural heterogeneity (Batini and Lenzirini 1984; Batini, Lenzirini and

Navathe, 1986; Özsu and Valduriez, 1999). The results constitute the knowledge

structure of the entire physical information source.

(3) Schema Integration. This step integrates all intermediate schemas into a global

conceptual schema. The purpose of schema integration is to eliminate the

generalization conflicts induced by the IS-A relationship between sub-type specific

entities and the super-type general entity. The integration also applies to entities whose

instances belong exclusively to an instance of another entity, that is, the component

entities of an aggregate entity through the IS-PART-OF relationship.

(4) Ontology Extraction. The last step extracts ontology from the underlying global

conceptual schema to obtain an explicit knowledge representation (Brachman and

Levesque, 1985). The ontology is systematically extracted into two levels of

abstraction, namely, the conceptual level of abstraction and the physical level of

abstraction as follows:

 The conceptual level of abstraction. The global conceptual schema is restructured

into a virtual schema, which is an initial ontology represented by the Extended

Ontology-based

Metadata Dictionary

Domain Ontology

Modeling

Semantic data model:

EER data model

Methodology:

Bottom-up design
approach

ODBMS

RDBMS

XML

data source

Figure 1. Extraction of the ontology-based metadata dictionary by domain ontology modeling.

 4

Entity-Relationship (EER) model. The virtual schema encompasses virtual

concepts (or entities), virtual properties (or attributes), and relationships. The

ontology conceptualized on this level abstracts the users from physical information

sources. Users can pose their queries in the form of this ontology rather than

dealing with real data. A partial internal structure of the domain ontology at this

level is depicted in Figure 2 (a).

 In this figure, boxes represent the virtual concepts, whereas diamonds denote the

relationships that hold among the virtual concepts. The virtual properties are shown

as rounded rectangles attached to each virtual concept. This level is designed to

solve data type, scaling, and generalization conflicts. To eliminate data type and

scaling conflicts, a virtual property is designed as a class that forms two domain

properties, that is, the predefined type domains (e.g., integer, string, float, or char)

and the scaling domains or units of measure (e.g., kilogram, pound, US$, or AUS$).

These domain properties are used to represent different physical data types and unit

types from HIS into a uniform format. Generalization conflicts are also eliminated

through the IS-A relationships when connecting a specific concept to a general

concept. The IS-PART-OF relationship is denoted by an arrow connecting a

component concept to an aggregate concept.

 The physical level of abstraction. This level provides a mapping mechanism to

associate the virtual concepts and properties of the virtual schema with the

corresponding physical concepts and properties of the global conceptual schema. A

partial internal ontology structure is illustrated in Figure 2 (b). This level is

designed to solve naming conflicts by designating each virtual property to hold its

instances, called physical instances and represented by ellipses, through the

instantiated relationships. These physical instances store the synonymous physical

property names of the physical concepts in the global conceptual schema. Each

physical instance defines its own properties, denoted by circles that encompass

other physical information corresponding to the physical instance, such as physical

data type, unit type, concept, and source. The ontology in this level also holds

physical source configurations which are augmented from the diagram. The

Figure 2. Two levels of domain ontology extracted from a global conceptual schema.

(a) Domain ontology at the conceptual

level of abstraction.

(b) Domain ontology at the physical

level of abstraction.

The Conceptual Level

of Abstraction

The Physical Level

of Abstraction

d1
vc1

p111 p112 …

vp11
vp12 d2

d1

d2

I1

I2 Ip …

…

I1 I2

Ip

IS-A

vc2

vc1

 1:N

IS-PART-OF

vc3

vc4

d1

vp1m

…

vp12 vp11

d2

 5

physical source configurations describe the configurations of the physical concepts

in each physical source and furnish necessary information to grant permission and

knowledge for agents (Knoblock and Ambite, 1997; Li, Zhang and Swan, 2000;

Papastavrou, Samaras and Pitoura, 2000) in accessing individual physical sources.

3 The XML-based Metadata Dictionary

The strength of XML in well-formedness, validity, and schema denotation makes it ideal

for practical implementation of the ontology-based metadata dictionary. In so doing, all

XML related documents can be validated by rules defined through XML-DTD data model.

In the following sections, the structural design of XML-DTD is set up from the

domain ontology components to maintain their conceptual and physical correspondence and

consistency, as depicted in Figure 3.

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE MetadataDictionary [
 <!ELEMENT MetadataDictionary (VConcepts, PhysicalSourceConfs)>

 <!ATTLIST MetadataDictionary MetadataName ID #REQUIRED>

 <!ELEMENT VConcepts (VConcept)+>
 <!ELEMENT VConcept (VRelationships?, VProperties)>

 <!ATTLIST VConcept VCname ID #REQUIRED>

 <!ELEMENT VRelationships (VRelationship)+>
 <!ELEMENT VRelationship (AssocConcept)+>

 <!ATTLIST VRelationship VRelname (IS-A|IS-PART-OF|Associative) #REQUIRED>

 <!ELEMENT AssocConcept (#PCDATA)>
 <!ATTLIST AssocConcept VConcept IDREF #IMPLIED>

 <!ELEMENT VProperties (VPoid|VPord|VPref)+>

 <!ELEMENT VPoid (VDataType, VUnitType, PProperties)>

 <!ATTLIST VPoid VPname ID #REQUIRED>

 <!ELEMENT VPord (VDataType, VUnitType, PProperties)>
 <!ATTLIST VPord VPname CDATA #IMPLIED>

 <!ELEMENT VPref (#PCDATA)>

 <!ATTLIST VPref VPoid IDREF #IMPLIED>
 <!ELEMENT VDataType (#PCDATA)>

 <!ELEMENT VUnitType (#PCDATA)>

 <!ELEMENT PProperties (PProperty)+>
 <!ELEMENT PProperty (PDataType, PUnitType)>

 <!ATTLIST PProperty PPname CDATA #REQUIRED

 PCname IDREFS #REQUIRED
 PSname IDREF #REQUIRED>

 <!ELEMENT PDataType (#PCDATA)>

 <!ELEMENT PUnitType (#PCDATA)>

 <!ELEMENT PhysicalSourceConfs (PSource)+>

 <!ELEMENT PSource (PConcept)+>

 <!ATTLIST PSource PSname ID #REQUIRED>

 <!ELEMENT PConcept (PDataModel, Permission, Owner)>

 <!ATTLIST PConcept PCname ID #REQUIRED>
 <!ELEMENT PDataModel (#PCDATA)>

 <!ELEMENT Permission (#PCDATA)>

 <!ELEMENT Owner (#PCDATA)>
]>

Figure 3. The XML-DTD metadata dictionary structure.

 6

3.1 The Conceptual Level of Design Abstraction

To capture the semantic elements of conceptual level modeling, the XML-DTD in this level

must encompass all virtual concepts, their corresponding properties, and their relationships

as follows:

(1) The virtual concepts: We denote all virtual concepts as the element VConcepts,

consisting of one or more sub-elements VConcept of the domain ontology, whose

names, n(vci), i = 1..n, are stored in the attribute VCname of VConcept. Each

VConcept in turn consists of a sub-element VProperties and zero or one sub-

element VRelationships.

(2) The virtual properties: The element VProperties of each VConcept contains one or

more sub-elements VPoid, VPref, and VPord, which are the object identifier property,

object reference property, and ordinary property, respectively. We denote OID(vck) as a

set of the object identifiers or keys of vck in which each instance of vck cannot have the

same property value, REF(vck) as a set of the object references or foreign keys of vck

that establishes the relationships between instances of different concepts, and ORD(vck)

as a set of the ordinary properties whose values are atomic values (e.g., integer, string).

The virtual property names, n(vpkc)  OID(vck) and n(vpkd)  ORD(vck), are designated

to the attribute VPname of VPoid and VPord, respectively, whereas the virtual

property names, n(vpkt) of vpkt  REF(vck), are designated to the data elements of

VPref. These data elements of VPref are defined as idref to reference the virtual

property names defined as id in VPoid. Each VPoid and VPord also consists of sub-

elements VDataType and VUnitType, whose data elements are designated to store the

virtual data type (d1) and unit type (d2), respectively. Note that a NULL value in a

VUnitType element designates a property that is not of a unit measure.

(3) The relationships: Each VConcept can associate with zero or more concepts whose

names, n(vcj) (j i=1..n), are designated to the data elements of AssocConcept.

The associated concept name of AssocConcept is defined as idref, pointing back to

the already defined concept name in VConcept. The IS-A, IS-PART-OF and

associative relationships between VConcept and AssocConcept are designated to the

attribute VRelname of VRelationship.

3.2 The Physical Level of Design Abstraction

This physical level is designed to incorporate the physical source configurations of the

physical concepts and sources. Thus, the semantic elements of the physical level modeling

are captured via the XML-DTD that encompasses the physical property names of physical

concepts and other physical information pertaining to the virtual properties and concepts in

the conceptual level.

(1) Physical properties and other physical information. Each VPoid and VPord property

at the conceptual level contains one or more synonymous physical properties whose names,

n(pkct) of vpkc  OID(vck) and n(pkdt) of vpkd  ORD(vck), are designated to the attribute

 7

PPname of PProperty of VPoid and VPord, respectively. Other physical

information related to the physical property names, such as the physical data type (I1) and

unit type (I2), are designated to the data elements PDataType and PUnitType,

respectively. Similarly, the physical concept names (I3) and source names (I4) are

designated to the attribute PCname, and PSname, respectively. The attribute PCname and

PSname are defined as idref to reference the physical concept and source names that are

defined as id in the physical source configurations.

(2) The physical source configurations. The element PhysicalSourceConfs consists of

one or more sub-elements PSource denoting the physical information sources whose

names are designated to the attribute PSname of PSource. Each PSource consists of

one or more sub-elements PConcept, denoting the physical concepts whose names are

designated to the attribute PCname of PConcept. The values of other physical

configurations that associate with each physical concept (e.g., physical data model,

permission, and owner) are designated to the data elements of PDataModel, Permission

and Owner, respectively.

4 A Case Study

We will demonstrate how the proposed metadata dictionary solves the semantic

heterogeneity problem through an example of semantic heterogeneity that occurs in most

organizations. The modeling technique illustrated in section 2 is applied to the design of

the metadata dictionary in this case study. The example also serves as a basis for

demonstrating the query processing of HIS in the next section.

4.1 An Example of Semantic Heterogeneity

We will demonstrate denotation of concepts and their relationships in a company as shown

in Figure 4. In this example, we consider four main concepts, namely, Employee,

Manager, Engineer, and Accountant. All members of the categories Manager,

Engineer, and Accountant are contained in the concept Employee. We say that the

concept Employee is a superconcept and the concepts Manager, Engineer, and

Accountant are subconcepts. We also illustrate the partial IS-A relationship between

Manager and Engineer, where some managers (not all) are engineers and some engineers

are managers. Meanwhile, the Manager and Engineer concepts are independent of the

Accountant concept since neither managers nor engineers are accountants.

 : Concept : is_a relationship : partial is_a relationship : Associated Relationships

Figure 4. Types of relationship between concepts.

Employee

Manager

Engineer

Accountant

Computer_Engineer

Civil_Engineer

Electronic_Engineer

Department

 8

 To illustrate how the proposed metadata dictionary solves semantic heterogeneity,

we employ three different physical information sources as shown in Figures 5 (a), (b) and

(c). The examples of each physical source not only illustrate the differences in data models

and query languages, but also in semantic heterogeneity, which results in three types of

conflicts. First, synonym conflicts occur as the attributes Emp_id in the relation

Employee_Member of Personnel, Eng_id in the element Engineer_Member of

Engineering source, and Mng_id in the class Manager_Member of Management

source are semantically equivalent properties of the same fact. Second, data type and

scaling conflicts are caused by the same attribute Salary of Employee_Member and

Engineering_Member having different predefined types and units of measure. Finally,

generalization conflicts induce from the derivation of the concept Employee subsuming

the concepts Manager and Engineer. This example will serve as the basis for the

ontology-based metadata dictionary design in the sections that follow.

Figure 5. Three different data models of physical information sources.

Employee_Member Department

PhyProperty PhyDataType PhyUnitType PhyProperty PhyDataType PhyUnitType

Emp_id String NULL Dept_id Integer NULL

Emp_name String NULL Dept_name String NULL

Salary Float US$

Dept_id Integer NULL

 (a) The Personnel information source represented by a relational data model.

Manager_Member

Mng_id

Mng_name

Responsibility

Date_start

Department

Department

Dept_id

Dept_name

(c) The Management information source represented by an object-oriented data model.

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE Eng_Proj_Assign [

<!ELEMENT Eng_Proj_Assign (EngineerMember_List, Project_List)>

<!ELEMENT EngineerMember_List (Engineer_Member)+>

<!ELEMENT Engineer_Member (Eng_name, Title, Salary, Assignment)>

<!ATTLIST Engineer_Member Eng_id ID #REQUIRED>

<!ELEMENT Eng_name (#PCDATA)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Salary (#PCDATA)>

<!ELEMENT Assignment (Proj)+>

<!ELEMENT Proj (Start_date, End_date)>

<!ATTLIST Proj Proj_id IDREF #REQUIRED>

<!ELEMENT Start_date (#PCDATA)>

<!ELEMENT End_date (#PCDATA)>

<!ELEMENT Project_List (Project)+>

<!ELEMENT Project (Proj_name, Duration)>

<!ATTLIST Project Proj_id ID #REQUIRED>

<!ELEMENT Proj_name (#PCDATA)>

<!ELEMENT Duration (#PCDATA)>

]>

(b) The Engineering information source represented by XML-DTD.

Eng_id Eng_name Title Salary

Eng_id Proj_id Start_date End_date

Proj_id Proj_name Duration

Engineer_Member

Assignment

Project

Relational schemas describing the relationships

between concepts of XML-DTD in Figure 5 (b).

 9

4.2 Domain Ontology Representation

4.2.1 Conceptual level representation

The conceptual level design is based on the proposed modeling technique outlined in

section 2 and illustrated by the EER model in Figure 6. Each virtual concept possesses its

own virtual properties. The virtual property ep_id is an object identifier or key, ep_name,

and ep_salary are ordinary properties, and dept_id is an object identifier reference or

foreign key. The virtual concept Employee relates to Department by an associative

relationship. To solve data type and unit type conflicts, the object identifier and ordinary

properties can further designate additional domain properties to specify a predefined type

and scaling domain. For example, the domain properties of ep_salary are of the

predefined type “Float” and scaling domain “US$.” The generalization conflicts between

the concepts Employee, Engineer and Manager are handled by associating Engineer

and Manager with the IS-A relationships to Employee, since Engineer and Manager are

subconcepts of Employee. Consequently, Engineer and Manager inherit ep_id,

ep_name, ep_salary, and dept_id from Employee and associate with Department by

an N:1 associative relationship.

4.2.2 Physical level representation

Since synonym conflicts between the physical properties Emp_id of Employee_Member,

Eng_id of Engineer_Member, and Mng_id of Manager_Member are common

encounters in the HIS environment, the synonymous terms should be designed as the

physical instances of the virtual property ep_id through the instantiated relationships.

Each physical instance, Emp_id for example, is the physical property name, which can

define its physical information properties for storing additional physical information

associated with Emp_id. For example, the values of physical information properties named

PDataType, PUnitType, PCname, and PSname of Emp_id are “integer”, “NULL”,

“Employee_Member”, and “Personnel”, respectively. This means that Emp_id is a

physical property name having the physical data and unit types “integer” and “NULL”, and

resp dept_id

Assign

ep_i

d
ep_salary

pj_name

dept_name

e_date pj_id

s_date

Engineer Project

 work
 in

IS-A

N

N M

Employee

ep_name

eg_title

Department
1

Float US$

Manager

dt_start

IS-A

Figure 6. The logical ontology structure at the conceptual level of abstraction.

 10

the physical concept name “Employee_Member”, which resides in source “Personnel” as

shown in Figure 7.

4.3 The XML-based Metadata Dictionary Representation

The logical ontology structures based on existing entities in Figures 6 and 7 are translated

into an XML-based metadata dictionary consisting of XML-DTD (as shown in Figure 3)

and XML documents. A partial XML document structure for storing well-formed and valid

data is given in Figure 8.

…

…

st_salary

Figure 8. A portion of the XML document complying with XML-DTD.

ep_id

VDataType

String

VUnitType

NULL

VProperty

Figure 7. A portion of internal structure of the ontology at the physical level of abstraction.

The conceptual level

of abstraction

The physical level

of abstraction

VProperty

PProperty PProperty PProperty

Employee

ep_name

PSname

Employee

Member

PCname

Integer

PDataType

NULL

PUnitType Emp_id

Personnel

Eng_id
PSname

Engineer

Member

PCname

String

PDataType

NULL

PUnitType

Enginee

ring

Mng_id PSname

Manager

Member

PCname

String

PDataType

NULL

PUnitType

Manage

ment

 11

5 Query Processing for Heterogeneous Information Sources

The querying process for HIS (Arch-int, Li, Roe, Sophatsathit, 2003) aims to enable users

to pose their queries over the virtual schema instead of the physical source schema to obtain

relevant answers from the HIS. The querying process encompasses two main processes,

namely, the accessing process of the HIS and the integrating process of the results from the

HIS. The accessing process is responsible for generating a global transaction associated

with the user’s request, and decomposing the global transaction into sub-transactions for

accessing the real data in the physical information sources. The global transaction

decomposition maps the virtual properties and concepts of the global transaction to physical

properties and concepts of the sub-transactions. In contrast, the integrating process focuses

on consolidating the XML results obtained from the physical information sources into

unified XML-based data corresponding to the user’s request. Details on how each step is

carried out are described below.

5.1 The Accessing Process of the Heterogeneous Information Sources

The accessing process of the HIS starts at the presentation layer of the reference

architecture proposed by Arch-int and Sophatsathit (2002). Any virtual concept that is a

subconcept inherits all virtual properties from its superconcepts. These virtual properties

are thus presented to the users as the properties of the subconcept. For example, the user

can view the virtual properties of Engineer originating from Engineer and Employee.

The user can pose a query through a unified-query form encircling the virtual schema

provided by the user interface agent (Arch-int and Sophatsathit, 2002) or can pose a query

in standard SQL format. There are two steps to access the HIS, namely, global transaction

creation and decomposition.

(1) Global Transaction Creation: A global transaction is a visual user requirement

represented in standard SQL format that consists of virtual concepts and properties of the

virtual schema as illustrated in Figure 9. Upon submission of a user query that may be in

any arbitrary complex form, the request will be sent to the user interface agent to form the

global transaction, which is a normalized query form, by means of the metadata dictionary.

The query normalization eliminates type mismatch, semantic mismatch, and redundant

predicates (Özsu and Valduriez, 1999) from the global transaction. A formal definition of

the global transaction is given in the Definition 1.

SELECT Employee.ep_name, Employee.ep_salary,

Project.pj_name

FROM Employee, Engineer, Project, Assign

WHERE Employee.salary > 10000

AND Employee.ep_id = Engineer.ep_id

AND Engineer.eg_title = “Chief Eng.”

AND Engineer.ep_id = Assign.ep_id

AND Assign.pj_id = Project.pj_id

Figure 9. A global transaction generated from a user interface agent.

 12

Definition 1: Let Q be a global transaction defined as a triple <S, C, P>, where S =

{vci.vpij | i=1…n, j=1…m} is a finite set of target virtual properties vpij (or attributes) of

virtual concepts vci, that are in the SELECT clause, and the property value of vpkc is defined

over the domain Dc; C = {vci | i = 1…n} is a finite set of target virtual concepts (or

entities) in the FROM clause; and P = Qp  Jp is a finite set of predicates in the WHERE

clause consisting of two kinds of predicates, (i) the set Qp = {ci | i = 1…n} of qualifying

predicates and (ii) the set Jp = {ji | i = 1…m} of join predicates, such that

 A qualifying predicate ck  Qp is defined as vck.vpkc  value, where   {=, <, >,

, ,  } and value  Dc are defined in the qualified virtual property vck.vpkc, and

 A join predicate jk  Jp is defined as vck.vpkc = vcm.vpmc, where k  m, and vpkc =

vpmc.

An example of a qualifying predicate is Employee.ep_id = “11111,” and a join

predicate might be Employee.dept_id = Department.dept_id.

(2) Global Transaction Decomposition: After global transaction creation, the global

transaction is sent to the managing agent (Arch-int and Sophatsathit, 2002), where global

transaction decomposition is initiated. This process transforms the global transaction into

sub-transactions by substituting each virtual concept and property in the global transaction

with the corresponding physical concept and property of the local physical sources obtained

from the metadata dictionary as defined in Definition 2.

Definition 2: A global transaction Q would be transformed into sub-queries or sub-

transactions q1,…, qn over the physical schema such that q1,…, qn have to provide potential

answers relevant to the user query. The transformation process maps the virtual schema in

Q into physical schemas assigned in q1,…, qn.

 For example, the virtual property ep_id in a global transaction is replaced by

Emp_id of Employee_Member and Eng_id of Engineer_Member to form sub-

transaction1 and sub-transaction2, respectively. A sub-transaction will subsequently

access data from a physical information source.

The decomposition process of the global transaction is described in two main steps

as follows:

(1) Mapping. The virtual concepts and properties in the SELECT clause are mapped to the

associated physical concepts and properties and also the physical sources in which each

physical concept resides.

(2) Sub-transaction creation. Each sub-transaction is created from the following processes:

(2.1) Grouping process: The virtual concepts/properties and the corresponding physical

concepts/properties with the same physical source are grouped together.

 Let S = {PSnamei | i = 1…n} be a finite set of physical source names. A physical

source name PSnamek  S is defined as a finite set of virtual concepts/properties and the

corresponding physical concepts/properties such that PSnamek = {pi | i = 1…n}, where pk is

defined as a quadruple <vck, vpkc, PCnamek, PPnamek>.

 13

For example, the virtual properties/concepts in the global transaction of Figure 9 are

mapped into physical information and grouped by PSname as follows:

 S = {“Personnel”, “Engineering”}

 Personnel = {<“Employee”, “ep_name”, “Employee_Member”, “Emp_name”>,

 <“Employee”, “ep_salary”, “Employee_Member”, “Salary”>}

 Engineering = {<“Employee”, “ep_name”, “Engineer_Member”, “Eng_name”>,

 <“Employee”, “ep_salary”, “Engineer_Member”, “Salary”>,

 <“Project”, “pj_name”, “Project”, “Proj_name”>}

(2.2) Substitution process: This process generates a sub-transaction for accessing each

PSnamek by substituting the virtual concepts/properties in each PSnamek with the

corresponding physical concepts/properties to form a sub-transaction, denoted by PSnamek:

<vck  PCnamek, vpkc  PPnamek> as illustrated below. The physical properties

constitute the requested information in the SELECT clause, and the physical concepts

represent the target information sources to be accessed in the FROM clause.

 Personnel: <“Employee”  “Employee_Member”, “ep_name”  “Emp_name”>

 <“Employee”  “Employee_Member”, “ep_salary”  “Salary”>

 Engineering: <“Employee”  “Engineer_Member”, “ep_name”  “Eng_name”>

 <“Employee”  “Engineer_Member”, “ep_salary”  “Salary”>

 <“Project”  “Project”, “pj_name”  “Proj_name”>

(2.3) Generating the constraints: The virtual concepts/properties in the WHERE clause of a

global transaction are also mapped to the associated physical concepts, properties and

sources. Two kinds of predicates in the WHERE clause are considered:

2.3.1 Qualifying predicates. For each group with the same physical source, the

qualifying predicates of the global transaction are replaced with the physical properties and

concepts to form the same constraints in a sub-transaction, that is, for each PSnamek:

(vck.vpkc  value)  (PCnamek.PPnamekc  value). For example, a qualifying predicate

Employee.ep_salary > 10000 is replaced with Employee_Member.Salary >

10000 and Engineer_Member.Salary > 10000 to form the qualifying predicate in the

sub-transactions of Personnel and Engineering, respectively.

2.3.2 Join predicates. For each PSnamek, the join predicates of sub-transactions are

considered as follows:

 If PCnamek and PCnamem correspond with vck, and vcm, respectively, and reside in

the same source, the join predicates of the global transaction are replaced with the

same pairs of physical properties and concepts, that is, (vck.vpkc = vcm.vpmc) 

(PCnamek.PPnamekc = PCnamem.PPnamemc), where k  m, and PPnamekc =

PPnamemc. For example, Engineer.ep_id = Assign.ep_id is replaced with

Engineer_Member.Eng_id = Assignment.Eng_id in a sub-transaction of

Engineering, since Engineer_Member and Assignment are in the same

physical source.

 14

 If PCnamek and PCnamem correspond with vck, and vcm, respectively, but reside in

different sources, there are no join predicates to be generated in the sub-

transactions, and each individual sub-transaction operates in its respective physical

source. For example, the corresponding physical concept names of a join predicate

Employee.ep_id = Engineer.ep_id in the global transaction are

Employee_Member and Engineer_Member, which are in the Personnel and

Engineering sources, respectively. Hence, no join predicates are generated in

sub-transactions of Personnel and Engineering. This means that the returned

results from these sources will be combined through the integration process that will

be described in the next section.

All constraints obtained from the above procedures are combined to form the

complete constraints of each sub-transaction as illustrated in Figure 10. Each sub-

transaction, together with the physical source configurations that are necessary for

accessing the HIS, is then packed and sent along with each search agent to the resource

agent (Arch-int and Sophatsathit, 2002) at the destination physical source.

5.2 The Integrating Process of the Heterogeneous Information Sources

Due to the different physical information sources that govern their own query languages in

manipulating data represented in different data models, query language conflicts stemming

from such differences must be eliminated. To eliminate these conflicts, each sub-

transaction is transformed into the appropriate data manipulation language, regulated by

each proprietary information source via the interface wrapper of the resource agent. The

results obtained from the execution of each sub-transaction are transformed into a canonical

data model represented in an XML-based format via the interface wrappers. These XML

results are transmitted to the managing agent, where the integration process is carried out.

The managing agent utilizes information obtained from the metadata dictionary to integrate

the XML results into unified XML-based data consisting of an XML document and XML-

DTD. The unified XML-based data is generated from the conceptual virtual schema and is

forwarded to the user interface agent, where the presentation format is carried out at the

presentation layer.

Definition 3: Given sub-transactions q1,…, qn generated from a global transaction Q, let

R(q1),…, R(qn) be the results returned from each sub-transaction and represented in XML-

based data. The unified XML-based data, denoted UXML, is the final result derived from

integrating these XML results, such that

{E1| E (Employee_Member(E)  E.Salary >
10000  E1.Emp_name = E.Emp_name 
E1.Salary = E.Salary) }

{E2| Eg, A, P (Engineer_Member(Eg)  Assignment(A) 
Project(P)  Eg.Salary > 10000 Eg.Title = “Chief Eng.”
 Eg.Eng_id = A.Eng_id  A.Proj_id = P.Proj_id 
E2.Eng_name= Eg.Eng_name  E2.Salary = Eg.Salary 
E2.Proj_name = P.Proj_name)}

Figure 10. Two sub-transactions decomposed from the global transaction in Figure 9.

Personnel source Engineering source

 15

 The operator ∆ denotes the integration process that can be either a merge or join

operation of the XML-based data and the mapping of the physical concepts/properties to

virtual concepts/properties corresponding to the user’s request. We represent each XML

result as a labeled tree as defined in Definition 4.

Definition 4: A labeled tree, T, is defined as a pair <t, n>, where t is a finite sub-tree

consisting of one or more nodes, n is a finite set of labeled nodes in t.

A tree, t, has a root node of the tree, denoted by root(t), with children v1, …, vk, k  0.

A labeled node represents the begin-end tag in the XML data model. Attributes of XML

are represented as tag elements of an XML document.

 The integration process can be classified into two categories as follows:

5.2.1 Single Source Integration

If the XML results returned to the managing agent are obtained from a single source, the

transformation process will map the corresponding physical properties and data values of

the XML results to the virtual properties and data values in the form of unified XML-based

data defined in Definition 5.

Definition 5: Let R(qa) be the returned results obtained from executing a sub-transaction qa

of a single source a, represented by a labeled tree, such that R(qa) = {Ai | i=1…n} is a

finite set of records at the leaf nodes of the tree, where each record Ac = {<PPNx, PPDx> |

x = 1…m} is a finite set of a pair consisting of the physical property name PPNc and its

data values PPDc.

 The unified XML-based data UXML is generated from the mapping of R(qa) to UXML

such that R(qa)  UXML and UXML = {Xi | i=1…n}, where Xc = {<VPj, VPDj> | j =

1…m} is a finite set of a pair consisting of the virtual property VPc and its data value VPDc.

The VPc and VPDc are obtained from mapping PPNc  VPc, and PPDc VPDc,

respectively.

5.2.2 Multiple Source Integration

To provide flexible integration of the XML results obtained from multiple sources, a key or

ID for each XML result is required for proper identification of the designated XML record.

As we define it, each record Ac  R(qa) contains key properties and non-key properties. Let

Kac be a finite set of key properties of the record Ac, such that Kac  Ac, and let Xac be the

finite set of non-key properties of a record Ac, such that Xac  Ac and Kac  Xac = .

Definition 6: Given the returned results R(qa) and R(qb) being sent to the managing agent,

let Ac R(qa) be a record in R(qa) and Bd R(qb) be a record in R(qb). Each PPNk  Ac and

PPNm  Bd will be searched for its correspondent virtual property in the metadata

dictionary. If any PPNk and PPNm are children of the same parent virtual property and

contain the same data values, these terms will be treated as synonymous terms and

UXML = ∆ R(qi)
i=1…n

 16

combined with the parent virtual property. In other words, we say that PPNk ~ PPNm iff

ChildOf(PPNk, VPt)  ChildOf(PPNm, VPt), and PPDk = PPDm such that PPNk and PPNm,

and their data values are integrated into a pair of <VPt, VPDk> in the unified XML-based

data.

 For example, the Emp_name in Personnel and Eng_name in Engineering are

synonymous since they are children of the same virtual property ep_name and both contain

the same data value. These synonymous terms are combined into ep_name in the unified

XML-based data. Examples of integrating the XML results that are sent from multiple

sources Personnel and Engineering based on the global transaction in Figure 9 are

illustrated in Figures 11 and 12. The XML results are represented as the labeled trees R1

and R2, as illustrated in Figures 11 (a) and (b), respectively.

 From this example, both Personnel and Engineering return two records obtained

from the respective labeled trees. Each tree R1 and R2 contains the sets Kai and Xai, i =

1…n, such that each Kai is a finite set of a pair consisting of a virtual property and its data

value, which are mapped from the physical key property and its data value. On the other

hand, the set Xai is a finite set of a pair consisting of a virtual property and its data value,

which are mapped from a physical non-key property and its data value. Hence, the first

record of tree R1 contains the finite set of key Ka1 and non-key Xa1, that is,

 Ka1 = { (“ep_id”, “11111”) }, and

 Xa1 = {(“ep_name”, “David”), (“ep_salary”, “12000”)}.

 The second record contains the finite set of key Ka2 and non-key Xa2, that is,

 Ka2 = { (“ep_id”, “22222”) }, and

 Xa2 = {(“ep_name”, “John”), (“ep_salary”, “15000”)}.

For tree R2, the first record contains the finite set of key Kb1 and non-key Xb1, that is,

 Kb1 = { (“ep_id”, “22222”) }, and

Xb1 = {(“ep_name”, “John”), (“ep_salary”, “15000”), (“pj_name”, “EJP”)}.

The second record contains the finite set of key Kb2 and non-key Xb2, that is,

 Kb2 = { (“ep_id”, “33333”) }, and

 Xb2 = {(“ep_name”, “Billy”), (“ep_salary”, “9000”), (“pj_name”, “TTY”)}.

The integration process will join the records for each tree that has the same set of

key Kac and Kbk. In this example, the second record of the tree R1 and the first record of the

tree R2 will be joined according to Ka2 = Kb1. However, since ep_id is not designated in

the global transaction, that is, ep_id  S, only Xa2  Xb1 are added to the set UXML. The

unified XML-based data becomes:

 UXML = {{(“ep_name”, “John”), (“ep_salary”, “15000”), (“pj_name”, “EJP”)}}

 17

Figure 12. Multiple source integration by joining the XML-DTD of each source into the

 XML-DTD of the unified XML-based data.

.

<!DOCTYPE UXML [

<!ELEMENT UXML (Result)+>
<!ELEMENT Result (ep_name, ep_salary, pj_name)>

<!ELEMENT ep_name (#PCDATA>

<!ELEMENT ep_salary (#PCDATA>
<!ELEMENT pj_name (#PCDATA>

]>

<!DOCTYPE Personnel [

<!ELEMENT Personnel (Employee_Member)+>

<!ELEMENT Employee_Member (Emp_name, Salary)>
<!ATTLIST Employee_Member Emp_id ID #REQUIRED>

<!ELEMENT Emp_name (#PCDATA>

<!ELEMENT Salary (#PCDATA>

]>

<!DOCTYPE Engineering [

<!ELEMENT Engineering (Engineer_Member)+>
<!ELEMENT Engineer_Member (Eng_name, Salary,

Proj_name)>

<!ATTLIST Engineer_Member Eng_id ID #REQUIRED>
<!ELEMENT Eng_name (#PCDATA>

<!ELEMENT Salary (#PCDATA>

<!ELEMENT Proj_name (#PCDATA>

]>

(b) The resulting XML-DTD generated from

 the Engineering source.

(a) The resulting XML-DTD generated from

 the Personnel source.

(c) The XML-DTD of the

unified XML-based data in

accordance with the user’s

view generated by the

managing agent.

Figure 11. Multiple source integration by joining the XML documents into the

 XML document of the unified XML-based data.

(a) XML tree structure (R1) representing

 XML document sending from the
 Personnel source.

(c) XML tree structure

representing XML document

of the unified XML-based

data.

Personnel

“David” “12000”

Salary

“11111”

Employee_Member

Emp_name Emp_id

Employee_Member

“John” “15000”

Salary

“22222”

Emp_name Emp_id

Engineer_Member

Engineering

“John” “15000”

Salary

“22222”

Eng_name Eng_id Proj_name

“EJP”

“Billy” “ 9000”

Salary

“33333”

Eng_name Eng_id Proj_name

“TTY”

Engineer_Member

Result

“John” “15000”

pj_name ep_salary ep_name

UXML

“EJP”

(b) XML tree structure (R2) representing

 XML document sending from the
 Engineering source.

 18

6 Related Work

A number of systems have been proposed to cope with semantic heterogeneity problems.

For example, mediator-based systems (Wiederhold, 1992) provide the inter-schema

architecture for integrating access to data from different sources and converting data and

queries into canonical formats via the mediator and wrapper components, respectively.

Examples of such systems are TSIMMIS (Garcia-molina, Papakonstantinou, Quass,

Rajaraman, Sagiv, Ullman, Vassalos, and Wisom, 1997) and HERMES (Adali and Emery,

1995). Description logic-based systems offer a different approach to elaborate source

description by means of description logic (Borgida, 1995; Borgida, Brachman, Mcguinness

and Resnick, 1989) for solving query processing over multiple sources. Unlike the

mediator approach, the description logic approach abstracts the heterogeneous sources from

users through a global view to facilitate query formulation. Examples of such systems are

the Information Manifold (Levy, Rajaraman and Ordille, 1996) and the SIMS (Arens, Chee,

Hsu and Knoblock, 1993; Arens, Hsu and Knoblock, 1996). Content-descriptive metadata

systems (Kashyap and Sheth, 1998) utilize annotation information that is tightly integrated

with HTML as metadata to describe the contents of a web document. Examples of such

systems are the Ontobroker (Decker, Erdmann, Fensel and Studer, 1999) and the SHOE

(Heflin, Hendler and Luke, 1999). All of these systems use the ontology approach to cope

with heterogeneity problems. A survey and comparison of these systems can be found in

Paton, Goble and Bechhofer (2000).

Our approach differs from other approaches from various standpoints:

 We proposed the ontology-based metadata dictionary as a key to solve semantic

heterogeneity;

 The proposed approach maps a user’s query posed over virtual schema directly to

physical schema without loss of information in the query; and

 To demonstrate how the proposed ontology-based metadata dictionary can be

applied to a practical implementation, we present the transformation of the

ontology-based metadata dictionary into XML-based metadata dictionary

representation.

7 Conclusion and Future Work

This work contributes to both the theory and practice of HIS in many aspects. First, we

presented a modeling process of the domain ontology, which is the basic building block of

the metadata dictionary. The main purpose is to extract the ontology from the underlying

physical sources and represent it explicitly. Second, the metadata dictionary provides a

mapping mechanism to associate a user’s request posed at the conceptual level that is

logically linked to the physical level, thus allowing direct access to stored information

without loss of general query formulation. Third, choosing XML technology to express the

contents of the metadata dictionary renders maximal interoperability across heterogeneous

systems. Fourth, the metadata dictionary provides necessary information for accessing

HIS, as well as the integration of the returned results into unified XML-based data. The

unified XML-based data in turn provides the relevant answers in standard XML format

 19

corresponding to the user’s request. Finally, the proposed approach enables the semantic

heterogeneity problem to be solved at local and remote query processing.

A number of enhancements are necessary: First, the preliminary design of our approach

supports only structured and semi-structured sources. It has to be extended to incorporate

unstructured data sources. Second, query optimization is required for query processing

efficiency. Finally, we can also enrich the proposed ontology-based metadata dictionary

with advanced ontology language such as RDF/RDF Schema (Brickley and Guha, 2000;

Lassila and Swick, 1999) to attain XML universal expressive power and syntactic

interoperability toward machine-processable Semantic Web (Decker, Melnik, Harmelen,

Fensel, Klein, Broekstra, Erdmann and Horrocks, 2000; Fensel, Harmelen, Horrocks,

Mcguinness and Patel-schneider, 2001; Hendler, 2001).

References

ADALI, S. and EMERY, R. (1995): A uniform framework for integrating knowledge in

heterogeneous knowledge systems. Proc. Of the International Conference on Data

Engineering, Taipei, Taiwan, 11:513-521, IEEE Computer Society Press.

ARCH-INT, N. and SOPHATSATHIT, P. (2002): A Reference Architecture for Integrating

Heterogeneous Information Sources using XML and Agent Model. Proc. of the Joint

Conference on Information Sciences, NC, USA, 6:235-239.

ARCH-INT, N., LI, Y., ROE, P. and SOPHATSATHIT P. (2003): Query Processing the

Heterogeneous Information Sources using Ontology-based Approach. Proc. of the

International Conference on Computers and Their Applications, Honolulu, Hawaii, USA,

18:438-441.

ARENS, Y., CHEE, C.Y., HSU, C.-N. and KNOBLOCK, C. (1993): Retrieving and Integrating

Data from Multiple Information Sources. International Journal of Intelligent and Cooperative

Information Systems 2(2):127-158.

ARENS, Y., HSU, C.-N. and KNOBLOCK, C. (1996): Query processing in the SIMS information

mediator. In Advanced Planning Technology. Austin Tate (ed), 61-69, California. AAAI Press.

BATINI, C. and LENZIRINI, M. (1984): A Methodology for Data Schema Integration in Entity-

Relationship Model. IEEE Trans. Software Eng 10(6):650-654.

BATINI, C., LENZIRINI, M. and NAVATHE, S.B. (1986): A Comparative Analysis of

Methodologies for Database Schema Integration. ACM Computing Surveys 18(4):323-364.

BORGIDA, A. (1995): Description Logics in Data Management. IEEE Trans. on Knowledge and

Data Engineering 7(5):671-682.

BORGIDA, A., BRACHMAN, R.J., MCGUINNESS, D.L. and RESNICK, L.A. (1989): Classic: A

structural data model for objects. Proc. ACM SIGMOD International Conference on

Management of Data, Portland, Oregon, USA, 58-67, ACM Press.

BRACHMAN, R. and LEVESQUE, H., (ed) (1985): Readings in knowledge representation. Los

Altos, California, Morgan Kaufmann.

BRICKLEY, D. and GUHA, R. (2000): Resource Description Framework (RDF) Schema

Specification. http://www.w3.org/TR/2000/CR-rdf-schema-20000327/. W3C Recommendation

March 2000.

 20

CASTANO, S., ANTONELLIS, V.D. and VIMERCATI, S.D.C. (2001): Global Viewing of

Heterogeneous Data Sources. IEEE Trans. on Knowledge and Data Engineering 13(2):277-297.

CHEN, P.P. (1976): The Entity-Relationship Model – Toward a Unified View of Data. ACM

Transactions on Database Systems 1(1):9-36.

DECKER, S., ERDMANN, M., FENSEL, D. and STUDER, R. (1999): Ontobroker: Ontology

Based Access to Distributed and Semi-Structured Information. In Database Semantics:

Semantic Issues in Multimedia Systems. MEERSMAN, R. et al. (eds). Boston, MA, USA,

8:351-369, Kluwer Academic Publisher.

DECKER, S., MELNIK, S., HARMELEN, F. V., FENSEL, D., KLEIN, M., BROEKSTRA, J.,

ERDMANN, M. and HORROCKS, I. (2000): The Semantic Web: The Roles of XML and

RDF, 4:63-74, IEEE Internet Computing.

FENSEL, D. (2001): Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer-Verlag.

FENSEL, D., HARMELEN, F.V., HORROCKS, I., MCGUINNESS, D.L. and PATEL-

SCHNEIDER, P.F. (2001): OIL: An ontology infrastructure for the Semantic Web. IEEE

Intelligent Systems 16(2):38-44.

GARCIA-MOLINA, H., PAPAKONSTANTINOU, Y., QUASS, D., RAJARAMAN, A., SAGIV,

Y., ULLMAN, J., VASSALOS, V. and WISOM, J. (1997): The TSIMMIS approach to

mediation: data models and languages. Journal of Intelligent Information Systems 8(2):117-132.

GRUBER, T.R. (1993): A translation approach to portable ontology specifications. Knowledge

Acquisition 4(2):199-220.

HEFLIN, J., HENDLER, J. and LUKE, S. (1999): SHOE: A Knowledge Representation Language

for Internet Applications. Technical Report CS-TR-4078 (UMIACS TR-99-71). Department of

Computer Science, University of Maryland at College Park.

HENDLER, J. (2001): Agents and the Semantic Web. IEEE Intelligent Systems 16(2):30-37.

KASHYAP, V. and SHETH, A. (1998): Semantic Heterogeneity in Global Information Systems:

The Role of Metadata, Context and Ontologies. In Cooperative Information Systems: Current

Trends and Directions. PAPAZOGLOU M. and SCHLAGETER G. (eds). London, United

Kingdom, 139-178, Academic Press.

KNOBLOCK C. A. and AMBITE J. L. (1997): Agents for Information Gathering. In Software

Agents. BRADSHAW J. M. (ed), 347-373, AAAI Press/The MIT Press.

LASSILA, O. and SWICK, R. R. (1999): Resource Description Framework (RDF) Model and

Syntax Specification, W3C (World Wide Web Consortium). http://ww.w3.org/TR/1999/REC-

rdf-syntax-19990222. W3C Recommendation 1999.

LEVY, A.Y., RAJARAMAN, A. and ORDILLE, J.J. (1996): Querying Heterogeneous Information

Sources using Source Descriptions. Proc. of the International Conference on Very Large

Databases, Bombay, India, 22:251-262, Morgan Kaufmann.

LI Y., ZHANG C. and SWAN J. R. (2000): An information filtering model on the Web and Its

Application in JobAgent. Knowledge-Based Systems 13(5):285-296.

ÖZSU, M.T. and VALDURIEZ, P. (1999): Principles of Distributed Database System, Second

Edition. Prentice-Hall.

 21

PAPASTAVROU S., SAMARAS G. and PITOURA E. (2000): Mobile Agents for WWW

Distributed Database Access. IEEE Transactions on Knowledge and Data Engineering 12(5):

802-820.

PATON, N.W., GOBLE, C.A. and BECHHOFER, S. (2000): Knowledge based information

integration systems. International Journal of Information and Software Technology 42(5):299-

312.

SHETH, A.P. and LARSON, J.A. (1990): Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases. ACM Computing Surveys 22(3):183-236.

USCHOLD, M. and GRUNINGER, M. (1996): ONTOLOGIES: Principles, Methods and

Applications. The knowledge Engineering Review 11(2):93-155.

VET, P.E.V. and MARS, N.J.I. (1998): Bottom-Up Construction of Ontologies. IEEE Trans. on

Knowledge and Data Engineering 10(4):513-526.

WIEDERHOLD, G. (1992): Mediators in the Architecture of Future Information Systems. IEEE

computer 25(3):38-49.

