
ANSL Algorithm for String Similarity Matching

Nawaphorn Chartbunchachai, Autcha Mutchalintungkul, and Peraphon Sophatsathit
Advanced Virtual and Intelligent Computing (AVIC) Center

Department of Mathematics, Faculty of Science, Chulalongkorn University
Bangkok, 10330, Thailand

Bonear@hotmail.com, jibjoice25@hotmail.com, Peraphon.S@chula.ac.th

Abstract

Information has played a predominant role and
intertwined with our daily digital age lives.
Transmission at the speed of light is utmost important
in information access and retrieval so as to satisfy
consumer’s needs timely and effectively. However,
one of the obstacles in the speed of searching for the
needed information is matching keywords or phrases
with what is available in the archive, which is by and
large a time-consuming process. This research aims
to devise an algorithmic procedure employing string
similarity to find similar matching in place of exact
matching. The proposed algorithm can be further
applied to future machine learning research. The
results so obtained are conducive toward enhancing
other matching algorithms that might be suitable for
specific needs and applications.

Keywords: string matching, string similarity
matching, string search, neural networks.

1. Research motivation

In all manufacturing process, quality control and
product testing before delivery are mandatory due to
the inherent erroneous nature of each process.
Administration of such process control and
inspection will lead to error discovery and
rectification. Programming is no different. It
requires systematic testing procedures to locate errors
as programs become increasingly complex. Fixing
those errors will insure correctness to meet the user's
requirements. Consequently, the test results will also
serve as program quality assurance.

Testing can be carried out in several ways, for
instance, manual checking by meticulously reading
every line of code, running the program one module
at a time to locate bugs, performing static analysis on
program source to unveil logical errors, type
checking, whitebox and blackbox testing, etc. The
presumption of testing requires that test cases be

established for complete program coverage. In so
doing, complicate test cases can be further
dichotomized to simpler test cases since unrelated or
redundant cases will be methodically eliminated.
Additional rearrangement of test cases will entail
thorough program coverage. Details on how to carry
out this test process are elucidated in [1].

One compelling question on when enough testing
is enough remains unanswered for years. Exhaustive
testing is obviously impractical. The culprit,
nonetheless, can be attributed to program complexity.
Program complexity is an imperative indicator that
suggests the extent to which how thorough testing
should be performed and when to stop. Measuring
program complexity usually involves three aspects,
namely, 1) linguistic metrics which concern primarily
on program instructions, 2) structural metrics which
focus on the relationships among program objects,
and 3) hybrid metrics which combine both linguistic
metrics and structural metrics [1]. One popular
approach is McCabe's metric, a structural metric
which derives program complexity from flow graph
according to the relation M = L - N + 2P. The
proposed approach will utilize this metric to generate
all relevant test cases that must exceed the resulting
complexity. The reason being is that insufficient test
cases will yield inaccurate result as all executable or
reachable paths may not be fully covered.

Bearing the above rationale in mind, classical
exact string matching algorithms have been shifted
toward similar matching scheme due to a number of
shortcomings for exact match, for instance, known
pattern may not be readily available, searching for
exact match is time-consuming, and the exact desired
pattern may not exist after all. Thus, similar
matching has become one of the research mainstays
in the area. Unfortunately, the inherent complexity is
an NP problem that renders thorough testing
impractical. As a consequence, we propose a concise
yet unconventional similar string matching algorithm
which excludes most elaborate computation schemes

but hopefully is efficient to operate on a variety of
string matching problems. The ultimate objective is
to adapt it in machine learning [4] technology.

2. Related work

Senvar and Bener [9] translate meanings into
weights which eventually are converted to the
deviation from the vocabulary tree. This technique
has been employed to keyword sequencing.
Hofmann [7] applies Probabilistic Latent Semantic
Analysis (PLSA) in similarity search analysis. Ma,
Zhang, and He [8] suggest the use of word grouping
to facilitate closest similarity comparison. Balinski
and Danilowicz [6] introduce a distance ordering
approach based on how far the search document
deviates from the ideal one. Regardless of the forms
of weight, distance, or meaning conversion, such
representations lend themselves to word/document
related researches such as partitioning,
hierarchical/flat, non-hierarchical clustering, k-means
clustering, Buckshot, Fractionation, all of which
utilize single word, sentence, and snippet to devise
efficient similarity search algorithms that yield the
closest result to user’s search objective.

A number of existing techniques rest on the
aforementioned methodologies such as suffix tree,
tries, in particular, finite state automaton based search
algorithms [10, 12] and dynamic programming [11],
all of which are computationally complex. The
proposed algorithm, however, investigates on
different aspects such as string relationships, their
occurrences, and inherent roles they play in matching
considerations.

3. Proposed ANSL approach

The proposed ANSL algorithm is developed to
find string similarity patterns in search texts or target
strings to replace similar matching [5]. The user
specifies either a single or more word patterns. For a
short one word string, the algorithm will start
comparing one character at a time and determine the
similarity based on user specified threshold. In a
long string containing more than one word, the
algorithm will proceed to compare one word at a time
in the order they appear. Each word’s pattern
similarity is accumulated, whereby the overall
similarity value will reach the specified threshold.
The algorithm measures the ratio which is determined
from character position, the number of matched or
similar characters, character transposition, distance
between matched characters, and the different
between number of characters in source and target
strings. The criteria for pattern similarity are as
follows:

1. The allowable string patterns consist only of
A-Z and 0-9. Special characters are not

permitted.
2. Pattern length limits to 20 characters.
3. Similarity value is computed directly from the

position of matched characters
4. Characters are grouped and formed not more

than 4 words, each of which must abide by the
above pattern regulations.

5. In case of multiple matching, only one word in
the same sentence is considered.

6. Users must specify similarity percentage
(threshold) before comparison commences.

4. Preliminary experiments on similar
matching

Since there are no dedicated similarity matching
algorithms for specific application and usage, this
research has established an empirical formula to
determine the percentage of string similarity between
two words as follows:
Similarity (in percentage)
= (no. of matched characters / no. of characters in

pattern) * 100
In practice, it was found that the above formula

could not achieve the desired accuracy threshold
since the length of target string might exceed source
string that would fail to yield approximately 100%
similarity result. Moreover, each matched character
might not be conventionally ordered from left to
right. In order to arrive at an effective word
similarity matching, the proposed algorithm
incorporates a number of relevant factors into
consideration. They are:

Factor 1: Number of matched characters in
wrong position
Factor 2: Distance between two consecutive
matched characters
Factor 3: Number of unmatched characters in
target string

The above three factors must be carefully
weighed in accordance with their application
domains. Denote w1, w2, and w3 as the weight of
factor 1, 2, and 3, respectively. The above formula
becomes
Similarity (in percentage)
= (no. of matched characters / no. of characters in

pattern * 100)
- no. of matched characters in wrong position * w1

 - distance between two consecutive matched
characters * w2

 - no. of unmatched characters in target string * w3
where w1, w2, and w3 can be obtained from a
preliminary similarity analysis which is depicted in
Table 1.

Note that every target string contains three
matched characters, but yields different weight
factors ranging from 1-5 based on our empirical test

runs. Upon some preliminary trial and error, we
arrived at the appropriate weight values to be w1 = 4,
w2 = 2, and w3 = 2 as shown in Table 2.

Table 1 weight analysis of string similarity
target
string

matched
characters
in wrong
position

distance between
two consecutive
matched
characters

unmatched
character in
target string

ABC - - -
BAC 2 - -
CAB 3 - -
ABDC - 1 1
ABDEC - 2 2
ABCD - - 1
ABCDE - - 2

Table 2 string similarity in comparison to “the”

using w1 = 4, w2 = 2, and w3 = 2
target
string

matched
characte
rs in
wrong
position

distance
between two
consecutive
matched
characters

unmatche
d
characters
in target
string

similari
ty

value
(%)

the - - - 100
they - - 1 98
hate 1 1 1 92
another - - 4 92
teach 1 2 2 88
heat 2 1 1 88
technic 1 1 4 86

The above preliminaries are insufficient to

accommodate long string or sentence (containing
more than one word) similar matching as they yield
only percentage of word similarity. The formula
accounts for individual word similarity that does not
scale up to sentence context. As such, some
adjusting factors must be enhanced to fine tune the
yield of the modified formula.
 Overall similarity (in percentage) =
 (no. of similar words / no. of subpattern * average

similarity of all subpatterns)
 - no. of words having matched characters in wrong

position * W1
 - distance between two consecutive matched words

* W2
where W1 and W2 are weights corresponding to
word similarity in target sentence.

Notice that the size of target string is not included
in the above computation as in the previous scenario
since it can be arbitrarily long. In particular, those
strings that might contain many unmatched patterns
will result in low overall similarity percentage. As a
consequence, string size factor is dropped to avoid
any sporadic outcome. From our preliminary
findings, the proper weight so obtained are W1 = 4
and W2 = 2. These values could be more reliably
approximated by means of neural network technique.

5. Experiments
The experimental design of similarity

measurement systematically dichotomizes all
possible factorial combinations into a number of
steps as follows:
 Step 1: apply only factor 1
 Step 2: apply only factor 2
 Step 3: apply only factor 3
 Step 4: apply only factor 1 and 2
 Step 5: apply only factor 1 and 3
 Step 6: apply only factor 2 and 3
 Step 7: apply all factors

Table 3 demonstrates sample computations of
similarity weight from target string stored in files.
Table 4 summarizes the above experimental steps for
all three relevant factors.

Table 3 sample computations of similarity weight
pattern target string relevant

factor
similarity
value (%)

student students 3 98
were where 2,3 97
rat art 1 96

Table 4 summary of similarity results
trial no. average similarity value

 file A file B file C
1 81 68 76
2 79 65 74
3 76 57 69
4 79 64 73
5 76 56 69
6 75 56 71
7 78 55 73

where test file A, B, and C contain different types of
string to be tested, i.e., file A holds long sentences
(strings), file B is a C program, and file C holds short
strings. Note that the similarity values reduce as the
number of factors involved increase, as well as the
characteristics of the strings themselves. The
inherent characteristics of the strings play an
important role in similarity evaluation. For example,
strings may contain repeated or similar words that do
not introduce any distinction as in the case of file B.
Thus, taking only relevant factors into consideration
by the proposed ANSL algorithm significantly arrive
at more accurate similarity estimation.

Some benefits from similar matching approach
are worth mentioning. First and foremost, searching
can be performed efficiently faster than exact
matching, whereby considerable time saving is
attained. As keyword matching no longer gives the
full satisfaction results, full-text search has gained its
applicability for real life use. The needs for fast,
efficient, and effective search schemes and
algorithms are inevitably urgent. Thus, the proposed

ANSL algorithm can serve as the first step toward
such ultimatum.

6. Summary and future work

The proposed ANSL algorithm furnishes a string
similarity matching technique by applying different
weights to represent various emphases on pertinent
factors. In so doing, no single factor can dominate
the search process as users establish their own
weights and threshold values. Nevertheless, fixation
of pattern designated by the users renders the
algorithm less flexible than it should. Future course
of action will incorporate the ANSL algorithm to
accommodate similarity match given by regular
expression. The use of weight factor in computations
will be an imperative basis to cover such extension
by means of neural networks through Self-
Organizing Map [3], Radial Basis Function
Networks, Fuzzy Subtractive Clustering, or Rival
Penalized Competitive Learning [2], whereby helping
derive suitable weight factors. The algorithm will
have to be run on standard benchmark data to
validate its conciseness on similar matching
objective. This in turn can be further applied in
medical, literature, and language applications. The
eventuality of this research endeavor will lend itself
to machine learning that eases the effort burden on
the user’s part.

7. References
[1] Boris Beizer, Software Testing Tecniques, Second

Edition, Van Nostrand Reinhold, New York, 1990.
[2] L. T. Kan, “Rival Penalized Competitive Learning For

Content-Based Indexing”, A dissertation for the
degree of masters of philosophy, The Chinese
University of Hong Hong, June 1998.

[3] T. Kohonen, Self-Organizing Maps, Springer-Verlag,
Berlin, 1995.

[4] E. Ostertag, J. Hendler, R. P. Diaz, and C. Braun,
“Computing similarity in a reuse library system: An
AI-Base Approach”, ACM Transactions on Software
Engineering and Methodology, pp. 205-228, 1992.

[5] W. Pedrycz, “Computational Intelligence as an
Emerging Paradigm of Software Engineering”, in
Proceedings of the Fourteenth International
Conference on Software Engineering and Knowledge
Engineering: SEKE’02, ACM Press, pp.7-14, 2002.

[6] J. Balinski and C. Danilowicz, “Re-ranking Method
based on Inter-document Distances”, Journal of the
Information Processing and Management, Vol. 41,
Issue 4, 2005.

[7] T. Hofmann, “Probabilistic Latent Semantic
Analysis”, Proceedings of the 22nd Annual ACM
Conference on Research and Development in
Information Retrieval, Berkeley, California, ACM
Press, August 1999, pp. 50-57.

[8] Jiangang Ma, Ynachum Zhang, and Jing He,
“Efficiently Finding Web Services Using a Clustering
Semantic Approach”, Proceedings of the 2008

international workshop on Context enabled source and
service selection, integration and adaptation:
organized with the 17th International World Wide
Web Conference (WWW 2008), Beijing, China, April
22, 2008.

[9] Mehmet Senvar and Ayse Bener, “Matchmaking of
Semantic Web Services Using Semantic-Distance
Information”, LNCS 4243, 2006, pp. 177-186.

[10] Ricardo A. Baeza-Yates and Gonzalo Navarro, “A
Faster Algorithm for Approximate String Matching”,
Proceedings of the 7th Annual Symposium on
Combinatorial Pattern Matching table of contents,
Lecture Notes In Computer Science; Vol. 1075,
Springer-Verlag, 1996, pp. 1-23.

[11] Gene Myers, “A fast bit-vector algorithm for
approximate string matching based on dynamic
programming”, Journal of the ACM (JACM), Vol. 46,
Issue 3 (May 1999), pp. 395-415.

[12] Heikki Hyyrö and GonzaloNavarro, “Faster Bit-
Parallel Approximate String Matching”, LNCS, Vol.
2373, Springer-Verlag, 2002, pp. 203-224.

http://portal.acm.org/author_page.cfm?id=81100336335&coll=GUIDE&dl=GUIDE&trk=0&CFID=94557076&CFTOKEN=62788730
http://portal.acm.org/author_page.cfm?id=81100113887&coll=GUIDE&dl=GUIDE&trk=0&CFID=94557076&CFTOKEN=62788730
http://portal.acm.org/toc.cfm?id=647815&type=proceeding&coll=GUIDE&dl=GUIDE&CFID=94557076&CFTOKEN=62788730
http://portal.acm.org/author_page.cfm?id=81100010841&coll=GUIDE&dl=GUIDE&trk=0&CFID=94557882&CFTOKEN=83713263

	ANSL Algorithm for String Similarity Matching
	Abstract

