
A Biological-like
Memory Allocation Scheme using Simulation

Gasydech Lergchinnaboot

Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University

Bangkok, Thailand

Gasydech.l@student.chula.ac.th

Peraphon Sophatsathit

Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University

Bangkok, Thailand

Peraphon.s@chula.ac.th

Abstract—This research proposes a novel memory allocation

scheme to efficiently handle memory management. The scheme

employs biological behavioral principles of the unicellular life

form. At the principal construct lives the cells having limited

resources, yet passively operates with little overhead. The

proposed scheme imitates this unicellular characterization to

execute one task at a time using First-In-First-Out queue.

Execution is regulated by a global clock that permits one active

task at any given time in memory. Consequently, low overhead

memory allocation can be achieved without the need for elaborate

scheduling and other supporting algorithms. The most

anticipatory benefit is simplicity that permits straightforward

technological transfer of the proposed scheme to hardware. The

contributions are to systematically mitigate the memory wall and

reduce power consumed by memory management activities.

Keywords—FIFO queue; Memory allocation; Biological-like

architecture; Simulation.

I. INTRODUCTION

Memory unit has been one of the biggest problems that
plagued microcomputers since their inception in the 1970s. On
the contrary, hardware components have been consistently
developed to fulfill the memory requirements. However, the
progress still could not break through Moore’s Law that said
approximately every 24 months the number of transistors in a
circuit would double [1][2]. Later in 1975, David House had
revised this Law to 18 months [3]. In essence, this is
approximately 60 percent growth per year, while the efficiency
of memory has only improved by 10 percent per year. There is a
gap between these memory chipsets and the CPU chipsets that
stretches out approximately 50 percent every year. This gap is
known as the infamous “Memory Wall” [4] that must be
eliminated to maximize system performance. Some
conventional solutions are listed below:

• Provide a matching memory bandwidth with CPU
performance. This approach helps boost up transferring
rate and tighten the gap between those two chipsets.

• Apply efficient memory allocation scheme. This
approach provides a good replacement strategy to
existing systems. The benefit of choosing this choice is
that it could be applied to any existing systems without

hardware change but refine logical control of the
memory unit.

The above approaches never yield any improvements. The
execution discrepancies between processor and memory still
persist. One viable solution is to simplify memory access that
will compensate for processing speed. To arrive at simplicity of
implementation, nature can serve as a solution model basing
upon the simplest unicellular life form. The unicellular is a life
form that can survive on its limited resources in extreme
conditions. It possesses some important major characteristics [5]
such as self-contained, independent, simplicity, as well as
autonomy.

This research exploits the living activities of this unicellular
creature by managing memory access and task execution as a
new memory allocation scheme. This is essentially based on
first-in first-out (FIFO) queueing discipline to simplify memory
allocation process, making use of the above unicellular survival
activities to achieve optimal memory management
effectiveness.

This paper is organized as follows. Section II recounts some
related works that are pertinent to this work. Section III
describes the proposed scheme in detail. An experimental
simulation is carried out to measure the viability of the proposed
scheme, wherein the outcomes are summarized in Section IV.
Some research considerations are discussed in Section V.
Section VI concludes this research study with potential future
work.

II. RELATED WORKS

Kagi et al. [6] addressed memory bandwidth problems that
were caused by processor stalled, insufficient memory, or
memory utilization. New processing chipsets kept getting faster
to gaining both advantages and disadvantages. Obviously, faster
CPU takes less execution time, but requires more memory
bandwidth. They attempted to solve this problem using latency-
reduction technique by combining lockup-free and reschedule of
operations. These techniques did not go well as a result of
lockup-free that caused bandwidth stalls by allowing more
memory requests in a short period of time. Consequently,
queueing in memory system would possibly be delayed.

2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Yogyakarta, Indonesia

978-1-5386-0657-5; CFP17G48-USB 425

Rixner et al. [7] stated that DRAM accessing operation could
cause noticeable effect on both memory throughputs and
latency. They proposed a Memory Access Scheduling that
reordered process at DRAM level and introduced several
policies to cope with every circumstance. When DRAM was
ready to operate, it would not require any sophisticated access
scheduler. However, when DRAM was busy, a complex access
scheduler had to be initiated to reclaim resources by oldest and
idle references first. These memory references were represented
by six parameters, namely, (1) Valid, (2) Load/Store, (3) Row
address, (4) Column address, (5) Data, and (6) State. This
technique was governed by supporting policies as follows: (1)
In-order, (2) Priority, (3) Open, (4) Closed, (5) Most pending,
and (6) Fewest pending. Thus, it could improve 40% bandwidth
on application traces and 30% media processing.

Designing high performance computer with single high-
performance processor is no longer workable since the number
of tasks being executed per unit time yields relatively low
throughputs. Moreover, heat also causes performance throttling.
To avoid these problems, multicore architecture is adopted. Liu
et al. [8] proposed triplet-based architecture to obtain massive
communication advantages. However, this implementation
required a hardware object table (OT) to deploy the indirect
addressing. Consequently, memory utilization boosted up and
was easy to extend.

Kish [9] addressed the increase of chip density toward
physical limits. The prospect of major causes from speed, size,
and heat dissipation would eventually become thermal noise
phenomena. All these works served as the forerunners to the
proposed scheme.

III. PROPOSED SCHEME

In a unicellular life span, they can survive with limited
resources and many adversary conditions and environments. In
order to mimic the unicellular survival capability for the
architectural design of the proposed memory allocation scheme,
some preliminary researches have been conducted to address the
following problems.

1. How can memory allocation and access overhead be
reduced?

A unicellular life form performs its activities in a simple
sequential process. The process exemplifies a
straightforward FIFO discipline to arrange memory
allocation and access. Moreover, the fact that
forgetfulness causes old activities to be replaced by the
new ones leads process replacement to be done in place
without having to reclaim the memory space. Hence no
memory fragmentation overhead will be involved.

2. How can biological constructs be adapted to memory
scheme?

The simplistic and effective biological process of the
unicellular life form so created by nature instills the
architectural design of the proposed scheme. By virtue
of the solution to the first problem, arrangement of
process scheduling and execution can be done in a
similar manner. Two types of prioritization will be set

up in this scheme, namely, user process pool to hold user
or voluntary process and system process pool to hold
system or involuntary process. The memory allocation
scheme is laid out as depicted in Figure 1, where:

• Sf and Uf are indices denoting the first available
slot for next incoming system and user processes,
respectively.

• Se and Ue are indices denoting currently executing
system and user processes, respectively.

• Sn and Un are total amount of spaces that are
allocated for system and user processes,
respectively.

Fig. 1. Memory Allocation Scheme.

Process execution is arranged in the following states,
namely, incoming, waiting, execution, and blocked as
shown in Figure 2. Their characterization is defined as
follows:

• Incoming state defines the state that contains
newly arrived process being assigned to a specific
queue.

• Waiting state defines the state that places those
processes in the queue to occupy the available
resources.

• Executing state defines the state that a process is
running in the processor.

• Blocked state defines the state that a process is
held until the required resource is available.

Fig. 2. Process execution arrangement.

2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Yogyakarta, Indonesia

978-1-5386-0657-5; CFP17G48-USB 426

The first incoming state denotes a newly arrived
process. If there is memory available to hold it, the
process will enter the execution queue. Otherwise, it
will be put to waiting state.

In waiting state, the processes residing in executing
queue are arranged in FIFO order. In blocked state, a
timing measure is imposed to control the allowable
duration of existence in the memory without progress.
Therefore, no process will remain indefinitely blocked
in the memory. This is called the Time-To-Live (TTL)
factor.

In executing state, the process to be executed is fed
either from waiting or blocked state. There will be one
process active at a time. The executing process is
pointed to by Se and Ue depending on the type of
priority. A process will move out of executing state
when all of its subtasks are finished or its allotted TTL
is up to prevent the process from holding up the CPU
indefinitely [10].

3. How can memory operations be speeded up in order to
reduce the Memory Wall problem?

Referring to Figure 1, separation of user and system
pools stems from the fact that there is no definitive
criterion to distinguish between voluntary and
involuntary processes in the unicellular life form. This
arrangement calls for some mechanisms to impose
memory allocation priority to both types of processes,
while preserving the simplicity of unicellular functions.
This analogy is used to speed up the operations of the
proposed scheme. The flat architecture is set up as fixed-
size memory blocks for fast FIFO access and retrieval.
This sequentially ordered blocks can hold processes in
execution or replacement by overriding the current
process in place. Such a set up help reduce reclamation
in as much as 50% of processing overhead on garbage
collection or reclamation of existing memory allocation.
Consequently, memory leak problem can be avoided.

These preliminary researches lead to the related adaptation
of unicellular biological process. First and foremost, memory
blocks are partitioned in fixed size to mimic the unicellular
construct. Next, space allocation uses FIFO in-place
replacement since the unicellular has only limited cell space to
operate. From Figure 1, let A and B be system processes and m
and n be user processes in multi-tasking execution. Suppose
process n is executing. A new system process G arrives but all
memory space is fully occupied. How should G be handled?
This is a typical scenario that can be solved by many efficient
process scheduling algorithms. In this study, process G is
assigned to user space U by overriding m as illustrated in Figure
3. At the same time, n is blocked to relinquish control for G
execution.

A B n m

S U

Fig. 3. Process space allocation and replacement.

The above scenario demonstrates the simplicity of allocation
and replacement that mimics the uni-cell activities to be
performed one activity at a time. As process execution
continues, its existence is governed by TTL (set forth by a global
clock) in a similar fashion as the new uni-cell is reproduced and
the old one dies. A process is replaced by the next one in waiting
queue when its TTL expires. If it has yet completed the
execution, its contents will be transferred to wait queue in the
FIFO manner. Otherwise, no transfer is performed. Hence, at
most only two memory transfers take place: one out-going and
one incoming

Due to FIFO access and retrieval of processes residing in
memory, no process scheduler is required. The flatten
consecutive fixed blocks arrangement needs no hierarchical
traversal. Thus, logical construct of the proposed scheme boils
down to physical linear ordering that could lend itself to
hardware implementation. In so doing, operational overheads
and power consumption would be reduced, while memory
access could be considerably faster. As a consequence, the
memory wall problem would gradually be mitigated.

IV. EXPERIMENTAL RESULTS

The simulation was written in Python running on Intel®
Core i7 4790, 8GB DRAM DDR3 memory, Ubuntu 16.04 LTS
system. Since there were no supporting environments that
operated in a similar manner as the proposed scheme, a
simulation was performed to verify the viability of the memory
allocation scheme. Three operations were exercised to evaluate
how the proposed scheme performed in comparison with known
algorithms. The three operations were sort, transfer of control,
and remove being tested against FIFO, shortest remaining time
first (SRTF), and Round-Robin (RR) algorithms. Performance
evaluation was measured by (1) the number of processes being
generated per simulation run (freq), (2) time to run the process
(t), and (3) process class (c), i.e., system or user. The rationale
was because they were part of all the candidate algorithms.

From the preliminary researches, the above evaluation
parameters were established as follows: freq ranged from 1 to 5;
t spanned 1 to 50; and c was proportionated by system to user
processes at 1:9. Table 1 summarizes the operations being tested
which can be further elucidated below.

TABLE I. OPERATIONS TESTED

 FIFO SRTF RR
Proposed

Scheme

Sort 0 ∑ T𝑖
𝑁
𝑖=1 0 0

Transfer of

control 𝑇𝑛 𝑇𝑛 ⌈𝑇𝑛%𝑡⌉ ⌈𝑇𝑛%𝑇𝑇𝐿⌉

Remove 𝑇𝑛 𝑇𝑛 0 0

G

2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Yogyakarta, Indonesia

978-1-5386-0657-5; CFP17G48-USB 427

TABLE II. TIME USED TO FINISH 10,000 OPERATIONS (IN CLOCK TICKS)

APPROACH TIME RESULT DIFFERENCE

FIFO 𝑛(𝑥̅ + 3) 26815 -31.061%

SRTF 𝑁 LOG𝑁 + ∑ 𝑛(𝑥̅ + 3)𝑁
𝐼=0 74340 +91.120%

RR ∑ ⌈𝑃𝑖 ÷ 5⌉ × 8𝑁
𝑖=0 41631 +7.0288%

PROPOSED

SCHEME
∑ (⌊𝑃𝑖 ÷ 5⌋ × 8 + (𝑃𝑖 ÷ 5) + 3)𝑁
𝑖=0 38897 ±0%

Sort was required only by SRTF since it had to fetch the next
process having the smallest remaining time to execute. Transfer
of control measured the context switch between processes. Note
that execution duration of the proposed scheme was confined by
TTL which varied from class to class, while RR applied fixed
time slice to all processes. Remove dispatched processes from
waiting queue to execution. Simulation run was performed for
10,000 processes. The results are shown in Table 2.

V. DISCUSSION

In this paper, it was obvious that the proposed scheme ran
only single thread execution per process type. The rationale
behind this implementation was to reduce the number of
operations and kept space usage as low as possible.

Consider the results in Table 2, the proposed scheme spent
almost half the time of SRTF method and slightly less than that
of RR method. The difference was that traditional RR method
always operated until the time slice was reached. However, the
proposed scheme allowed process to exit as soon as it was
finished or TTL expired.

In comparison with FIFO approach, the proposed scheme
fell behind because it also incorporated FIFO as part of its
operations. Hence, the short-coming of FIFO method became an
inherent part of the proposed scheme, i.e., starvation. We took
care of this problem using TTL to limit this indefinite wait or
blocking to avoid the starvation problem. Nonetheless, the extra
context switches caused by TTL expiration lengthened the
execution time considerably, hence the excess 31% deficit. This
issue will be taken care of in the future work.

From the selected operations being demonstrated, only
SRTF required sort operation while the rest did not. Remove
operation was required by FIFO and SRTF while RR and the
proposed scheme simply loaded the new process in place of the
finished one. The transfer of control operation required shifting
of control from one process to the next. FIFO and SRTF took the
basic execution transfer from start to finish. The proposed
scheme and RR, on the other hand, required regular resource
occupation from current process to the next when TTL of the
proposed scheme or time slice of RR expired.

The above three problems demonstrated how the proposed
scheme exploited the strengths of simplicity in unicellular life
form to arrive

 at low overhead and fast memory allocation scheme. In so
doing, the memory would become available to be allocated
which, in turn, relieved the CPU from execution delay, as well
as the memory wall problem.

VI. CONCLUSION AND FUTURE WORKS

In this paper, the proposed scheme employed novel design
of memory allocation scheme by introducing a new solution
from biological unicellular life form. By adopting traditional
FIFO technique and unicellular living characteristics, certain
parameters were removed from memory allocation scheme.
Consequently, the proposed scheme was still able to perform the
necessary functions and yet comparable with standard
algorithms at lower overheads.

Furthermore, the proposed scheme was meant to be
hardware implementable due to its simplicity. Memory
allocation overhead was considerably reduced, in particular,
remove operation was done in place. Ultimately, the hardware
implementation would speed up running time to lessen memory
access delay. Certain look ahead techniques and associative
memory could be deployed in future work to reduce the number
of context switches, whereby improving the efficiency of FIFO
allocation. The gap of memory wall would eventually be
mitigated.

REFERENCES

[1] E. Mollick, “Establishing Moore’s law,” IEEE Ann. Hist. Comput.,

vol. 28, no. 3, pp. 62–75, 2006.

[2] C. A. Mack, “Keynote: Moore’s Law 3.0,” Microelectron. Electron

Devices (WMED), 2013 IEEE Work., p. xiii, 2013.

[3] Intel, “Moore’s Law and Intel Innovation,” Intel, 2012. [Online].

Available:

http://www.intel.com/content/www/us/en/history/museum-gordon-

moore-law.html. [Accessed: 01-Mar-2017].

[4] S. Derrien and S. Rajopadhye, “FCCMs and the memory wall,”

IEEE Symp. FPGAs Cust. Comput. Mach. Proc., vol. 2000–Janua,

no. ii, pp. 329–330, 2000.

[5] H. Nozaki, Sexual Reproduction in Animals and Plants. 2014.

[6] A. Kagi, J. R. Goodman, D. Burger, J. R. Goodman, A. Kagi, and

W. D. Street, “Memory Bandwidth Limitations of Future

Microprocessors,” 23rd Annu. Int. Symp. Comput. Archit. ISCA96,

vol. 24, no. 2, pp. 78–89, 1996.

[7] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,

“Memory access scheduling,” Proc. 27th Int. Symp. Comput. Archit.

(IEEE Cat. No.RS00201), vol. 27, no. c, pp. 1–11, 2000.

[8] M. Liu, W. Ji, Z. Wang, J. Li, and X. Pu, “High performance

memory management for a multi-core architecture,” Proc. - IEEE

9th Int. Conf. Comput. Inf. Technol. CIT 2009, vol. 1, pp. 63–68,

2009.

[9] L. B. Kish, “End of Moore ’ s law : thermal (noise) death of

integration in micro and nano electronics,” vol. 305, pp. 144–149,

2002.

[10] W. Stallings, Operating Systems: Internals and Design Principles.

2008.

2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Yogyakarta, Indonesia

978-1-5386-0657-5; CFP17G48-USB 428

