
Test Shape Generation of Dynamically Linked
Structures

Sittisak Sai-ngern Chidchanok Lursinsap Peraphon Sophatsathit
Advanced Virtual and Intelligent Computing (AVIC) Research Center

Department of Mathematics, Faculty of Science
Chulalongkorn University

Email: Sittisak.Sa@Student.chula.ac.th, lchidcha@chula.ac.th, and peraphon.s@chula.ac.th

ABSTRACT

This paper proposes an approach to generate test
data specifically for dynamic pointer structures. A
pointer is considered and handled as a location in a
memory which is modeled as a linear array. Test data
can be directly generated from this array. The method
handles a variety of dynamic structures and the shape
generation can be achieved in linear time in terms of
the number of statements related to pointer opera-
tions.
Keywords: Software Testing, Unit Testing, Test
Coverage of Code, Test Data Generation.

1. INTRODUCTION

Testing is one of the most important tools for ensur-
ing the correctness of the software. One of the most
difficult testing tasks is the generation of test data.
The goal of the test data generator is to find the in-
put values that will successfully execute each state-
ment along the given path. Many approaches have
been investigated for generating numerical test data
but very few ([3], [5]) explore more complex structure
such as dynamic structure and pointers. Pointers and
dynamic data structures are the power of C/C++ pro-
gramming language. Various applications extensively
use them including but not limited to system software
and circuit simulations[2]. The process of generating
test data for dynamic structures may be separated
into two steps, namely, generating linked structures
and generating numerical test data. This research will
concentrate on generating the linked structure.

This paper presents the following research finding.
1. An automatic technique for generating a practical
structure of the input pointer structure which can be
further integrated with existing numerical test data
generation methods.
2. A technique to handle the pointer aliasing based on
the address manipulation.
3. An infeasible path detection caused by invalid
pointer operations or constraints.
The rest of the paper is organized as follows. Sec-
tion 2 briefly summarizes the related works. Section 3
states the overview of the approach. Section 4 shows
the algorithm. Section 5 provides the discussion and
Section 6 concludes the paper.

2. BACKGROUND AND PREVIOUS WORK

It is assumed that the reader is familiar with the
terms used in software test data generation. This
paper concerns dynamically linked structures that
are accessed through pointer variable. The scope of
pointer will be confined to dynamic structure type
only. The problem of generating the dynamic linked
structure has two folds. First, how many nodes(dis-
crete storages) are needed and how they are linked?
We will refer to these issues as a shape generation
problem. Second, what is the value for the non-pointer
field within a structure? This problem falls into the
same problem as generating numerical test data by
treating each non-pointer field as a discrete variable.

Korel [3] proposed a goal-oriented approach with
dynamic data flow analysis and backtracking to gener-
ate data for the dynamic data structure. Viswanathan
and Gupta [5] only proposed an algorithm on shape
generation based on recursive operation on constraint
simplification. Although these two approaches work
well, some improvements on more efficient shape gen-
eration time and advanced data types handling must
be developed.

3. SHAPE GENERATION

3.1 Overview of The Approach

Each statement is examined for a pointer opera-
tion. If it is found, the operation is evaluated to
manage the memory area where each pointer element
is housed. For the actual running environment, the
memory space prior to execution of the function con-
tains some data as inputs to the function. When the
function is executed, the initial data are modified to
produce the output linked structure. However, for
testing situation, the initial data are unknown. The
approach assumes they exist by initializing each input
variable (argument variable) to a given address. Sub-
sequent creation of the address is based on execution
of the statements.

3.2 Memory Representation

Our approach models a heap storage as a linear ar-
ray of consecutive cells. Each cell will be addressed or
indexed starting from 1. The address 0 is the special

struct Tree { int key; Tree *lt; Tree *rt;}
1. void ex01 (Tree *p, int v){
2. Tree *x,*y;

3. x = p → lt;

4. y = x → rt;

5. x → lt = y → lt;

6. if (x == y)

7. y = malloc(); }
8. if (v ≥ p → key)

9. p → lt = y;

10. else

11. p → rt = y; }

Fig.1: An example function

address reserved exclusively for null value. A memory
cell is organized into sections and the layout is from
left to right according to the declaration of pointer
fields of the structure. Any non-pointer field is ig-
nored. A memory cell is represented by the following
notation:

< address, (1stfield, 2ndfield, ..., nthfield) >
As an example, the cell structure for binary tree may
be < 1, (2, 3) > where “1” represents the address in
memory, “2”, “3” are addresses assigned to fields. The
memory space (MS) is the collection of these cells. We
also denote < variable, address > to represent an as-
sociation between a pointer variable and the memory
cell that the variable points to. The environment(VA)
is the collection of variables and address pairs. Each
memory cell contains properties to provide informa-
tion about the cell including stable for address clas-
sification (input/create), null for null status, active
for allocated or deallocated status, pointto to collect
all nodes pointing to this node, unequal to contain
all nodes that restricts not to be aliased with this cell,
update to hold the value that reflects when the cell
has been last executed, and id to store the structure
type that this cell belongs to.

3.3 Pointer Operations

The operations on pointer include dereferencing, as-
signment, creation, deallocation, alias constraint, and
equal/unequal constraints. The structure and func-
tion in Figure 3.3 will be used as an example. The
selected path is < 1,2,3,4,5,6,7,10,11 >. All coding
will be in C-like language.

3.3.1 Dereferencing

There are two types of addresses - the address that
is derived from the initial input address (derived ad-
dress) and the address that is explicitly allocated (ex-
plicit address). We summarize the concepts of deref-
erencing as follows:
• If all nodes in a traversed chain exist, dereferencing
of each node will be based on the current value of the
node.

• If the next traversed node does not exist and the
current node is a derived address, further traversal
will cause the creation of the node.
• If the current node is an explicit address, all pointer
fields of the node will be null unless they are assigned
to some locations.
The approach generates the nodes as needed. The
memory affected will be in MS and VA. How the node
is created will be explained in the creation section.
From Figure 3.3, line 1 will create the derived address
1 in MS and create a link in VA as follows:

MS = {<1,(2,3)>} VA = {<p,1>}
At line 2, “p→lt” refers to address 2 and it is created
as follows:

MS = {<1,(2,3)>,<2,(4,5)>}

3.3.2 Assignment

The assignment may update cell properties, MS,
and/or VA as follows.
if (the assigned node is the root node i.e. p, q)

replace the current address of the node in VA
with new address value (i.e. <p, new value >)
else (i.e. p→lt)

replace the assigned node value (i.e. lt) of the
before node (i.e. p) in MS with new value (i.e. < ad-
dress of p, (new lt, rt) >)
The property pointto of assigned address is also up-
dated to add the node that point to it. The +, -, and @
signs are used to add new element, remove the spec-
ified element, and replace the element with the new
one. From Figure 3.3, line 2 will first dereferencing as
in previous section, then the address is assigned to x
in VA (VA: + <x,2>). Line 4 and 5 are evaluated in
the same manner and the results are shown below.
4: MS: + <5,(6,7)> VA: +<y,5>

5: MS: + <6,(8,9)>, @<2,(6,5)>

3.3.3 Creation

New address is generated and added to MS. The
first created address is the address 1. The stable
property of the new address is set to true for explicit
address and false for derived address. Let x be the
last allocated address and y be the address to be cre-
ated. For the Tree structure, the allocation will be as
follows.

MS: +<y,(++x,++x)> for derived address
MS: +<++x,(0,0)> for explicit address

From Figure 3.3, line 1, 3, 4, and 5 generate addresses
using the first format. Line 7 will generate the address
based on the second format (MS: +<10,(0,0)>).

3.3.4 Deallocation

Deallocation operation will release the specified ad-
dress. The property active of the deallocated cell in
MS will be set to FALSE.

3.3.5 Alias constraint

The equality constraint of two nodes (p == q) will
cause two alias nodes to share the same address chain.

Fig.2: Result of memory operations for function ex01

If the address of the node is explicit, the alias con-
dition(equality condition) is directly evaluated. The
implicit alias involves a pointer node to which belongs
the derived address. Since two chain of addresses (i.e.
p, p→rt; q, q→lt, q→rt) exist before the equality con-
straint, the constraint will force them to merge into a
single address chain. The process is defined as follows:

Repeat until no node to be merged
if (only one node exists)

use the existing node
else

move node with less property update to the
higher one

end repeat
The process will be done in MS. From Figure ex01,
line 6 will merge node x and y in MS. Address 2 will
merge with 5, 6 with 6, and 7 with 5 as follows.

MS: 2→5,6→6,7→5 ⇒ − <2,(6,5)>,@< 5,(6,5)>,@<1,(5,3)>

VA: @<x,5>

3.3.6 Other constraints

All constraints except alias will modify cell proper-
ties. For example, the constraint (p == null) will set
the null property of cell p to true.

The final results for the example in Figure 3.3 are
as follows.

MS = {< 1, (5, 10) >,< 5, (6, 5) >,< 6, (8, 9) >,<
10, (0, 0) >}

VA = {< p, 1 >,< x, 2 >,< y, 10 >}
For the example, the solution addresses will be

based on derived addresses and the generated test
shape is given in Figure 3.3.6.

4. ALGORITHM

The algorithm pseudocode is given in Figure 1. The
approach consists of 3 tasks.
• Task 1: Inspect each statement along the path for
a pointer operation and if it exists, then dereference
all pointer variables.
• Task 2: Classify and evaluate each operation.
There are two targets to update- memory area and/or
cell properties. All constraints except ALIAS update
properties of the related cells. Others may update
both.
• Task 3: Output the test shape from the input vari-
ables with original assigned addresses.

5. DISCUSSION

The goal of test data generation is to generate the
shape. The essential information for each structure is

ALGORITHM: GenTestShape
input: A sequence of N statements (S) for a chosen path and
data structure definition
output: Linked structures in a format of chain addresses.
i = 0
while i ≤ N

if (si ∈ S has an operation on a pointer variable)
Dereference pointer variables
switch (OPERATOR)

case Operation involves assignment
Update memory according to assignment operation

case Operation involves allocation such as malloc()
Update memory according to creation and assignment

operation
case Operation involves deallocation such as free()

Update memory according to deallocation operation
case Operation involves equality of two pointers

Update memory according to alias constraint
case Operation involves other constraints

Update properties of cell addresses according to con-
straints

end switch
end if
i = i + 1

end while
Output solution addresses

end procedure

Fig.3: Algorithm Pseudocode

the number of fields within the structure. The hetero-
geneous structure is different from the homogenegeous
strucrture in that the number of fields for each stor-
age cell is varied. All other processes are the same.
Figure 2 shows the result for our approach on hetero-
geneous structure.

Our algorithm is implemented in C++. The ex-
perimental programs include Linked-List and Binary
Search Tree. Each path is selected randomly. The
experiment was performed on a Pentium IV 1 GHz
running Microsoft Windows 2000 and Dev-C++. The
experiments were run 30 times and the average time
is reported. Figure 3 shows the results of the gener-
ated shape for the selected paths. We select linked
list and tree to create the test structures because they
are standard programming construct and easy to find
reference materials. The data presented in Figure 3
(a) show the relation between the number of state-
ments(St), total generated address (Tot), generated
test addresses(Shp), constraint encounter (Con), and
processing time(Time). The relationship between the
number of statements and processing time, the num-
ber of constraints and processing time are shown in
Figure 3 (b) and (c), respectively. Each constraint
takes different amount of constant time to process.
Since the path is selected randomly, different con-
straints are encountered and hence the graph in the
(b)and (c) section are not smooth.

Besides the feasible path results, the program is
tested on the infeasible paths by modifying the input
statements to have invalid constraints which include
forcing equality on nodes previously imposed inequal-
ity and vice versa, invalid referencing to a local vari-
able, and forcing null on nodes which are previous as-

St. Tot. Shp. Con. Time
(µs)

11 3 3 4 167
21 6 5 9 181
32 10 10 18 195
45 12 11 21 202
56 18 18 34 225
65 17 16 31 223
83 27 27 52 263

105 26 25 49 261
117 30 29 57 280
125 41 41 80 318
133 34 33 65 297
157 40 39 77 327

(a) (b) (c)

Fig.5: Results for different paths (a), Relationship between statements vs processing time(b), Constraints vs
processing time (c).

struct infonode { int data; infonode *next; }
struct headnode { headnode *nexth; infonode
*nexti; }
s1: void ex02 (headnode *H) {
s2: headnode p;
s3: infonode q;
s4: p = H;
s5: while (p != NULL) {
s6: q = p→nexti
s7: while (q != NULL) {
s8: display(q→data)
s9: q = q→next; }
s10: p = p→nexth; }
s11: }
Path = < s1, s2, s3, s4, s5, s6, s7, s8, s9, s7,
s10, s5, s6, s7, s8, s9, s7, s8, s9, s7, s10, s5, s6,
s7, s10, s5, s11 >

(a)

MS = {<1,(2,3)>, <3,(4)>, <4,(5)>, <2,(6,7)>,
<8,(9)>, <9,(10)>, <6,(11,12)>, <12,(1)>, <11,(14,15)> }
VA = { <H,1>,<p,11>,<q,12> }

(b)

(c)

Fig.4: Example function ex02 (a), Results from
memory operations (b), and Generated Test Structure
(c).

signed not-null constraint. The results, which are veri-
fied manually, show that the program correctly detects
all infeasible paths.

6. CONCLUSION

In the area of test data generation, especially for
dynamically linked structures test generation, it is dif-
ficult to find a benchmark and standard test set to
compare the algorithm. A variety of programming lan-
guages, programming styles, test concepts, and target
applications contribute to different demands on the

outcome of the test. Many approaches propose good
theoretical concepts, but painful implementation. Our
approach is practical. Compare to the existing tech-
niques, our approach is better in time complexity and
variety of structures. Both existing techniques have
non-linear execution time while ours is linear. The ap-
proach presented by [3] may be modified to handle the
heterogeneous structure but it will be still inefficient
due to backtracking process. The method presented
by [5] does suggest how to handle the complex struc-
ture. However, the method will be more complex in
dealing with system of related tables. Our approach
will operate on both homogeneous and heterogeneous
with the same process without modification.

References

[1] N. Gupta, A. P. Mathur, and M. L. Soffa. ”Gener-
ating test data for branch coverage,” In 15th IEEE
International Conference on Automated Software
Engineering (ASE’2000), Sep. 2000.

[2] J. Hummel, L. J. Hendren, and A. Nicolau,
”A General Data Dependence Test for Dynamic,
Pointer-Based Data Structures,” in Proc. ACM-
SIGPLAN’94 Conference on Programming Lan-
guage Design and Implementation, pages218-229,
Orlando, Florida, Jun. 20-24,1994.

[3] B. Korel, ”Automated Software Test Data Gener-
ation,” IEEE Transactions on Software Engineer-
ing,Vol. 16, No.8, pp. 870-879, Aug. 1990.

[4] R.E. Prather and J.P. Myers, Jr., ”The path pre-
fix software testing strategy,” IEEE Transaction
on Software Engineering. SE-13(7):761-765, July
1987.

[5] S. Viswanathan and N. Gupta, ”Generating Test
Data for Functions with Pointer Inputs,” 17th
IEEE International Conference on Automated
Software Engineering (ASE’02), pp. 149-160, Ed-
inburgh, UK, Sep. 2002.

