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Abstract—This research proposes a novel memory allocation 

scheme to efficiently handle memory management. The scheme 

employs biological behavioral principles of the unicellular life 

form. At the principal construct lives the cells having limited 

resources, yet passively operates with little overhead. The 

proposed scheme imitates this unicellular characterization to 

execute one task at a time using First-In-First-Out queue. 

Execution is regulated by a global clock that permits one active 

task at any given time in memory. Consequently, low overhead 

memory allocation can be achieved without the need for elaborate 

scheduling and other supporting algorithms. The most 

anticipatory benefit is simplicity that permits straightforward 

technological transfer of the proposed scheme to hardware. The 

contributions are to systematically mitigate the memory wall and 

reduce power consumed by memory management activities. 

Keywords—FIFO queue; Memory allocation; Biological-like 

architecture; Simulation. 

I.  INTRODUCTION  

Memory unit has been one of the biggest problems that 
plagued microcomputers since their inception in the 1970s. On 
the contrary, hardware components have been consistently 
developed to fulfill the memory requirements. However, the 
progress still could not break through Moore’s Law that said 
approximately every 24 months the number of transistors in a 
circuit would double [1][2]. Later in 1975, David House had 
revised this Law to 18 months [3]. In essence, this is 
approximately 60 percent growth per year, while the efficiency 
of memory has only improved by 10 percent per year. There is a 
gap between these memory chipsets and the CPU chipsets that 
stretches out approximately 50 percent every year. This gap is 
known as the infamous “Memory Wall” [4] that must be 
eliminated to maximize system performance. Some 
conventional solutions are listed below: 

• Provide a matching memory bandwidth with CPU 
performance. This approach helps boost up transferring 
rate and tighten the gap between those two chipsets. 

• Apply efficient memory allocation scheme. This 
approach provides a good replacement strategy to 
existing systems. The benefit of choosing this choice is 
that it could be applied to any existing systems without 

hardware change but refine logical control of the 
memory unit. 

The above approaches never yield any improvements. The 
execution discrepancies between processor and memory still 
persist. One viable solution is to simplify memory access that 
will compensate for processing speed. To arrive at simplicity of 
implementation, nature can serve as a solution model basing 
upon the simplest unicellular life form. The unicellular is a life 
form that can survive on its limited resources in extreme 
conditions. It possesses some important major characteristics [5] 
such as self-contained, independent, simplicity, as well as 
autonomy. 

This research exploits the living activities of this unicellular 
creature by managing memory access and task execution as a 
new memory allocation scheme. This is essentially based on 
first-in first-out (FIFO) queueing discipline to simplify memory 
allocation process, making use of the above unicellular survival 
activities to achieve optimal memory management 
effectiveness. 

This paper is organized as follows. Section II recounts some 
related works that are pertinent to this work. Section III 
describes the proposed scheme in detail. An experimental 
simulation is carried out to measure the viability of the proposed 
scheme, wherein the outcomes are summarized in Section IV. 
Some research considerations are discussed in Section V. 
Section VI concludes this research study with potential future 
work. 

II. RELATED WORKS 

Kagi et al. [6] addressed memory bandwidth problems that 
were caused by processor stalled, insufficient memory, or 
memory utilization. New processing chipsets kept getting faster 
to gaining both advantages and disadvantages. Obviously, faster 
CPU takes less execution time, but requires more memory 
bandwidth. They attempted to solve this problem using latency-
reduction technique by combining lockup-free and reschedule of 
operations. These techniques did not go well as a result of 
lockup-free that caused bandwidth stalls by allowing more 
memory requests in a short period of time. Consequently, 
queueing in memory system would possibly be delayed. 
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Rixner et al. [7] stated that DRAM accessing operation could 
cause noticeable effect on both memory throughputs and 
latency. They proposed a Memory Access Scheduling that 
reordered process at DRAM level and introduced several 
policies to cope with every circumstance. When DRAM was 
ready to operate, it would not require any sophisticated access 
scheduler. However, when DRAM was busy, a complex access 
scheduler had to be initiated to reclaim resources by oldest and 
idle references first. These memory references were represented 
by six parameters, namely, (1) Valid, (2) Load/Store, (3) Row 
address, (4) Column address, (5) Data, and (6) State. This 
technique was governed by supporting policies as follows: (1) 
In-order, (2) Priority, (3) Open, (4) Closed, (5) Most pending, 
and (6) Fewest pending. Thus, it could improve 40% bandwidth 
on application traces and 30% media processing. 

Designing high performance computer with single high-
performance processor is no longer workable since the number 
of tasks being executed per unit time yields relatively low 
throughputs. Moreover, heat also causes performance throttling. 
To avoid these problems, multicore architecture is adopted. Liu 
et al. [8] proposed triplet-based architecture to obtain massive 
communication advantages. However, this implementation 
required a hardware object table (OT) to deploy the indirect 
addressing. Consequently, memory utilization boosted up and 
was easy to extend. 

Kish [9] addressed the increase of chip density toward 
physical limits. The prospect of major causes from speed, size, 
and heat dissipation would eventually become thermal noise 
phenomena. All these works served as the forerunners to the 
proposed scheme. 

III. PROPOSED SCHEME 

In a unicellular life span, they can survive with limited 
resources and many adversary conditions and environments. In 
order to mimic the unicellular survival capability for the 
architectural design of the proposed memory allocation scheme, 
some preliminary researches have been conducted to address the 
following problems. 

1. How can memory allocation and access overhead be 
reduced? 

A unicellular life form performs its activities in a simple 
sequential process. The process exemplifies a 
straightforward FIFO discipline to arrange memory 
allocation and access. Moreover, the fact that 
forgetfulness causes old activities to be replaced by the 
new ones leads process replacement to be done in place 
without having to reclaim the memory space. Hence no 
memory fragmentation overhead will be involved. 

2. How can biological constructs be adapted to memory 
scheme? 

The simplistic and effective biological process of the 
unicellular life form so created by nature instills the 
architectural design of the proposed scheme. By virtue 
of the solution to the first problem, arrangement of 
process scheduling and execution can be done in a 
similar manner. Two types of prioritization will be set 

up in this scheme, namely, user process pool to hold user 
or voluntary process and system process pool to hold 
system or involuntary process. The memory allocation 
scheme is laid out as depicted in Figure 1, where: 

• Sf and Uf are indices denoting the first available 
slot for next incoming system and user processes, 
respectively. 

• Se and Ue are indices denoting currently executing 
system and user processes, respectively. 

• Sn and Un are total amount of spaces that are 
allocated for system and user processes, 
respectively. 

 

Fig. 1. Memory Allocation Scheme. 

Process execution is arranged in the following states, 
namely, incoming, waiting, execution, and blocked as 
shown in Figure 2. Their characterization is defined as 
follows: 

• Incoming state defines the state that contains 
newly arrived process being assigned to a specific 
queue. 

• Waiting state defines the state that places those 
processes in the queue to occupy the available 
resources. 

• Executing state defines the state that a process is 
running in the processor. 

• Blocked state defines the state that a process is 
held until the required resource is available. 

 

Fig. 2. Process execution arrangement. 
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The first incoming state denotes a newly arrived 
process. If there is memory available to hold it, the 
process will enter the execution queue. Otherwise, it 
will be put to waiting state. 

In waiting state, the processes residing in executing 
queue are arranged in FIFO order. In blocked state, a 
timing measure is imposed to control the allowable 
duration of existence in the memory without progress. 
Therefore, no process will remain indefinitely blocked 
in the memory. This is called the Time-To-Live (TTL) 
factor. 

In executing state, the process to be executed is fed 
either from waiting or blocked state. There will be one 
process active at a time. The executing process is 
pointed to by Se and Ue depending on the type of 
priority. A process will move out of executing state 
when all of its subtasks are finished or its allotted TTL 
is up to prevent the process from holding up the CPU 
indefinitely [10]. 

3. How can memory operations be speeded up in order to 
reduce the Memory Wall problem? 

Referring to Figure 1, separation of user and system 
pools stems from the fact that there is no definitive 
criterion to distinguish between voluntary and 
involuntary processes in the unicellular life form. This 
arrangement calls for some mechanisms to impose 
memory allocation priority to both types of processes, 
while preserving the simplicity of unicellular functions. 
This analogy is used to speed up the operations of the 
proposed scheme. The flat architecture is set up as fixed-
size memory blocks for fast FIFO access and retrieval. 
This sequentially ordered blocks can hold processes in 
execution or replacement by overriding the current 
process in place. Such a set up help reduce reclamation 
in as much as 50% of processing overhead on garbage 
collection or reclamation of existing memory allocation. 
Consequently, memory leak problem can be avoided. 

These preliminary researches lead to the related adaptation 
of unicellular biological process. First and foremost, memory 
blocks are partitioned in fixed size to mimic the unicellular 
construct. Next, space allocation uses FIFO in-place 
replacement since the unicellular has only limited cell space to 
operate. From Figure 1, let A and B be system processes and m 
and n be user processes in multi-tasking execution. Suppose 
process n is executing. A new system process G arrives but all 
memory space is fully occupied. How should G be handled? 
This is a typical scenario that can be solved by many efficient 
process scheduling algorithms. In this study, process G is 
assigned to user space U by overriding m as illustrated in Figure 
3. At the same time, n is blocked to relinquish control for G 
execution. 

A B n m 

S U 

Fig. 3. Process space allocation and replacement. 

The above scenario demonstrates the simplicity of allocation 
and replacement that mimics the uni-cell activities to be 
performed one activity at a time. As process execution 
continues, its existence is governed by TTL (set forth by a global 
clock) in a similar fashion as the new uni-cell is reproduced and 
the old one dies. A process is replaced by the next one in waiting 
queue when its TTL expires. If it has yet completed the 
execution, its contents will be transferred to wait queue in the 
FIFO manner. Otherwise, no transfer is performed. Hence, at 
most only two memory transfers take place: one out-going and 
one incoming 

Due to FIFO access and retrieval of processes residing in 
memory, no process scheduler is required. The flatten 
consecutive fixed blocks arrangement needs no hierarchical 
traversal. Thus, logical construct of the proposed scheme boils 
down to physical linear ordering that could lend itself to 
hardware implementation. In so doing, operational overheads 
and power consumption would be reduced, while memory 
access could be considerably faster. As a consequence, the 
memory wall problem would gradually be mitigated. 

IV. EXPERIMENTAL RESULTS 

The simulation was written in Python running on Intel® 
Core i7 4790, 8GB DRAM DDR3 memory, Ubuntu 16.04 LTS 
system. Since there were no supporting environments that 
operated in a similar manner as the proposed scheme, a 
simulation was performed to verify the viability of the memory 
allocation scheme. Three operations were exercised to evaluate 
how the proposed scheme performed in comparison with known 
algorithms. The three operations were sort, transfer of control, 
and remove being tested against FIFO, shortest remaining time 
first (SRTF), and Round-Robin (RR) algorithms. Performance 
evaluation was measured by (1) the number of processes being 
generated per simulation run (freq), (2) time to run the process 
(t), and (3) process class (c), i.e., system or user. The rationale 
was because they were part of all the candidate algorithms. 

From the preliminary researches, the above evaluation 
parameters were established as follows: freq ranged from 1 to 5; 
t spanned 1 to 50; and c was proportionated by system to user 
processes at 1:9. Table 1 summarizes the operations being tested 
which can be further elucidated below. 

TABLE I.  OPERATIONS TESTED 

 FIFO SRTF RR 
Proposed 

Scheme 

Sort 0 ∑ T𝑖
𝑁
𝑖=1   0 0 

Transfer of 

control 𝑇𝑛 𝑇𝑛 ⌈𝑇𝑛%𝑡⌉  ⌈𝑇𝑛%𝑇𝑇𝐿⌉ 

Remove 𝑇𝑛 𝑇𝑛 0 0 

G 
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TABLE II.  TIME USED TO FINISH 10,000 OPERATIONS (IN CLOCK TICKS) 

APPROACH TIME RESULT DIFFERENCE 

FIFO  𝑛(𝑥̅ + 3) 26815 -31.061% 

SRTF 𝑁 LOG𝑁 + ∑ 𝑛(𝑥̅ + 3)𝑁
𝐼=0   74340 +91.120% 

RR ∑ ⌈𝑃𝑖 ÷ 5⌉ × 8𝑁
𝑖=0   41631 +7.0288% 

PROPOSED 

SCHEME 
∑ (⌊𝑃𝑖 ÷ 5⌋ × 8 + (𝑃𝑖 ÷ 5) + 3)𝑁
𝑖=0   38897 ±0% 

 

Sort was required only by SRTF since it had to fetch the next 
process having the smallest remaining time to execute. Transfer 
of control measured the context switch between processes. Note 
that execution duration of the proposed scheme was confined by 
TTL which varied from class to class, while RR applied fixed 
time slice to all processes. Remove dispatched processes from 
waiting queue to execution. Simulation run was performed for 
10,000 processes. The results are shown in Table 2. 

V. DISCUSSION 

In this paper, it was obvious that the proposed scheme ran 
only single thread execution per process type. The rationale 
behind this implementation was to reduce the number of 
operations and kept space usage as low as possible. 

Consider the results in Table 2, the proposed scheme spent 
almost half the time of SRTF method and slightly less than that 
of RR method. The difference was that traditional RR method 
always operated until the time slice was reached. However, the 
proposed scheme allowed process to exit as soon as it was 
finished or TTL expired. 

In comparison with FIFO approach, the proposed scheme 
fell behind because it also incorporated FIFO as part of its 
operations. Hence, the short-coming of FIFO method became an 
inherent part of the proposed scheme, i.e., starvation. We took 
care of this problem using TTL to limit this indefinite wait or 
blocking to avoid the starvation problem. Nonetheless, the extra 
context switches caused by TTL expiration lengthened the 
execution time considerably, hence the excess 31% deficit. This 
issue will be taken care of in the future work. 

From the selected operations being demonstrated, only 
SRTF required sort operation while the rest did not. Remove 
operation was required by FIFO and SRTF while RR and the 
proposed scheme simply loaded the new process in place of the 
finished one. The transfer of control operation required shifting 
of control from one process to the next. FIFO and SRTF took the 
basic execution transfer from start to finish. The proposed 
scheme and RR, on the other hand, required regular resource 
occupation from current process to the next when TTL of the 
proposed scheme or time slice of RR expired. 

The above three problems demonstrated how the proposed 
scheme exploited the strengths of simplicity in unicellular life 
form to arrive

 at low overhead and fast memory allocation scheme. In so 
doing, the memory would become available to be allocated 
which, in turn, relieved the CPU from execution delay, as well 
as the memory wall problem. 

VI. CONCLUSION AND FUTURE WORKS 

In this paper, the proposed scheme employed novel design 
of memory allocation scheme by introducing a new solution 
from biological unicellular life form. By adopting traditional 
FIFO technique and unicellular living characteristics, certain 
parameters were removed from memory allocation scheme. 
Consequently, the proposed scheme was still able to perform the 
necessary functions and yet comparable with standard 
algorithms at lower overheads. 

Furthermore, the proposed scheme was meant to be 
hardware implementable due to its simplicity. Memory 
allocation overhead was considerably reduced, in particular, 
remove operation was done in place. Ultimately, the hardware 
implementation would speed up running time to lessen memory 
access delay. Certain look ahead techniques and associative 
memory could be deployed in future work to reduce the number 
of context switches, whereby improving the efficiency of FIFO 
allocation. The gap of memory wall would eventually be 
mitigated. 
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