
An address mapping approach for test data generation

of dynamic linked structures

Sittisak Sai-ngern*, Chidchanok Lursinsap, Peraphon Sophatsathit

Department of Mathematics, Faculty of Science, Advanced Virtual and Intelligent Computing (AVIC) Research Center,

Chulalongkorn University, Bangkok 10330, Thailand

Received 5 April 2004

Available online 2 October 2004

Abstract

Software testing is an important technique to assure the correctness of the software. One of the essential prerequisite tasks of software

testing is test data generation. This paper proposes an approach to generate test data specifically for dynamic pointer structures. In our

context, a pointer is considered and handled as a location in memory, represented by a dynamic linear array that expands and shrinks during

execution. As such, pointer test data can be directly generated from this linear array. The proposed technique can also support any dynamic

structures, as well as homogeneous and heterogeneous recursive structures.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Test data generation; Linked structure; Software
1. Introduction

1.1. Software testing

A number of approaches have been proposed to ensure

the quality of software including technical reviews,

walkthroughs, inspection, testing, proof of correctness,

simulation, prototyping, and requirement tracings. Among

these methods, testing is one of the most important and

practical techniques used in industry to assess a software

product and reduce the risk of failure [4]. It is an expensive,

tedious, and labor-intensive task which accounts for up to

50% of the total cost of software development [1,15]. The

testing process involves many subtasks. One difficult aspect

is test data generation [2], which requires considerable

amount of resources and effort to carry out. As a

consequence, the cost incurred inevitably rises. In order to

reduce the development costs and improve the quality of

software, automatic test data generation is considered

desirable. A number of automatic test data generation

methods have been proposed. Korel [9] classified these
0950-5849/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2004.08.004

* Corresponding author.

E-mail address: Sittisak.sa@student.chula.ac.th (S. Sai-ngern).
methods into three types: random [5,18], pathwise [9,12],

and data specification [5,17]. Random testing and data

specification are not appropriate for a program with

dynamic structure type since the search space is large. On

the other hand, pathwise testing manifests the input data

generation to satisfy some kind of adequacy criteria (i.e.

branch coverage, statement coverage, etc.). It is primary for

unit testing since the method is more effective at finding

faults at the unit level, and correcting faults at this level is

less expensive when faults are detected during unit testing

[11]. This paper, therefore, proposes an approach, which

focuses on path wise test data generation.
1.2. Test data generation

Edvardsson [3] models a typical test data generator

system, which consists of three parts, namely, program

analyzer, path selector, and test data generator. Program

analyzer takes source code as an input and produces control-

flow or data-flow information such as a data-dependence

graph, control flow graph, etc. Based on these data, the path

selector selects paths to be executed by the test data

generator. The goal of the test data generator is to find

the input values that will execute every statement along
Information and Software Technology 47 (2005) 199–214
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214200
the path. We will concentrate primarily on this particular

aspect of the pathwise test data generator.

Most existing approaches for generating test data deal

with basic numerical data types such as integer and real

numbers. Although these data types are commonly useful in

various applications, they cannot be feasibly used in many

applications where symbolic computations are needed and

the data size is not fixed. These applications employ

advanced data types such as pointer, structure, and file

types. Applications written in C/CCC extensively utilize

the predominant pointers and dynamic structures, e.g.

system software and circuit simulations [8]. Pointer

variables range from simple structure (single storage) to

recursively defined structure (many discrete storage that

form shapes such as linked list, tree, heap, etc.). For simple

pointer structure such as ‘int *a’, generating test data can

exploit the algorithms of prior work [6,12]. However, some

relevant features such as alias and pointer arithmetic must

be considered as well.

Generating test data for a recursively defined structure is

more difficult than for a non-recursively defined structure.

The problem is two-folds. First, how many nodes are needed

as inputs to force a traversal along a given path and how are

they linked? These problems are categorized as dynamic

linked structure generation problems. Second, what should

the value for the non-pointer data field within a structure be?

The latter problem falls into the same realm as generating

test data for basic numerical data types that treat each non-

pointer data field as a discrete variable. We will investigate

the dynamic structure generation problem.

The overall process of generating input data for a

recursively defined structure is divided into two steps. The

first step, referred to as address mapping, focuses on solving

dynamic structure generation through actual execution of

the statements under test. A path is selected and all the

statements along that path are laid out linearly. A memory

address is assigned to each pointer reference for use in

actual execution. However, not all addresses are assigned

and participated in the test data generation for the

designated path. Only pointers to input addresses (sub-

sequently referred to as class I, see Section 4) are involved.

Each statement is evaluated by adjusting the address and

content of every pointer during the execution. If any

constraint cannot be satisfied during statement evaluation,

the algorithm will report an infeasible path. The second step

focuses on data generation which rests primarily on existing

data generation methods such as [10,12].

In this paper, the following results are expected:
†
 A technique for automatic input pointer structure

generation which can be further integrated with existing

numerical test data generation methods. This technique

can be subsequently applied to different language

paradigms such as object-oriented or assembly language.
†
 A technique for mapping a pointer reference to linear

array structure.
†
 An algorithm to resolve address for equality and

inequality constraints.
†
 A direct and effective approach to manage pointer alias

and heterogeneous pointer structure.
†
 A detection method for infeasible path caused by invalid

pointer constraints and operations.

These results will contribute to the derivation of our

proposed address mapping approach for test data generation

of dynamic linked structures.

The organization of this paper is as follows: Section 2

presents an overview of the proposed approach by

examples. Section 3 clarifies terms used and explains

basic concepts of pointer operations involved in this

approach. Section 4 elucidates details on dynamic structure

generation algorithm. The experiments and discussion are

provided in Section 5. Section 6 discusses some related

works. Concluding remarks and future work are summar-

ized in Sections 7 and 8, respectively.
2. Overview

In this section, we will describe the proposed approach in

general terms. The proposed approach takes the statements

along the flow path and relates data structure definitions as

inputs to generate the test structure. Each statement is

examined for any pointer operation. If one is found, the

operation is evaluated to reorganize the memory space

where each pointer element is allocated. In an actual

running environment, the memory space prior to execution

of the function usually contains input parameters. When the

function is executed, the initial data are modified to produce

an output linked structure. However, in a test environment,

the initial data are unknown. To compensate for such an

unknown situation, the proposed approach assumes their

existence by initializing every input variable (argument) to a

designated address. Subsequent address creation is based on

demand as required by the statement. Any reference to this

input will expand the address chain. Statement execution

can further expand, modify, or shrink the chain depending

on the operation.

To clarify our concept, function ex01 is used as an

example. The function takes two arguments. The first

argument is of dynamic structure type that contains two

pointer fields. The other argument is of integer type. The

pseudo address generation procedure generates the linked

structure, which subsequently is reduced to numerical data

fields according to the dynamic domain reduction method.

The output demonstrates the mapping from pseudo address

to real address.

The example declares a node as a dynamic structure

containing two pointer fields denoted by !address, (lt,

rt)O, where ‘address’ represents the location in mem-

ory(j), ‘lt’ and ‘rt’ are address values assigned to pointer

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214 201
fields of the node structure which serve as the environment

linking pointers to memory locations(g).

Memory location count begins sequentially from 1. The

allocation process will always select the address following

the last one allocated. The variable c has the same structure

as j, but contains only the address and initial values which

are derived from the input variables. Any address that is

generated by a function such as malloc() will not affect

the contents of c. Fig. 1 demonstrates how the notation

is represented. The path selected for function ex01 is

!1,2,3,4,7,11,12,13,14,15,17,18O.

The following describes how the proposed configuration

executes function ex01.
Fig. 1. Example function ex01 (a), Memory oper
atio
Line 1: The input variable p is assigned address 1 in j, c,

and.g The ‘C’ sign represents an add or union operation.

The initial value of pointer fields lt and rt are 2 and 3,

respectively. These values are reserved addresses in j

and c but no actual creation takes place.
Line 2: There is nothing done for local variable

declaration.
Line 3: Reference of p will force the address 1 to be not

null since p is assigned to point at a data object.
Line 4: p/lt is dereferenced to pZ1 and p/ltZ2. The

address 2 is not yet created. Thus, it is created in j and c

with its field values initialized to 4 and 5. Address 2 is

subsequently assigned to x, which adds to g.
ns (b), and generated test structure (c).

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214202
Line 7: Similar to line 3, address 2 cannot be null from

any constraint.
Line 12: y and x/rt are dereferenced. Address 5 with

initial field values 6 and 7 are added to j and c for x/rt.

The assignment will set y to address 5, which is shown

in g.
Line 13: y/lt is dereferenced. Address 6 with values 8

and 9 is created and added to j and c. x is dereferenced to

address 2 and the rt field is reset to 5. This is done by first

removing (–) the original address(2) of x and adding it

back again with the value of the rt field changing from 5

to 6.
Line 14: Adding to j, the malloc() allocates address 10

with initial field values (0,0). g updates y to this new

address.
Line 15: There is nothing done, since address 10 is

already restricted to non-null.
Line 18: y is dereferenced to address 10. p is

dereferenced to address 1 and the rt field of this address

is changed the value from 3 to 10 in the same manner as

line 14.

After all statements have been processed, addresses

1,2,5,6, and 10 are created. There are two sources of these

addresses, namely, input (1,2,5,6) and malloc() function

(10). The target test structure is obtained from c, which

contains input addresses 1,2,5, and 6. In order to obtain the

complete test data set for the function, the numerical test

data must be generated. Many methods for the test data

generation have been proposed. In this paper, the dynamic

domain reduction approach is selected due to its scalability

and practical use. Details of the algorithm can be obtained

from [12]. In this example, the algorithm will generate

numerical data for variables v, p/key, and x/key,

assuming that the initial domain for each variable lies

between K10 and 10. These initial values may be assigned

to minimum and maximum possible values of the host

machine, or restricted to a reasonable input specification

range, or based on the test engineer’s knowledge. In our

example, the chosen values are based on the test engineer’s

knowledge. One valid test case obtained from the algorithm

are vZK5, p/keyZ1, x/keyZK5. To combine the

non-pointer field values to the pointer structure, a new field

is added to the output structure which is created from the

generated address representing the ‘key’ data field. Thus,

the modified address structure will be !address, (key, lt,

rt)O. The results are depicted in Fig. 2. Note that the
Fig. 2. The integrated output for the algorithm.
numerical data field of the last two nodes at address 5 and 6

are not involved in any constraint conditions or compu-

tations; hence they can be any value. In this case, they are

set to 0.

The generated pseudo address may be mapped to a

designated target language such as C or CCC. The

mapping process consists of three simple steps, namely,

node allocation, numerical data assignment, and link

assignment. Depending on the language, node allocation

will create an exact number of nodes in accordance with the

number of pseudo addresses generated. Each allocated node

consists of a numerical data field and a pointer field. The

former will be assigned a value obtained from the generated

numerical test data whereas the latter will be linked to one

of these newly created nodes according to the match

between its field value and pseudo address in c of the

designated node. This mapping process is thus illustrated by

the following example.
Generated test data:
Address 1: (1,(2,3)), data: K5
Address 2: (2,(4,5)), data: 1
Address 3: (5,(6,7)), data: 0
Address 4: (6,(,8,9), data: 0
Step 1: Node allocation:
node1Zmalloc(node);
node2Zmalloc(node);
node3Zmalloc(node);
node4Zmalloc(node);
Step 2: Numerical data assignment:
node1/keyZK5;
node2/keyZ1;
node3/keyZ0;
node4/keyZ0;
Step 3: Link assignment:
node1/ltZnode2;
node2/rtZnode3;
node3/ltZnode4;

All pointer fields of the allocated memory are defaulted

to null.
3. Fundamentals of dynamic linked structures

It is assumed that the reader is familiar with the terms

used in software test data generation. These include

Fig. 3. Examples of program structures along with one possible path selection for each construct.

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214 203
program (function), input variable of a function, basic

block, predicate, constraint, path, flow graph, control path,

feasible path, and infeasible path. Details of these terms are

given in [3,12].

This paper concerns pointer variables, which contain an

address in memory of another variable as their value. The

type of the pointer designates the type of the dynamic record

or a recursively defined pointer structure container. A

recursively defined pointer structure container is divided

into two parts. The first part is a record variable, which has

at least one field being a pointer of the same type. The

second part is an unnamed record of a given type. Both parts

can be separately created. The former is allocated first. The

latter can subsequently be built and connected to form a

linked list or a tree. This pointer structure container is

created dynamically by standard memory allocation func-

tions such as malloc(). Such a configuration suits the

proposed recursivelydefined structure. This paper will thus

refer to a ‘pointer’ as the recursively defined pointer

structure. The pointer structure is further classified into two

types—homogeneous and heterogeneous pointer structures.

The homogeneous pointer structure is a pointer structure

that contains a pointer field of the same type such as linked

lists or binary trees, while the heterogeneous pointer

structure is a structure that contains a pointer field of

different types, such as union of embedded generic pointers

to structures, trees, and file objects.

Based on the above structural framework, path selection

for test execution will commence to map every dynamically

linked object so generated in the form of ‘pointer’. A

number of procedural constructs and operations are

involved in the execution process which will be elucidated

below.
3.1. Execution sequence

The execution sequence is based on the identification of a

set of statements that make up a path. The selection of

statements aims at satisfying some testing criteria. Many

approaches [13] exist to fulfill the task. The path may also

be manually provided or randomly generated. This paper

opts for the randomly generated path. Regardless of path
selection methodologies, a path will contain a sequence of

finite statements, which are not necessarily unique. For

example, statements within a loop may appear more than

once for the path. Fig. 3 shows examples of possible paths

for different program constructs.

Finally, a path is a sequence of finite statements pZ!s1,

s2,.,snO, where sn is the last statement of path p. The flow

of execution is from s1 through sn in forward direction. The

statement that contains a conditional operation like s3 in the

code segment below may be evaluated to s3 or s3
0, where s3

0

denotes the false path of predicate evaluation.
s3: if (xZZy)
s4: xZa;
s5: yZc;

If the statement s4 must be executed, s3 will evaluate to

true, i.e. ‘xZZy’. On the contrary, if the statement s4 is

omitted, s3
0 will be ‘x !Zy’.

If any si2p is not executed successfully, the path is

broken or infeasible. Our approach is interested in subpath

psZ!sp1, sp2,., spmO where spi contains pointer elements,

p1R1 and pm%n. A pointer element may refer to a pointer

variable directly (i.e. p) or a traversed field (i.e. p/f1, p/
f1/f2, etc.). We classify pointer elements into two classes,

namely,
†
 Class I: The value of a pointer element is from a set of

input addresses.
†
 Class II: The value of a pointer element is from a newly

allocated memory (e.g. pZmalloc()) or from a transitive

assignment of newly allocated memory (e.g. pZq, where

q is previously executed as qZmalloc()).

Table 1 shows examples of class I and II. The underlying

structure declaration for the examples is TREE (struct

TREE {int data; TREE *left; TREE *right;}).

Before the execution of a statement, each variable must

be dereferenced before use. If the current value of the

variable is from an input address, it will belong to class I.

The statement on line 4 is in class I before and after

execution since the value of the input variable p is

unchanged. Variable x is a local variable whose value

Table 1

Examples of class

Line Statements Pointers CLASS

before/

after

Comments

before/after

1 void classI_II (TREE

*p, TREE *q)

2 {

3 TREE *x, *y;

4 xZp/right; x –/I L/A

p/right I/I D/D

5 yZq/left; y –/I L/A

q/left I/I D/D

6 pZmalloc(); p I/II D/E

7 p/leftZx; p/left II/I E/A

x I/I D/D

8 q/rightZp/right; q/right I/II D/A

p/right II/II E/E

9 }

A, assignment; D, dereferenced from input; E, explicitly allocated; L, local

variable.

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214204
before line 4 is undefined. After execution, x belongs to

class I. The statement on line 5 follows the same pattern as

line 4. The malloc() unction on line 6 explicitly assigns a

memory block to the variable p and sets all the pointer fields

in p to null, hence belong to class II. The rest of statements

are interpreted in the same manner and succinctly annotated

in the Comments column.
3.2. Heap representation

The fundamental programming concepts rest on level

of abstraction, having rich utilities for convenience.

However, data types at high level programming are

more complicated to assign the values than those at low

level. For this reason, our approach will manage the

pointer-based structure type at low level. As mentioned

earlier, a pointer in this paper refers to the pointer to a

linked structure, which serves as a mechanism for

addressing and managing dynamic storage. This dynami-

cally manipulated area of memory is called heap. The

actual operations on heap are system-dependent and not

of concern here. The focus is on the number of heap

cells needed to accommodate the dynamically generated

linked structures prior to execution of a given path. Our

approach models heap storage as a linear array of

consecutive cells. For simplicity, each cell will be

addressed or indexed starting from 1. A memory cell is

divided into sections where pointer field layout is

arranged from left to right according to the declaration

of pointer fields of the structure. The leftmost section

stores the first declared field, the second leftmost stores

the second declared field, and so on. Any non-pointer

field is ignored. A pointer field within the structure may

be referenced by the number representing the position

within the cell as shown below.
struct ex {int data, val; ex *n1, *n2;}

The position 0 is reserved, 1 refers to n1, and 2 refers to

n2, and so on.

To manage this memory address space, we define the

memory and the environment as follows:
†
 The memory is a set of address-value list that specifies

cell addresses and their values, i.e.

j Z f!a1; ða1
1;.; a1

n1ÞO;.;!ak; ðak
1;.; ak

n1ÞOg

where ai denotes a cell address i, 1%i%k; aj
i is the jth

pointer field value of ai, and ni is the number of fields of

the structure, 1%j%ni.
†
 The environment g of an execution path is a set of

address value pairs that associate a variable with point-to

address

g Z f!v1; a
1O;.;!vn; a

kOg

where vi is a pointer variable, ai denotes the cell address

defined earlier, 1%i%n.

As an example, let D be a data structure declaration

containing two pointer fields; p and q be pointer variables

that are declared to be the D type. Suppose p points to

location 1 which has addresses 2 and 3 as its pointer field

values. The variable q is set to 4 with values 5 and 6 for the

pointer fields. Locations 2, 3, 5, and 6 are empty. The

configuration of the environment and memory can be

expressed as follows:

g Z f!p; 1O;!q; 4Og

j Z f!1; ð2; 3ÞO;!4; ð5; 6ÞOg

To access a particular item from the environment and

the memory, we define g(vi) to denote the address of vi in

the list. The function j(ai,j) will access the value of pointer

field in position j at location ai, jR1. From the above

example, the address of p and its field values are retrieved

as follows:
gðpÞZ1;
jð1; 1ÞZ2; and
jð1; 2ÞZ3:

Besides the value of pointer field, each cell also contains

the following properties:
†
 A Boolean flag stable to hold the value true if it belongs

to class II, and false if it is class I.

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214 205
†
 A Boolean flag active to indicate that i is the active cell

which can be accessed for pointer operations. This flag is

false for the cell that is freed.
†
 A three-value flag null to hold three-stage condition, that

is, a 0 as the default for non-NULL, 1 for NULL, and 2

for unmodifiable non-NULL value.
†
 The set unequal to contain all nodes that restricts not to

be aliased with this cell.
†
 An integer id to contain the id of the structure type to

which this cell belongs.
3.3. Pointer representation and operations

3.3.1. Pointer representation

A dynamic data structure consists of a collection of

data elements. Each element is called a node. There are

two types of nodes, namely, point-to node and reachable

node. The point-to node refers to the node that is directly

accessed by a pointer variable while the reachable node

can be accessed by traversing the point-to node. Based

on this configuration, the nodes will be transformed into

traversed vector format. The traversed vector contains

the pointer variable at column 1. The remaining columns

represent the rest of traversed nodes by numerical value.

Each traversed node corresponds to the field of the

structure in the form of its positional value as defined by

the heap structure. The value starts from 1 for the first

declared field, 2 for the second declared field, and so on.

As an example, consider a binary-tree variable p having

left and right pointer fields, these two fields are denoted

by positions, 1 and 2, respectively. A C-like convention

is given below.
ph[p]
p/lefth[p,1]
p/righth[p,2]
p/right/lefth[p,2,1]

The length of [p],[p,1],[p,2],[p,2,1] are 1,2,2, and 3,

respectively. From the above example, p/right/left can

be represented by [p,2,1]. Also, given the traversed vector

vZ[p,2,1], we can access each element by using the index

of the vector, i.e. v(1)Zp, v(2)Z2, and v(3)Z1.

3.3.2. Operations

To make it clear, how a pointer is operated, we impose

the following restrictions on pointers
†
 Pointers are allowed to point to dynamically allocated

records or null.
†
 The initial values of all fields of the allocated node

from conventional memory allocation operations such

as malloc() are null.We also make a default assumption

that can be overwritten by the statements along the path.
†
 Every node is stored in a unique storage location.
This assumption will allow a pointer variable to have a

unique address on its first reference. The operations on the

pointer may be divided into six categories, namely, USE,

MODIFY, CREATE, DELETE, ALIAS, CONSTRAINTS.

3.3.2.1. USE operation. The operation will traverse the pointer

chain and generate (if it does not exist) proper pointer elements

associated with the variables for all valid dereferencing. As

mentioned before, there are two classes of pointer elements or

nodes. Class I is concerned with the input value while class II

involves explicitly allocated memory. However, a typical

traversed chain may hold both classes. For example, the point-

to node is a node in class I, the second reachable node is a node

in class II, and the third node is a node in class I. The following

code demonstrates the concepts.

The function mixednode has one input variable y of Tree

type. The statement on line 1 will generate a class I node.

Connecting to this node, the statement on line 3 generates a

class II node. Line 5 creates two more class I nodes for y/
right and y/right/left. The statement on line 7 will not

successfully execute because the node y/left is of class II

whose left field value is by default null and thus prohibiting

further traversal. We summarize the concepts of dereferen-

cing as follows:
†
 If all nodes in a traversed chain already exist, dereferen-

cing of each node will be determined based on the current

pointer value of the node.
†
 If the next traversed node does not exist and the current

node is in class I, further traversal will require memory

allocation of the next node in class I.
†
 If the current node is in class II, all pointer fields of the

node will be null. No further traversal from those fields is

possible unless they are assigned to some location.

The approach generates the nodes as needed. If a node of

type I is created, all fields of the node will be assigned an

addresses ready for further expansion. However, any field of

this node that has not been referred will be set to null at the end

of execution. If the node is constrained to null, i.e. if (y/
rightZZNULL), the property i$null of the corresponding

address i for this node will be set to 1 and no further

dereferencing is allowed.

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214206
Let p be a pointer variable to a dynamic linked structure

and v be a traversed vector of p. We denote Use(v(n)) as the

operation that returns the address value of v(n), which is

defined as follows:
Use(v(0))Zg(v(0))
Use(v(1))Zj(Use(v(0),v(1)))
Use(v(2))Zj(Use(v(1),v(2)))
/

Use(v(n))Zj(Use(v(nK1),v(n)))

The definition of Use(v(n)) is recurrent. It always begins

with Use(v(0)) for the starting address of traversal. The null

property of Use(nK1) is set to 2, otherwise the node Use(n)

cannot exist. For 0!x!n, if the node xK1 is in class I and

the node x does not exist, the approach will generate the

node x under the following conditions:
†
 Use(v(xK1))$activeZTrue
†
 Use(v(xK1))$null/Z1
†
 Use(v(xK1))$stableZFalse

How the node x is created will be explained in the

CREATE operation (Create(d,class)).

3.3.2.2. MODIFY operation. This operation will assign an

address value to a node Let p be a pointer variable pointing

to a dynamic linked structure, v be a traversed vector of p, x

be an address in memory. We denote Modify(v,x) to be a

function that assigns the value x to node v. The function is

defined as follows:
Modify(v,x)

if (xZZNULL)

Use(v(n)).nullZ1

else if (nZZ0)

g(Use(v(n))Zx

else

j(Use(v(n-1)),v(n))Zx

end if
end Modify

If the address x is null, no memory or environment is

updated. Only the null property of the node is set. When the

pointer variable itself is assigned a value (nZ0), the

assignment will update the variable in the environment g to

establish a connection between the address and the variable.

Otherwise, update will be done at the memory space j. As

an example, let p, q be input variables of Tree type and have

assigned addresses 1 and 4, respectively. Suppose p/left is

located at address 20 having !20, (21, 22)O. The follow-

ing statement is executed

p/ left/ right Z q;

The contents of j at location 20 will be changed to

!20, (21, 4)O.
3.3.2.3. CREATE operation. The operation will allocate one

address space for a node. If the node is in class II, all fields

will be set to null. If the node is in class I, all fields will be

assigned reserved address values that represent specific

addresses in memory when the node is referenced. Let d

(structure id) be an integer number representing the

structure type and k be the number of fields in the structure.

We denote the allocation of d by a function that allocates the

address in the memory which is defined as follows:
Create (d, class, reserved_address)

kZnumber_of_fields(d)

if (classZZI)

aiZreserved_address

ai
1Zavail_list().

/
ai

kZavail_list()

jZjg[{!ai,(ai
1,.,ai

k)O}

cZcg[{!ai,(ai
1,.,ai

k)O}

Else

aiZavail_list()

jZj{!ai,(0,.,0)O}

End if

Property active of ai is set to class and Property id is

set to d
end Create

The Create() operation takes three arguments, namely,

d, class, and reserved_address. The argument d denotes

the structure id, the argument class represents the created

address class, and the argument reserved address holds the

reserved_address to be created. The operation returns the

allocated location at the reserved address. As an example,

let d be the structure id for a Tree structure, the address

19 be the last allocated/reserved address. Execution of

Create() will create the address 20 (!20, (21, 22)O) and

reserved addresses 21 and 22. Thus, the next available

address will be 23. All properties at the address 20 will be

set to default values, except the property active and id.

The newly allocated memory space is then assigned to a

node v with MODIFY operation, i.e. Modify(v,allocated

address)).

3.3.2.4. DELETE operation. The operation will release the

specified address and the property active of the deal-

located cell will be set to FALSE. Let p be a pointer

variable pointing to the dynamic linked structure at the

specified address and v be the traversed vector of p. We

denote Delete(v) as the function that frees the memory

occupied by the node v. The function is defined as

follows
Delete(v)

if (Use(v,n)$null !Z1)

Use(n)$activeZFALSE
end Delete

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214 207
The operation does not actually release the memory

space but merely marks it as deleted. The reason being is to

maintain reachability of any node to this address for the

infeasible path detection. However, a subsequent derefer-

ence passing through this address will cause an error.

3.3.2.5. ALIAS constraint. This constraint will cause two

alias nodes to share the same address chain. There are two

types of alias, namely, explicit alias and implicit alias.

Address sharing of explicit alias from the assignment

statement such as pZq is carried out by means of the

MODIFY operation. If the node is in class II, the alias

condition (equality condition) is directly evaluated expli-

citly. The implicit alias, on the other hand, is from the

equality condition of two pointers which involves pointer

nodes in class I. The implicit sharing commences at any

point in the program as the two nodes indirectly share the

same address through their respective links. As an example,

the code segment below demonstrates the implicit address

sharing.
void falias (Tree *p; Tree *q){
1: Tree *x, *y;
2: xZp/left;
3: yZq/right;)start implicit sharing of nodes x and y

which is subsequently realized when line 6 is true and no

implicit sharing if line 6 is false
4: x/rightZy/left;
5: y/rightZq;
6: if (xZZy))sharing of addresses is known when

“xZZy” is true
/ }

Two chain of addresses (i.e. x, x/right; y, y/left; y/
right) for the implicit alias nodes exist in a memory space

before the equality constraint. When “xZZy” is evaluated

to be true, these two chains of nodes must be resolved to a

single chain. The implicit alias constraint is the most

operation to handle since there are many factors to consider

in coping with the constraint. For example, two chains of

nodes may not have the same length; traversed nodes p or q

may be combination of class I and class II due to earlier

assignments, etc. A sequence of assignments may not be

simple to merge the address as shown in the following code

segments
s1: qZr/left;
s2: q/left/leftZa2;
s3: p/leftZa3;
s4: q/left/left/rightZa4;
s5: if (pZZq)
/
Statement s1 redefines a variable q to r/left. If s5 is

true, statements s2 is canceled by s3 and s4 must be

reprocessed since p and q share the same node, which is

r/left. To eliminate this problem, our approach makes
the implicit alias explicit by preprocessing all statements

along the given path. The preprocessing task is to mark the

statement that latest redefines a value of an alias node.

During the address generation step, if a marked statement is

encountered, the execution of this statement is postponed

until the alias() is evaluated. The following modification

illustrates the concepts.
s5 0: alias(p,r/left))e.g. pZr/left
s1: qZr/left;
s2: q/left/leftZa2;
s3: p/leftZa3;
s4: q/left/left/rightZa4;
s5: if (pZZq).
/

The sequence of execution is rearranged with s5 0

preceding s1. The implicit alias is eliminated since the

address mapping process will assign p and q to the same

address after s1. No regenerating or combining of addresses

needs to be done. It does not matter to set s5 0 to be ‘r/
leftZp’ or ‘pZr/left’. The address generation process

will decide the choice when the operation is encountered.

The alias() function operates similarly to the MODIFY

operation, except that it must verify the property unequal of

both nodes before the assignment. To speed up preprocess

task, we use two simple structures to identify where the alias

statement should be put. The first structure, SymTab,

maintains pointer nodes and statements that update their

current values. The structure is defined as follows:

SymTab:

variables (var) fields (fd)

(vari, stj) {(stk1,., stkn)}
An order pair (vari, stj) represents a pointer variable and a

statement which modifies its value while (stk1,., stkn) refers

to a series of statements that update the corresponding fields

(1,2,.,n) of the pointer variable. The layout of fields is from

left to right according to their declaration. An update of a

node will override all updates of the descendant nodes. As

an example, statements 2–5 from the example function

falias() generate SymTab as follows:

variables (var) fields (fd)

(x,2) {(0,4)}

(p,2) {(2,0)}

(y,3) {(4,3)}

(q,3) {(0,3)}
The line containing (x, 2) and (0, 4) shows that the

variable x gets updated at line 2 and its right node (x/right)

is modified at line 4 while its left node is yet referred. The

rest are interpreted in the same manner. Note that y/right

is updated at line 5 but the value 3 is kept because its address

is defined by q which is created at line 3. If line 7 is added

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214208
with an assignment ‘x/right/leftZy’, the row of the

table containing variable x will be (x, 2) and {(0, 4),(3, 0)}.

The second structure (AliasTab) maintains the position in

which the alias function must be inserted. It consists of a

statement (sti) which modifies an alias node together with an

alias variable (varj).

AliasTab:

Statements Variables

sti vara
From the previous SymTab and the function falias() at

line 6, AliasTab is updated as follows.

Statements Variables

3 x
Since y is updated after x, x must be kept in AliasTab as

an alias placeholder along with the statement (3) that

redefines y (yZq/right). When the statement at line 3 is

evaluated from the address generation process, it will be

verified against AliasTab. Since the line number exists in the

AliasTab, the process will execute the function alias() with

arguments x and q/right before generating target

addresses for line 3.

The function preprocess() must be done before

executing the address generation process which is defined

below.
preprocess()

for siZs1 to sn

if referred node does not exist

add (node,statement) to SymTab

if Operation is “alias”

retrieve the corresponding statement from

SymTab

add (statement, alias variable) to AliasTab

else if Operation is “update” (e.g., assignment

(Z))

update (node, statement) to Symtab

end if

end for
end preprocess

From the example function falias(), the preprocess()

will yield the execution sequence as shown below.
2: xZp/left;
3 0: alias(x, q/right)
3: yZq/right;
4: x/rightZy/left;
5: y/rightZq;
6: if (xZZy)
Fig. 4. Concepts overview.
/
3.3.2.6. CONSTRAINTS. All constraints except alias operate

on properties of the address cells. For example, the

constraint ‘pZZnull’ will set the null property of p to

true Other constraints work in the same manner.
4. DLS generation algorithm

The goal of the AddressMapper algorithm is to

generate the linked structure that can be used to evaluate

the path. If there exists a shape to suit the path, the path

may or may not be a feasible path. The suitable shape for

the path implies that pointer variables do not have any

conflicts with pointer operations and constraints. The

numerical data generation algorithm is needed to generate

data for non-pointer fields and input variables to assure

the feasible path.

The AddressMapper algorithm is summarized in Fig. 4

and the pseudo code is given in Fig. 5. The approach

consists of three main tasks, namely, classifier, preprocessor

and evaluator.

Classifier: Each statement along the path is inspected for

any pointer operations before passing through the classifier.

The classifier identifies the pointer operations and trans-

forms all the pointer variables involved to corresponding

traversed vectors. These vectors, together with operation

type, are inputed to the preprocessor before proceeding to

the evaluator where the memory operations are simulated.

The classifier task is to directly map C-like pointer naming

convention to vector format. The reason is to make the

algorithm flexible for implementation since the classifier

and main module can be written in any language while the

evaluator can be generalized due to the well-defined vector

format.

Preprocessor: The preprocessor eliminates any implicit

alias by asserting an explicit alias statement at the proper

place.

Evaluator: The evaluator manages the memory address

space through the memory(j) and the environment (g)

variables as defined in Section 3. The solution space (c) is a

partial shadow of the. Every time the address in class I

is generated in j, the same address will also be copied

to c. Once it is there, it will not be updated in c again.

Fig. 5. Pseudocode of MemoryTrace algorithm.

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214 209
On the other hand, class II address is never placed in c since

it is not part of the input address.

The evaluator takes three arguments, which include two

pointer nodes in a traversed vector (t-vector) format and one

operation type. Each type is evaluated as defined in Section

3. For constraint operations, no memory modification is

made, only the property of the node is updated if it does not

violate the previous setting. To obtain the proper result, we

maintain the original assigned value corresponding to the

variable in g0, which has the same structure as g. The target

structure is obtained by traversing the address chain starting

from g0. All reserved addresses for pointer fields, however,

are set to null.
5. Discussion

The proposed approach is evaluated against many linked

structures such as singly linked list, doubly linked list,

circular list, tree, and heterogeneous structures. The

following series of functions demonstrate the algorithm.

All operations detail how memory (g, j, c) are updated. The

resulting test structures for each example are also included.

However, properties updated are omitted for proper length.

These updates are straightforward and can be traced without

difficulty. Examples on doubly linked list, circular list, and

more advanced structures are shown in the Appendix. Tree

examples were previously used as examples.

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214210
In the area of test data generation, especially for dynamic

structures test generation, it is difficult to find a benchmark

and a standard test set to measure the feasibility and efficiency

of the algorithm under investigation. A variety of program-

ming languages, programming styles, test concepts, and

target applications contribute to different demands on

outcome of the test. Many approaches propose good

theoretical concepts, but difficult implementation. The

proposed approach, on the contrary, handles numerical data

types, pointer types, and dynamic structure types well by

virtue of straightforward concepts as described earlier. As a

consequence, recursively generated and backtracking oper-

ations are eliminated, thus allowing smooth test execution.

Simple and straightforward as the approach may sound,

there are some limitations. The approach does not handle

pointer arithmetic, casting, and function pointers. Also, a few

assumptions are made for implementation simplification, but

has not yet been extended to incorporate them. These

assumptions are arrays, union, and recursive functions.

A few technical rationales can be drawn from the

application of the proposed approach.
Fig. A.1. Example function test02 (a) and memory operations (b).
5.1. Well-known linked structures

Generating the test structure for singly liked list, doubly

linked list, circular list, and tree structures types using the

proposed algorithm is straightforward as shown earlier.

Nevertheless, the test structure so obtained and the

programmer’s desired structure may not be the same since

there may exist more than one structure for both successful

and unsuccessful execution. The goal is to find one test

structure that fulfills the task. This structure is not

guaranteed to be at a minimum because our initial

assumption assigns a unique storage to each non-existing

referenced node. If the referenced node is not set to point to

itself or to the previous created node, it will contain a new

node. This is a flexible provision to set the node to any value

for future use.

Let S be the total pointer-related statements of a given

path and K be the maximum number of references for each

node in a statement (i.e. KZ3 for p/next/next). Each

statement involves at most two variables. The classifier time

complexity is O(S) for screening pointer operations. The

preprocessor also has the same time complexity. For the

evaluator, the statement will create an address for the node if

it does not exist. The creation takes constant time in

accessing and updating the last available address. Any

constraints imposed on the node will also update the

property of the node in constant time. The time efficiency of

our approach is O(K!S). In practice, K is always limited to

some numbers. Most programmers do not write a program

with too long references such as p/next/next/next/
next/next. Hence, the time complexity will be O(S) which

is relatively linear to S.
5.2. Heterogeneous structures

In a semantic sense, heterogeneous structures consist of

two or more different structures mixing within the same

structure declaration. However, for address generation,

each pointer field is treated equally since it will occupy

one address cell. So, the structure will take 1Ck spaces,

where k is the total number of pointer fields plus the

structure itself. Regardless of the type of each field, the

value of the pointer is always an address in memory space

or null. Care must be taken on the number of fields for

each structure to be assigned the correct memory

addresses. Our approach handles this by storing the

structure id to each housing cell. As illustrated in the

examples from Section 4, the algorithm processes

heterogeneous structures no differently as the homo-

geneous ones. Most of the existing work does not

consider this type of structure, but some may extend to

handle it with additional complexities.

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214 211
5.3. Infeasible path

Our approach can detect an infeasible path caused by the

following invalid pointer operations:
†
 Traverse beyond the null node
†
 Traverse beyond the free node.
†
 Assign to a free node.
†
 Constraint unsatisfaction.

If the property null of the current node is set to false, any

reference beyond this node is invalid. The same holds for the

property active. A node can be assigned to any node except

the node that has the property active set to false. If the

property unequal of node x contains node y, these two nodes

cannot be implicit alias. If the node has its null property set to

1, the node cannot be subject to non-null constraint. On the

contrary, if the property null is set to 2, the null constraint is

illegal for this node. With our approach, these infeasible path

conditions are simple to detect.
6. Related work

Research in dynamic structures includes pointer analysis,

shape analysis, and test generation of dynamic structure.
Fig. A.2. The generated test structure for example function test02.
Pointer analysis [7,16] collects information about pointers

such as the possible memory location a pointer might point

to. One of the major issues addressed in this analysis is

pointer aliasing. Shape analysis [14,20] analyzes the source

program and produces shape graphs for every statement as

appropriate. The analysis may be used to find the error that

might occur from pointer misused. These methods are

related to optimization in compilers. Although they may be

applied to program testing, they are computational and

resource expensive and do not contain sufficient information

for proper testing.

The method proposed by Kore [9] attempts to generate

the dynamic data structure and data by using dynamic data

flow analysis and backtracking. The method is based on

goal-oriented approach by dividing the task into series

of subgoals and solving each subgoal to satisfy the path.
Fig. A.3. Example function test03 (a) and memory operations (b).

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214212
The process begins by initially setting up an arbitrarily input

data structure and randomly generating the data for a

structure. If the data do not satisfy the constraints, the next

data values are obtained by using the proposed searching

method. If all attempts result in no data values that satisfies

the constraints, backtracking will take place to switch over

to new shapes and start solving for different numerical data.

The procedure is repeated until a solution is found or no

solution to the problem is determined to exist. This approach

has introduced a concept for input dynamic structure

argument. However, the method has many disadvantages.

First, it lacks a systematic method for building a shape. How

the current node points to the next node is not well-defined.

Arbitrary node connection makes the algorithm unclear.

Second, solving the shape and generating data at the same

time with this backtracking method is time-consuming as

the shape must be rebuilt every time since the data value

generated for the shape needs to be regenerated and the

previously generated data value becomes unused. Third, the

method is not efficient in handling pointer constraint-

equality or inequality constraint. Finally, the major problem

of pointer, i.e. pointer alias, is not efficiently solved by the

backtracking technique.

The approach proposed by Viswanathan and Gupta

[19] takes a different approach to generate data for this

data type. They only focus on shape (dynamic structure)

generation. The technique collects the constraints along a

path and puts them into a table with varying number of

columns depending on the input data structures. The

algorithm simplifies the constraints by expanding or

recursively combining the rows. The table is then used

to solve the constraints. The approach improves the prior

work on pointer alias handling, making it well-suited to

simple dynamic type such as linked-list and tree
Fig. A.4. The generated test structure for example function test03 (c).
structures. However, it still has to backtrack along the

table in solving the alias problem. For more complex

structures such as heterogeneous pointer structures, the

approach does not explicitly handle them. More works
Fig. A.5. Example function test05 (a) and memory operations (b).

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214 213
need to be done on managing cross-table references and

operations.
7. Conclusion

Many approaches for software test data generation

are limited to basic data types such as integer values.

Input test data generation on a primitive data type within a

recursive structure is obtained from various

existing methods such as [6,12]. Some approaches go the

distance to investigate more complex types such

as recursive structures and non-linear structures. Unfortu-

nately, the inherent complexity renders the existing methods

inefficient. Our proposed address mapping algorithm, on the

other hand, treats each pointer in a typical recursive

structure as a sequence of operations on addresses. The

desired input structure for each pointer variable is chained

addresses which permits traversal to any given path. This

pseudo-address generation supports generic recursive struc-

tures that includes homogeneous and heterogeneous pointer
Fig. A.6. The generated test structure for example function test05.
structures. As a consequence, the alias and constraint

handling problems are solved efficiently.
8. Future work

The proposed approach provides a simple, efficient, yet

straightforward mapping of complex (heterogeneous) struc-

tures to a uniquely identified address space The procedure

still requires considerable enhancement to accommodate

other language constructs and programming paradigms, i.e.

object-oriented language, declarative language, real-time

programming (where allocation and deallocation overhead

may not be tolerable). Various system aspects such as

storage overlay, as well as dynamic address translation

primitives, pose a formidable challenge to the stored-

program architecture.

Conservatively speaking, we envision that the proposed

approach will pave the way and inspire future research

endeavors to arrive at more systematic approaches for

solving other pointer-related conditions, such as recursive

structures, memory leak, pointer to function, and illegal

operations (that are not covered in Section 3.3.2), as well as

general dynamic storage allocation problems.
Appendix

Examples of memory update based on doubly linked list,

circular list, and heterogeneous pointer structures.

Figs. A.1–A.6
References

[1] B. Beizer, Software Testing Techniques, second ed., Van Nostrand

Reinhold, New York, 1990.

[2] DRIVE safety—towards a European standard: the development of

safe road transport informatic systems. DRIVE Project V1051, 1992.

Draft 2.

[3] J. Edvardsson, A survey on automatic test data generation,

Proceedings of the Second Conference on Computer Science and

Engineering in Linkoping, CCSSE’99, ProNova, Norrkoping, Oct.

21–22, 1999, pp. 21–28.

[4] S. Gardiner (Ed.), Testing Safety-Related Software: A Practical

Handbook, Springer, Berlin, 1999.

[5] A. Gotlieb, B. Botella, M. Rueher, Automatic test data generation

using constraint solving techniques, International Symposium on

Software Testing and Analysis, 1998.

[6] N. Gupta, A.P. Mathur, M.L. Soffa, Automated test data generation

using an iterative relaxation method, ACM SIGSOFT Sixth Inter-

national Symposium on Foundations of Software Engineering(FSE-6),

Orlando, FL, Nov. 1998, pp. 231–244.

[7] M. Hind, M. Burke, P. Carini, J.-D. Choi, Interprocedural pointer alias

analysis, ACM Transactions on Programming Languages and Systems

21 (4) (1999) 848–894.

S. Sai-ngern et al. / Information and Software Technology 47 (2005) 199–214214
[8] J. Hummel, L.J. Hendren, A. Nicolau, A general data dependence test

for dynamic, pointer-based data structures, in: Proceedings

of ACMSIGPLAN’94 Conference on Programming Language Design

and Implementation, Orlando, FL, Jun. 20-24, 1994, pp. 218–229.

[9] B. Korel, Automated software test data generation, IEEE Transactions

on Software Engineering 16 (8) (1990) 870–879.

[10] C. Michel, M. Rueher, Y. Lebbah, Solving constraint over

floating-point numbers, in: Seventh International Conference on

Principles and Practice of Constraint, Springer, LNCS, Berlin,

2001.

[11] J. Offutt, An integrated automatic test data generation system, Journal

of Systems Integration 1 (3) (1996) 391–409.

[12] J. Offutt, Z. Jin, J. Pan, The dynamic domain reduction approach to

test data generation, Software-Practice and Experience 29 (2) (1999)

167–193.

[13] R.E. Prather, J.P. Myers Jr., The path prefix software testing

strategy, IEEE Transactions on Software Engineering SE-13 (7)

(1987) 761–765.
[14] M. Sagiv, T. Reps, R. Wilhelm, Solving shape-analysis problems in

languages with destructive updating, ACM Transactions on Program-

ming Languages and Systems 20 (1) (1998) 1–50.

[15] I. Sommerville, Software Engineering, fourth ed., Addison-Wesley,

Reading, MA, 1992.

[16] B. Steensgarrd, Points-to analysis in linear time, in: ACM Symposium

on Principles of Programming Languages, ACM, New York, 1996.

[17] P. Stocks, D. Carrington, A framework for specification-based testing,

IEEE Transactions on Software Engineering 22 (1996) 777–793.

[18] M.Z. Tsoukalas, J.W. Duran, S.C. Ntafos, On some reliability

estimation problems in random and partition testing, IEEE Trans-

actions on Software Engineering 19 (7) (1993) 687–697.

[19] S. Viswanathan, N. Gupta, Generating test data for functions with

pointer inputs, Seventeenth IEEE International Conference on

Automated Software Engineering (ASE’02), Edinburgh, UK, Sep.

2002, pp. 149–160.

[20] R. Wilhelm, M. Sagiv, T. Reps, Shape analysis, in: International

Conference on Compiler Construction, Mar. 2000.

	An address mapping approach for test data generation of dynamic linked structures
	Introduction
	Software testing
	Test data generation

	Overview
	Fundamentals of dynamic linked structures
	Execution sequence
	Heap representation
	Pointer representation and operations

	DLS generation algorithm
	Discussion
	Well-known linked structures
	Heterogeneous structures
	Infeasible path

	Related work
	Conclusion
	Future work
	Appendix
	References

