
ANSL Algorithm for String Similarity Matching 
 
 

Nawaphorn Chartbunchachai, Autcha Mutchalintungkul, and Peraphon Sophatsathit 
Advanced Virtual and Intelligent Computing (AVIC) Center 

Department of Mathematics, Faculty of Science, Chulalongkorn University 
Bangkok, 10330, Thailand 

Bonear@hotmail.com, jibjoice25@hotmail.com, Peraphon.S@chula.ac.th 
 
 

Abstract 
 

Information has played a predominant role and 
intertwined with our daily digital age lives.  
Transmission at the speed of light is utmost important 
in information access and retrieval so as to satisfy 
consumer’s needs timely and effectively.  However, 
one of the obstacles in the speed of searching for the 
needed information is matching keywords or phrases 
with what is available in the archive, which is by and 
large a time-consuming process.  This research aims 
to devise an algorithmic procedure employing string 
similarity to find similar matching in place of exact 
matching.  The proposed algorithm can be further 
applied to future machine learning research.  The 
results so obtained are conducive toward enhancing 
other matching algorithms that might be suitable for 
specific needs and applications. 
 
Keywords: string matching, string similarity 
matching, string search, neural networks. 
 
1. Research motivation 

In all manufacturing process, quality control and 
product testing before delivery are mandatory due to 
the inherent erroneous nature of each process.  
Administration of such process control and 
inspection will lead to error discovery and 
rectification.  Programming is no different.  It 
requires systematic testing procedures to locate errors 
as programs become increasingly complex.  Fixing 
those errors will insure correctness to meet the user's 
requirements.  Consequently, the test results will also 
serve as program quality assurance. 

Testing can be carried out in several ways, for 
instance, manual checking by meticulously reading 
every line of code, running the program one module 
at a time to locate bugs, performing static analysis on 
program source to unveil logical errors, type 
checking, whitebox and blackbox testing, etc.  The 
presumption of testing requires that test cases be 

established for complete program coverage.  In so 
doing, complicate test cases can be further 
dichotomized to simpler test cases since unrelated or 
redundant cases will be methodically eliminated.  
Additional rearrangement of test cases will entail 
thorough program coverage.  Details on how to carry 
out this test process are elucidated in [1]. 

One compelling question on when enough testing 
is enough remains unanswered for years.  Exhaustive 
testing is obviously impractical.  The culprit, 
nonetheless, can be attributed to program complexity.  
Program complexity is an imperative indicator that 
suggests the extent to which how thorough testing 
should be performed and when to stop.  Measuring 
program complexity usually involves three aspects, 
namely, 1) linguistic metrics which concern primarily 
on program instructions, 2) structural metrics which 
focus on the relationships among program objects, 
and 3) hybrid metrics which combine both linguistic 
metrics and structural metrics [1].  One popular 
approach is McCabe's metric, a structural metric 
which derives program complexity from flow graph 
according to the relation M = L - N + 2P.  The 
proposed approach will utilize this metric to generate 
all relevant test cases that must exceed the resulting 
complexity.  The reason being is that insufficient test 
cases will yield inaccurate result as all executable or 
reachable paths may not be fully covered. 

Bearing the above rationale in mind, classical 
exact string matching algorithms have been shifted 
toward similar matching scheme due to a number of 
shortcomings for exact match, for instance, known 
pattern may not be readily available, searching for 
exact match is time-consuming, and the exact desired 
pattern may not exist after all.  Thus, similar 
matching has become one of the research mainstays 
in the area.  Unfortunately, the inherent complexity is 
an NP problem that renders thorough testing 
impractical.  As a consequence, we propose a concise 
yet unconventional similar string matching algorithm 
which excludes most elaborate computation schemes 



but hopefully is efficient to operate on a variety of 
string matching problems.  The ultimate objective is 
to adapt it in machine learning [4] technology. 
 
2. Related work 

Senvar and Bener [9] translate meanings into 
weights which eventually are converted to the 
deviation from the vocabulary tree.  This technique 
has been employed to keyword sequencing.  
Hofmann [7] applies Probabilistic Latent Semantic 
Analysis (PLSA) in similarity search analysis.  Ma, 
Zhang, and He [8] suggest the use of word grouping 
to facilitate closest similarity comparison.  Balinski 
and Danilowicz [6] introduce a distance ordering 
approach based on how far the search document 
deviates from the ideal one.  Regardless of the forms 
of weight, distance, or meaning conversion, such 
representations lend themselves to word/document 
related researches such as partitioning, 
hierarchical/flat, non-hierarchical clustering, k-means 
clustering, Buckshot, Fractionation, all of which 
utilize single word, sentence, and snippet to devise 
efficient similarity search algorithms that yield the 
closest result to user’s search objective. 

A number of existing techniques rest on the 
aforementioned methodologies such as suffix tree, 
tries, in particular, finite state automaton based search 
algorithms [10, 12] and dynamic programming [11], 
all of which are computationally complex.  The 
proposed algorithm, however, investigates on 
different aspects such as string relationships, their 
occurrences, and inherent roles they play in matching 
considerations. 
 
3. Proposed ANSL approach 

The proposed ANSL algorithm is developed to 
find string similarity patterns in search texts or target 
strings to replace similar matching [5].  The user 
specifies either a single or more word patterns.  For a 
short one word string, the algorithm will start 
comparing one character at a time and determine the 
similarity based on user specified threshold.  In a 
long string containing more than one word, the 
algorithm will proceed to compare one word at a time 
in the order they appear.  Each word’s pattern 
similarity is accumulated, whereby the overall 
similarity value will reach the specified threshold.  
The algorithm measures the ratio which is determined 
from character position, the number of matched or 
similar characters, character transposition, distance 
between matched characters, and the different 
between number of characters in source and target 
strings.  The criteria for pattern similarity are as 
follows: 

1. The allowable string patterns consist only of 
A-Z and 0-9.  Special characters are not 

permitted. 
2. Pattern length limits to 20 characters. 
3. Similarity value is computed directly from the 

position of matched characters 
4. Characters are grouped and formed not more 

than 4 words, each of which must abide by the 
above pattern regulations. 

5. In case of multiple matching, only one word in 
the same sentence is considered. 

6. Users must specify similarity percentage 
(threshold) before comparison commences. 

 
4. Preliminary experiments on similar 
matching 

Since there are no dedicated similarity matching 
algorithms for specific application and usage, this 
research has established an empirical formula to 
determine the percentage of string similarity between 
two words as follows: 
Similarity (in percentage) 
= (no. of matched characters / no. of characters in 

pattern) * 100 
In practice, it was found that the above formula 

could not achieve the desired accuracy threshold 
since the length of target string might exceed source 
string that would fail to yield approximately 100% 
similarity result.  Moreover, each matched character 
might not be conventionally ordered from left to 
right.  In order to arrive at an effective word 
similarity matching, the proposed algorithm 
incorporates a number of relevant factors into 
consideration.  They are: 

Factor 1: Number of matched characters in 
wrong position 
Factor 2: Distance between two consecutive 
matched characters 
Factor 3: Number of unmatched characters in 
target string 

The above three factors must be carefully 
weighed in accordance with their application 
domains.  Denote w1, w2, and w3 as the weight of 
factor 1, 2, and 3, respectively.  The above formula 
becomes 
Similarity (in percentage) 
= (no. of matched characters / no. of characters in 

pattern * 100) 
- no. of matched characters in wrong position * w1 

 - distance between two consecutive matched 
characters * w2 

 - no. of unmatched characters in target string * w3 
where w1, w2, and w3 can be obtained from a 
preliminary similarity analysis which is depicted in 
Table 1. 

Note that every target string contains three 
matched characters, but yields different weight 
factors ranging from 1-5 based on our empirical test 



runs.  Upon some preliminary trial and error, we 
arrived at the appropriate weight values to be w1 = 4, 
w2 = 2, and w3 = 2 as shown in Table 2. 
 

Table 1  weight analysis of string similarity 
target 
string 

matched 
characters 
in wrong 
position 

distance between 
two consecutive 
matched 
characters 

unmatched 
character in 
target string 

ABC - - - 
BAC 2 - - 
CAB 3 - - 
ABDC - 1 1 
ABDEC - 2 2 
ABCD - - 1 
ABCDE - - 2 

 
Table 2  string similarity in comparison to “the” 

using w1 = 4, w2 = 2, and w3 = 2 
target 
string 

matched 
characte
rs in 
wrong 
position 

distance 
between two 
consecutive 
matched 
characters 

unmatche
d 
characters 
in target 
string 

similari
ty 

value 
(%) 

the - - - 100 
they - - 1 98 
hate 1 1 1 92 
another - - 4 92 
teach 1 2 2 88 
heat 2 1 1 88 
technic 1 1 4 86 

 
The above preliminaries are insufficient to 

accommodate long string or sentence (containing 
more than one word) similar matching as they yield 
only percentage of word similarity.  The formula 
accounts for individual word similarity that does not 
scale up to sentence context.  As such, some 
adjusting factors must be enhanced to fine tune the 
yield of the modified formula. 
 Overall similarity (in percentage)  =   
 (no. of similar words / no. of subpattern * average 

similarity of all subpatterns) 
 - no. of words having matched characters in wrong 

position * W1 
 - distance between two consecutive matched words 

* W2 
where W1 and W2 are weights corresponding to 
word similarity in target sentence. 

Notice that the size of target string is not included 
in the above computation as in the previous scenario 
since it can be arbitrarily long.  In particular, those 
strings that might contain many unmatched patterns 
will result in low overall similarity percentage.  As a 
consequence, string size factor is dropped to avoid 
any sporadic outcome.  From our preliminary 
findings, the proper weight so obtained are W1 = 4 
and W2 = 2.  These values could be more reliably 
approximated by means of neural network technique. 
 

5. Experiments 
The experimental design of similarity 

measurement systematically dichotomizes all 
possible factorial combinations into a number of 
steps as follows: 
 Step 1: apply only factor 1 
 Step 2: apply only factor 2 
 Step 3: apply only factor 3 
 Step 4: apply only factor 1 and 2 
 Step 5: apply only factor 1 and 3 
 Step 6: apply only factor 2 and 3 
 Step 7: apply all factors 

Table 3 demonstrates sample computations of 
similarity weight from target string stored in files.  
Table 4 summarizes the above experimental steps for 
all three relevant factors. 
 

Table 3  sample computations of similarity weight 
pattern target string relevant 

factor 
similarity 
value (%) 

student students 3 98 
were where 2,3 97 
rat art 1 96 
 

Table 4  summary of similarity results 
trial no. average similarity value 

 file A file B file C 
1 81 68 76 
2 79 65 74 
3 76 57 69 
4 79 64 73 
5 76 56 69 
6 75 56 71 
7 78 55 73 

 
where test file A, B, and C contain different types of 
string to be tested, i.e., file A holds long sentences 
(strings), file B is a C program, and file C holds short 
strings.  Note that the similarity values reduce as the 
number of factors involved increase, as well as the 
characteristics of the strings themselves.  The 
inherent characteristics of the strings play an 
important role in similarity evaluation.  For example, 
strings may contain repeated or similar words that do 
not introduce any distinction as in the case of file B.  
Thus, taking only relevant factors into consideration 
by the proposed ANSL algorithm significantly arrive 
at more accurate similarity estimation. 

Some benefits from similar matching approach 
are worth mentioning.  First and foremost, searching 
can be performed efficiently faster than exact 
matching, whereby considerable time saving is 
attained.  As keyword matching no longer gives the 
full satisfaction results, full-text search has gained its 
applicability for real life use.  The needs for fast, 
efficient, and effective search schemes and 
algorithms are inevitably urgent.  Thus, the proposed 



ANSL algorithm can serve as the first step toward 
such ultimatum. 
 
6. Summary and future work 

The proposed ANSL algorithm furnishes a string 
similarity matching technique by applying different 
weights to represent various emphases on pertinent 
factors.  In so doing, no single factor can dominate 
the search process as users establish their own 
weights and threshold values.  Nevertheless, fixation 
of pattern designated by the users renders the 
algorithm less flexible than it should.  Future course 
of action will incorporate the ANSL algorithm to 
accommodate similarity match given by regular 
expression.  The use of weight factor in computations 
will be an imperative basis to cover such extension 
by means of neural networks through Self-
Organizing Map [3], Radial Basis Function 
Networks, Fuzzy Subtractive Clustering, or Rival 
Penalized Competitive Learning [2], whereby helping 
derive suitable weight factors.  The algorithm will 
have to be run on standard benchmark data to 
validate its conciseness on similar matching 
objective.  This in turn can be further applied in 
medical, literature, and language applications.  The 
eventuality of this research endeavor will lend itself 
to machine learning that eases the effort burden on 
the user’s part. 
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