A Purview of Systematic Software Development

Peraphon Sophatsathit
Advanced Virtual and Intelligent Computing (AVIC) Research Center
Department of Mathematics, Faculty of Science
Chulalongkorn University
Phyathai Rd., Patumwan, Bangkok, 10330 THAILAND
email: Peraphon.S@chula.ac.th

Abstract

Studies of software development process have been
widely exercised during the past few decades. The under-
lying principles, albeit extensively well-known, are sur-
prisingly mismanaged. This article describes some in-
triguing analogies between the human body and software
in an attempt to draw some concise similarities. While hu-
man body is undeniably one of the most sophisticated nat-
ural “being” ever exists on earth, its impersonating soft-
ware invention remains to be a far cry from the intended
purpose. A purview of systematic approach is summa-
rized to offer a grandiose perspective and taste of how
software comes into “being.”

keywords. software component, human body, software
development, plug-and-play.

1 Introduction

Software in many respects can be regarded as the heart
and soul of computer systems, while its hardware counter-
part serves as the physical being. This impersonation of
software and hardware mimics the phisiology of human
body. Unlike computer, the human body is the utmost in-
telligent life form whose body and soul are intricately in-
teroperate at subsystem, organ, down to micro-organism
level. Such intricate granularity of dichotomy renders it
one-of-a-kind that no human invention can ever imitate.
As technology advances, software research and develop-
ment, in lieu of its unceasingly efforts, is striving to close

the gap between itself and the human paradigm.

This article presents a facet of such systematic en-
deavor that emphasizes on fundamental software engi-
neering principles, namely, repeatable, economic, and
safe. The resulting software products will therefore en-
tail high quality, reliability, yet cost effective to operate
as the soul of our futuristic thinking machine. Conse-
quently, a few unconventional configurations and designs
will be concocted to revolutionize the existing computing
paradigms.

2 An Architectural Framework

Every cell is, in essence, a simple autonomous entity that
can function to sustain its survival needs. As cells bind
together to form organs, body, and eventually the entire
physical being, they interoperate through complex inter-
connecting networks of control. The blueprint of such a
marvelous configuration is believed to be pre-established
by DNA. Exactly how it comes into play is still unknown.
Despite numerous efforts from various scientific disci-
plines, researchers are still unable to unlock the secret of
nature. Fortunately, software is a well-defined artifact that
possesses clear objectives from the outset, though imper-
fect and susceptible to error in practice. This is an inher-
ent nature of all human inventions that attempt to trans-
form complex abstractions into simple objects. This in-
tangible “soul” of computer operates from the primitive
bits to advanced algorithms and artificial neural networks
that can learn as they go. The complexity grows as the ar-
chitectural ladder moves away from hardware. To allevi-

ate and cope with such predicament, software researchers
and developers alike laboriously strive to refine this in-
vention by mimicking nature. A cell is envisioned as a
component, an organ as a package, a body part as a sub-
system, and the body as a system. This basic building
block scheme lends itself to a wide array of innovative
development paradigms, e.g., reuse, plug-and-play, and
COTS. Such proliferation of flexible selections does not
come without a high price, i.e., component standardiza-
tion and operational overhead.

At the heart of central control lies intelligent algorith-
mic methods that regulate the functions of control com-
ponents or the “brain.” Figure 1 illustrates the structure
of such component-based software systems. These com-
ponents are plugged onto the control support back plane,
which is regulated by the brain or central control func-
tions known as the operationg system. All system capa-
bilities are performed by this software subsystem or “or-
gan.” This analogy continues to instill the evolutionary
R&D of software architectural framework.

hardware

software

ane-ett

.
RLTT
k] T
.-

software

BRAIN

B

control support

Figure 1: Structure of component-based software sys-
tems.

3 Configuration and Design of Soft-
ware

Based on human analogy, the architectural framework
rests on basic cellular building blocks or components that
serve as the fundamental development units. Each com-
ponent performs only one function, thereby permitting
component replacement, integration, and most important
of all, reuse. As the level of abstraction increases, com-
ponents are combined to form packages through standard
user interfaces. This is achieved by means of well-defined
interface specifications [1], interconnecting association,
and control discipline that form component standard. This
is akin to file operation package that is associated with
file management sub-systems. Invocation and processing
control are administered by the operating systems.

A number of architectural abstraction conflicts may
arise according to conventional layered configuration.
One prominent and well-known problem is component
abstraction hierarchy. The depth of inheritance tree plays
a major role in such conflicts. Moreover, the overhead
incurred from information transport among layers (e.g.,
polymorphic operations, multiple inheritance, etc.) may
offset the abstraction so preserved, thus rendering abstrac-
tion gains to be an unworthy tradeoff.

Another problem that must be rectified (and ultimately
eliminated) is software defect. This short-fall has plagued
software development since its inception. Modern test-
ing methods, in particular, fault prediction techniques as
exemplified by [2] herald state-of-the-art endeavor that is
set forth toward achieving fault-free software components
and products. A concise discussion of some relevant de-
sign aspects will be described to support the systematic
philosophy of software design principles and practices.

Bearing the aforementioned component-based archi-
tecture in mind, the design issues thus rely on many
proven principles, namely, abstraction, information hid-
ing, encapsulation, and modularity. These principles will
work well only if the underlying support mechanisms are
standardized and reliable. In other words, there must be
standard interfacing and operating protocols that enable
“plug-and-play” to operate smoothly, having as few in-
compatibilities as possible.

The paradigm of component-based software develop-
ment has brought about the notion of OOA and OOD for

decades. Modern researches have embarked on hybrid
approaches by introducing RAD, AOSD, Agile, or XP,
to name a few. These approaches offer flexible means
to enhance the design process as development life cycle
shrinks, whereby accelerating software product release to
suit the fast-changing needs. A simplified design process
is given in Figure 2 to demonstrate its iterative, repeat-
able, methodical, and effective procedures. As such, var-
ious design aspects can be verified regularly as develop-
ment progresses to ensure their correctness, consistency,
and compliance with engineering principles.

Some revolutionary design philosophies usually en-
compass test design during the component (or unit) de-
sign stage. Many modern testing techniques are employed
at component level to serve the purpose, e.g., finite state
machine, architectural description language, hardware de-
scription language, etc. Specific test provisions are ar-
ranged to exercise particular test cases [3]. As the number
of components grows, so does design complexity. The
use of design configuration, document control, and de-
sign archive permits large-scale software development,
where teamwork is essential. Such work flow entails vir-
tual cooperation in many software development organiza-
tions, thereby overcoming physical barriers for the soft-
ware teams. Components can be check-in/check-out dur-
ing different testing stages (unit, integration, and system
testing) according to project schedule. Each unit develop-
ment folder is subsequently integrated from related com-
ponents to form phase-deliverables. This integration pro-
cess is performed repeatedly throughout the development
life cycle which eventually becomes the final software
product.

4 Ad hoc and Reuse Development

The advent and proliferation of the Internet inevitably cre-
ates a paradigm shift on software products and their de-
velopment process. Internet-based software does not un-
dergo the same development life cycle as its large-scale
application counterpart. Turnaround time of each release
is swift. Obsolescence is no longer the issue, but rather
new capabilities and nifty features are added. Careful con-
siderations on development with/for reuse become essen-
tial. Configuration management is undoubtedly called for
as complexity grows and time-to-release shrinks. Conven-

SRS

Y

> architectural design

\ 4

top-down (package)
+ (interface) -
bottom-up (component)

~,

design
configuration

change

change

reuse

4

o document
Ll
Qnrol

\ 4
design
archive

Figure 2: A systematic design process.

tional project team and philosophy are too cumbersome to
apply. Instead Agile/XP environments are often proved to
be effective. As a consequence, some formality of docu-
mentation management may be loosen to ease the burden
and keep the project in perspective.

In order to speed up the development process, develop-
ers gradually opt for COTS approach to “assemble” soft-
ware packages and products. This configuration requires
standard interface that glues those components together.
The problem is no existing de-facto standard that can sup-
port the very notion of “plug-and-play” as its hardware
counterpart. Consequently, components do not function
together as a unified combination and hence induce de-
fects. This, in turn, creates a formidable diagnostic chore
or in an infamous programming jargon debugging. Such

a process is usually tedious and painstaking, whereby re-
sulting in left-over bugs to disrupt normal operations of
the desired functionalities.

As the body routines are thrown off from their nor-
mal functions, the person suffers and becomes ill. Such
malfunctions of one or more organs may trigger a ripple
effects on the rest of the body. Software operations are
no exception. Regardless of the extent on how careful
component encapsulation is done, side-effects seem to be
norm and the degree with which components are inter-
related increases. This analogy remains to be true as the
imitation gets closer. The question is not how to solve
the problem, but rather systematically administer it so that
when a symptom (defect) pops up, it is cured (fixed) ef-
fectively and effortlessly.

5 Conclusion

The human body functions in a systematic, organized, and
well-regulated manner. When certain organs malfunction,
the body becomes ill. By the same token, software is sup-
posedly performed its functions normally. When software
encounters a glitch, it may run into different unpredictable
transitions and result in an undesirable behavior.

While human body is built by nature, medical and bi-
ological researches attempt to find ways to overcome the
inherent short-comings. Software, on the other hand, is
built by human. Any defective concoctions can thus be
modified, adjusted, or even replaced, as long as it is done
systematically. The challenge of this human invention is
to continuously improve the development process and the
final product. The success of quality software product
rests primarily on the aforementioned systematic devel-
opment and management process. Insofar as human in-
tervention is concerned, the so called “human error” pre-
vails. Researchers are hard at work to get rid of the hu-
man factor. As such, the future of software development
is likely to be carried out automatically by machines, or
perhaps, by the software itself. Who knows?

References

[1] Sathit Nakkrasae and Peraphon Sophatsathit, “A For-
mal Approach for Specification and Classification of

[2]

(3]

Software Components.” Proceedings of the 14th In-
ternational Conference on Software Engineering and
Knowledge Engineering, in cooperation with ACM-
S GSOFT, Ischia, Italy, July 15-19, 2002, pp. 773-
780.

Atchara Mahaweerawat, Peraphon Sophatsathit,
Chidchanok Lursinsap, and Petr Musilek, “Fault
Prediction in Object-Oriented Software Using Neu-
ral Network Techniques.” Proceedings of the InTech
Conference, 2004, Houston, TX, U.S.A., Dec 2-4,
2004, pp. 27-34.

Sittisak Sai-ngern, Chidchanok Lursinsap, and Per-
aphon Sophatsathit, “Test Shape Generation of Dy-
namically Linked Structures.” Proceedings of the
ECTI Annual Conference (ECTI-CON 2004), Pattaya,
Thailand, May 13-14, 2004, pp. 330-333.

