
Test Case Generation for Classes
in Objects-Oriented Programming Using
Grammatical Evolution

Jirawat Chaiareerat, Peraphon Sophatsathit
and Chidchanok Lursinsap

Abstract This paper proposes a dynamic test case generation approach for
Object-Oriented Programming classes, using evolutionary search to find test cases
that would satisfy a branch coverage criteria. Grammatical Evolution (GE) is used
to search for a solution in accordance to user-specified grammar, thus making the
algorithm more flexible than the traditional genetic programming. Rather than
generating test cases directly, source code for an Intermediate Test Script (ITS) is
generated from the grammar. It is then evaluated and translated into source code
by ITS interpreter. Such a provision makes it easy to produce test cases that have
object and literal reference, whereby improve the performance of GE. We’ve
tested the proposed method with several java classes from open source projects
and yielded high code coverage results.

Keywords Test case generation � Code coverage �Object-oriented programming �
Grammatical evolution � Intermediate test script

J. Chaiareerat (&) � P. Sophatsathit � C. Lursinsap
Department of Mathematics and Computer Science, Faculty of Science,
Advanced Virtual and Intelligent Computing (AVIC) Center,
Chulalongkorn University, Bangkok, 10330 Thailand
e-mail: jirwat.c@student.chula.ac.th

P. Sophatsathit
e-mail: peraphon.s@chula.ac.th

C. Lursinsap
e-mail: lchidcha@chula.ac.th

James J. (Jong Hyuk) Park et al. (eds.), Computer Science and Convergence,
Lecture Notes in Electrical Engineering 114, DOI: 10.1007/978-94-007-2792-2_24,
� Springer Science+Business Media B.V. 2012

251

1 Introduction

Test case generation is inherently a vital part of software testing. Because testing
all possible test data is infeasible, test case generation therefore uses different
criteria to select and generate only a subset of test data that guarantees a high
quality of the test set. These criteria are called code coverage.

Previous works in test case generation can be classified into two groups,
namely, static and dynamic approaches. The static test case generation relies on
static analysis of the program source code. They usually apply the same concept as
procedural test case generation by using symbolic execution and constrained
solving. On the other hand, the dynamic approach models the test case generation
as a search problem to find an optimal solution, which gives the highest code
coverage. This approach executes the test object iteratively by tuning the test case
until a satisfied result is reached. Various optimization techniques are used in
dynamic test case generation including Genetic Algorithm [1–3], Simulated
Annealing [2, 3], Memetic Algorithm [2, 3] and Strongly-Typed Genetic
Programming [4, 5].

This paper proposes a dynamic approach test case generation for an object using
GE to find test cases that would satisfy branch coverage criteria. Each test case is
translated into Intermediate Test Script (ITS) format based on user-specified
grammar. The idea is to find an executable program or program fragment that will
yield a good fitness value for the given objective function.

2 Test Case Generation Framework

The Test Case Generation Framework consists of 4 modules: Code Instrumenta-
tion, Grammar Generator, Search, and Evaluation Module. Referring to Fig. 1,
Java source code is instrumented by Code Instrumentation module. This process
will insert certain code to the original source code which will be used for
collecting branch coverage information during the evaluation of each test case.
The instrumented source code is then compiled into a Java class file by java
compiler. This compiled Java class will later be fed as an input to the Evaluation
Module. The Grammar Generator Module, as stated by its name, will automati-
cally generate grammar for test cases. At this step, users can review the generated
grammar and modify it according to their specific grammar. The Search Module
then derives these test cases through the defined grammar based on genetic
algorithm. This process transforms the test cases into ITS which later are evaluated
by the Evaluation Module.

The Evaluation Module processes the compiled Java class, together with
Intermediate Test Script using its interpreter, to produce branch coverage infor-
mation. The resulting branch coverage information is then fed back to the Search
Module for selecting the best test case in each generation.

252 J. Chaiareerat et al.

3 Code Instrumentation

Code Instrumentation is the process of inserting certain code to the original source
code, wherever there’s a condition check and method declaration. The objective of
code insertion is to let the newly inserted code collect information on path and
coverage each time they are executed. Apart from collecting the mentioned
information, they are also used for calculating branch distance. Branch distance
information is used to evaluate how much each branch is closed to being taken. We
used Java Parser for parsing and inserting new code to the original java source
code automatically.

In a situation that two test cases have the same degree of coverage, branch
distance is used to determine which one is a better and suitable for potential
test case. The value of branch distance represents how much a branch is close
to being taken. In this paper, branch distance is calculated, using the formula
shown in Table 1. The lower branch distance means the branch is closer to be
covered.

From Table 1, dist(x) is the branch distance of condition x and k is the smallest
possible value of the branch distance (we used 0.0001 in this paper). The branch
distance in the above table is then normalized by the following equation

dist Að Þnormalize¼ 1� 1þ 0:1ð Þ0�distðAÞ: ð1Þ

Code
Instrument

Module

Evaluation Module

Search Module

ITS
Interpreter

Java
Sourcecode

Instrumented
Sourcecode

Ja
va

C
la

ss
fi

le

Intermediate
Test Script

Coverage
Information

R
es

u
lt

T
es

tc
as

e

Grammar
Generator

Module

G
ra

m
m

ar

Java
Compiler

Fig. 1 Test case generation
framework

Test Case Generation for Classes 253

4 Intermediate Test Script and Grammar

In this proposed method, each test case is represented in ITS Format. Grammar for
the ITS of a class under test is automatically generated from the source code by the
Grammar Generator.

The proposed framework generates test cases in Intermediate Test Script (ITS)
format instead of a java source code. In ITS, each parameter of the method call can
be referred to the previous created object or literal value. The advantage of using
the same parameter helps improve the search process. Moreover, ITS also reduces
the time for compiling the source code, since it can be run directly by ITS
interpreter.

Grammar of ITS for the class under test is generated from a java source code.
Tester can modified the grammar by inserting some heuristics, which can help
reduce the search space, making it easier for the Search Module to discover the
optimum solution. Using grammar to represent test cases have an advantage in
flexibility since various types of parameter such as array, string and object
reference can be created by grammar. In this paper, we used grammar in Backus-
Naur Form (BNF) as an input of GE.

5 Search and Evaluation

Grammatical Evolution performs the process of searching for a test case that has
the best code coverage for the class under test. In this paper, we used GEVA [6]
for our experiment.

Traditionally, Genetic Algorithm (GA) is used to find the optimal solutions to a
search problem. Genetic algorithm is classified as global search heuristics. Genetic
Programming (GP) is for finding computer programs that satisfy user-defined
criteria. Grammatical Evolution (GE) [7, 8], on the other hand, is an evolutionary
computation technique that can be considered as a grammar-based GP. A program
is represented by an ordered-list of integer. GE uses genotype-phenotype mapping
process to map an ordered-list of integer to a computer program. With the help of

Table 1 Branch distance calculation

Operation Branch distance

dist(A == B) Abs(A - B)
Dist(A! = B) k
Dist(A [= B) B - A
Dist(A [B) B - A ? k
Dist(A \= B) A - B
Dist(A \ B) A - B ? k
Dist(A and B) Max[dist(A), dist(B)]
Dist(A or B) min[dist(A), dist(B)]

254 J. Chaiareerat et al.

grammar, GE also provides a very flexible way to control an algorithm. The user
can define a grammar that biases to produce very specific form of program, or can
incorporate domain knowledge of the problem into the underlying grammar.

GE, GA, and GP use crossover and mutation operations to modify each indi-
vidual and reproduce new populations. In this paper, a standard single point
crossover; and nodal mutation [9] is used since it gives the best result among the
three in our experiment. Fitness function will be calculated based on coverage
information collected during the execution of each test case in the population. The
following equation is used in the calculation:

fitness tð Þ ¼ b� covð Þ þ 1� 1:1ð Þ0�bd ð2Þ

where b is the total number of branches, cov is the total branch coverage of test
case t, and bd is the total branch distance.

6 Experimental Results

We used selected java class for our experiment including J2SDK version 1.4.2_12,
Java Path Finder [10] version 1.3r1258 and Apache Commons Math version 1.1.

The experimental results are shown in Table 2 which compares the proposed
algorithm with Acuri [3] and Wappler [5] in Tables 3 and 4 respectively. In the
proposed algorithm, GE is executed for 200 generations with the number of
population equals to 50. The probability of crossover and mutation of GE is
configured to 0.9 and 0.1, respectively. Average performance execution of the
algorithm is based on 50 runs. Branch Coverage also includes the number of
method calls and try/catch statements. The branch coverage percentage is the ratio
of mean branch coverage over total branch. The total branches were not stated in
Acuri [3], while the achievable branches and branch coverage were not stated in
Wappler [5].

Table 2 Experimenta result (GE)

Class name Total
branches

Achievable
branches

Branch coverage
(mean)

Branch coverage
(%)

Stack 10 10 10.00 100
StringTokenizer 40 39 39.00 97.50
Vector 128 123 123.00 96.09
LinkedList 130 122 122.00 93.84
BinTree 37 37 37.00 100.00
BinomialHeap 87 77 74.67 85.82
BrentSolver 29 28 28.00 96.55
SecantSolver 19 19 18.86 99.26
Complex 54 52 51.80 95.92

Test Case Generation for Classes 255

The result shows that our algorithm is capable of generating almost all types of
test cases by virtue of grammar which was evident by the high coverage outcome.

7 Conclusion

We propose a grammar-based test case generation for a class in Object-Oriented
by using Grammatical Evolution and Intermediate Test Script. This method also
supports various features of Object-Oriented Programming through the grammar.
The results confirm that the proposed method can generate high coverage test
cases. Moreover, being grammar-based, this technique has great flexibility and
advantages in that it is possible to incorporate heuristics and characteristic of the
class under test into the grammar to reduce the search space of the problem.

Table 3 Experimenta result (Acuri’s memetic method [3])

Class name Total
branches

Achievable
branches

Branch coverage
(mean)

Branch coverage
(%)

Stack – 10 10.00 –
StringTokenizer – – – –
Vector – 100 100.00 –
LinkedList – 84 84.00 –
BinTree – 37 37.00 –
BinomialHeap – 79 77.66 –
BrentSolver – – – –
SecantSolver – – – –
Complex – – – –

Table 4 Experimenta result (Wappler’s EvoUnit [5])

Class name Total
branches

Achievable
branches

Branch coverage
(mean)

Branch coverage
(%)

Stack 8 – – 100
StringTokenizer 29 – – 93.70
Vector – – – –
LinkedList 68 – – 98.30
BinTree – – – –
BinomialHeap – – – –
BrentSolver 27 – – 96.30
SecantSolver 17 – – 100.00
Complex 51 – – 90.20

256 J. Chaiareerat et al.

References

1. Tonella P (2004) Evolutionary testing of classes. In: Proceedings of the 2004 ACM SIGSOFT
international symposium on software testing and analysis (ISSTA’04), ACM, New York,
pp 119–128

2. Acuri A, Yao X (2007) A memetic algorithm for test data generation of object-oriented
software. In: IEEE congress on evolutionary computation (CEC 2007), pp 2048–2055, IEEE

3. Acuri A, Yao X (2008) Search based software testing of object-oriented containers:
information sciences, vol 178, issue 15, pp 3075–3095, Elsevier Science, New York

4. Wappler S, Wegener J (2006) Evolutionary unit testing of object-oriented software using
strongly-typed genetic programming. In: Proceedings of the 2006 conference on genetic and
evolutionary computation (GECCO’06), ACM, New York, pp 1925–1932

5. Wappler S (2008) Automatic generation of object-oriented unit tests using genetic
programming. PhD thesis, Technical University of Berlin

6. O’Neill M, Hemberg E, Gilligan C, Bartley E, McDermott J, Brabazon A (2008) GEVA:
grammatical evolution in java. SIGEVOlution 3(2):17–22 ACM New York

7. O’Neill M, Ryan C (2001) Grammatical evolution. IEEE Trans Evol Comput 5(4):349–358
8. O’Neill M, Ryan C, Keijzer M, Cattolico M (2003) Crossover in grammatical evolution.

Genetic programming and evolvable machines, vol 4, issue 1, pp 67–03, Academic
Publishers, Kluwer

9. Byrne J, O’Neill M, McDermott J, Brabazon A (2009) Structural and nodal mutation in
grammatical evolution. In: Proceedings of the 11th annual conference on genetic and
evolutionary computation (GECCO), ACM New York, pp 1881–1882

10. Visser W, Pasareanu CS, Khurshid S (2004) Test input generation with java pathFinder. In:
Proceedings of 2004 ACM SIGSOFT international symposium on software testing and
analysis (ISSTA’04), ACM New York, pp 97–107

11. Buy U, Orso A, Pezze M (2000) Automated testing of classes. In: Proceedings of 2000 ACM
SIGSOFT international symposium on software testing and analysis (ISSTA 2000), ACM
New York, pp 39–48

12. Sen K, Agha G (2006) CUTE and jCUTE: concolic unit testing and explicit path model-
checking tools. In: 18th international conference on computer aided verification (CAV’06),
LNCS vol 4144, pp 419–423, Springer, Berlin

13. Sen K, Marinov D, Agha G, (2005) CUTE: a concolic unit testing engine for C. In:
Proceedings of the 10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software engineering, ACM
New York, pp 263–272

14. Xie T, Marinov D, Shulte W, Notkin D (2005) Symstra: a framework for generating object-
oriented unit tests using symbolic execution. In: Proceedings of the 11th international
conference on tools and algorithms for the construction and analysis of systems (TACAS 05),
LNCS vol 3440, pp 365–381, Springer, Berlin

Test Case Generation for Classes 257

