
Fuzzy Subtractive Clustering Based Indexing Approach for Software Components 
Classification 

 
Sathit Nakkrasae1,2,3 

1Department of Computer 
Technology, Faculty of 

Science, Ramkhamhaeng 
University, 

Bangkok, 10240, Thailand. 
Khunsathit@hotmail.com 

Peraphon Sophatsathit2 

2Advanced Virtual and Intelligent 
Computing (AVIC) Center, Faculty 

of Science, 
Chulalongkorn University, 
Bangkok, 10330, Thailand.  
Peraphon.S@Chula.ac.th 

William R. Edwards, Jr.3 

3Center for Advanced 
Computer Studies (CACS), 
The University of Louisiana 

at Lafayette, 
Lafayette, LA 70504, U.S.A. 

wre@cacs.louisiana.edu 
 
 

Abstract 
Software Engineering is not only a technical discipline of 
its own, but also a problem domain where technologies 
coming from other disciplines are relevant and can play 
important roles.  One important example is knowledge 
engineering [1], a term that is used in a board sense to 
encompass artificial intelligence, computational 
intelligence, knowledge bases, data mining, and machine 
learning.  Many typical software development issues can 
benefit from these disciplines.  For this reason, this paper 
will employ computational intelligence approach to 
classify software component repository into similarity 
component cluster groups with the help of Fuzzy 
Subtractive Clustering algorithm.  The center of each 
cluster will be used to construct a coarse grain 
classification indexing structure.  Subsequent retrieval 
requirements of software component are compared with all 
the indexed cluster centers.  Any software components 
belonging to the cluster partition whose center is closest to 
the required software component will be retrieved for 
subsequent participation in component selection at fine 
grain level.  This approach not only is suitable for 
multidimensional data, but also automatically decides the 
correct model classification. 
Keyword: software component classification, knowledge 
engineering, neural networks, and Fuzzy Subtractive 
Clustering. 
 
1. Introduction 
Reuse is a popular design methodology common to 
engineering discipline.  It has two primary aspects: (a) cost 
reduction resulting from not design a new solution; and (b) 
increased confidence in the solution because of its 
successful reusing.  For reuse to be an effective problem 
solving methodology, the designer must be able to reuse 
appropriate solutions, adapt a solution to fit the new 
problem, and evaluate the resulting solution.  In software 

engineering, reuse is popularly applied in design domain.  
Owing to creativity and complexity of design paradigms, 
approaches, and the process itself, design reuse must, in 
many cases, be tailored to suit specific requirements.  
Moreover, automated software reuse support has been slow 
to emerge due to the difficulty in providing a useful design 
representation for software components.  This design 
representation must be able to efficiently support 
component storage, retrieval, adaptation, and verification.   

This paper presents software component matrix 
representation based on a well-defined software component 
specification [2] and an alternative software component 
classification and retrieval approach, utilizing 
computational intelligence on neural networks [3]. 

The remaining of this paper is organized as follows.  
Section 2 discusses related papers on formal specification, 
and classification of software components. Other related 
topics are also incorporated.  Matrix representation of 
software component based on structural, functional, and 
behavioral properties is presented in Section 3.  Models 
and methodologies of software component classification in 
both coarse and fine grain are described in Section 4.  
Section 5 discusses the experiment and the results of 
component classification.  Our final thought is discussed in 
Section 6. 

 
2. Related Work 
A popular method for describing repositories of reusable 
software components is a faceted classification scheme [4].  
Using this methodology, components are classified by a set 
of attribute-value pairs, or features.  A domain expert, who 
is required to analyze the repository of software 
components and classify them according to predefined 
terms, performs the classification.  The knowledge of 
domain expert is implicit in the classification.  To provide a 
basis for similarity calculations, the terms that represent the 
set of possible values for a feature are often related by a 



conceptual distance graph [4].  The informality and 
imprecision of these classification schemes complicates the 
automation of the overall reuse process.  Automation of the 
classification process requires reverse engineering from 
source code.  The imprecision of the classification scheme 
does not support formal component verification since 
reasoning about identically classified components requires 
source code analysis. 

The use of formal specifications to augment software 
reuse has been proposed to solve problems [2, 5, 6, 7, 8, 9, 
10, 11].  There are many benefits to applying formal 
methods to software reuse.  First, formal specifications 
provide an explicit representation of structure, function, 
and behavior of a software component free from many 
implementation details.  This is valuable because structure, 
function, and behavior are the primary point of interest 
when determining reusability.  Next, the expressiveness of 
formal specification languages allows precision beyond 
that of faceted classification.  Equivalent specifications 
perform equivalent properties of software component 
(structural, functional, and behavioral).  Finally, formal 
specifications and their associated formal system provide a 
basis for automated reasoning.  A formal specification 
defines the structure, function, and behavior within a 
domain model, which is a collection of axioms that define 
the data types and operation used in the system.  Formal 
reasoning based on the domain model can be used logically 
to verify the reusability of a software component. 

This paper proposes a systematic approach for 
classifying software components in the form of machine 
learning through computational intelligence such as neural 
networks, fuzzy logic, and artificial intelligence.  Some 
suggest Self-Organizing Map (SOM) [1, 12] for software 
component classification.  However, there are limitations 
on this method: 
• Its determination is not based on optimizing any model 

of process or data; 
• Prototype parameters may be severely affected by 

noise from data points and outliners.  This is due to the 
fact that learning rates in SOM are computed as a 
function of the number of input presentations and node 
positions in the grid, while they are independent of the 
actual distance separating the input pattern from the 
cluster template; 

• The size of the output lattice, the step size, and the size 
of the resonance neighborhood must vary empirically 
from one data set to another to achieve useful results; 
and 

• It should not be employed in topology-preserving 
mapping when the dimension of the input space is 
larger than three [13]. 
Other popular classifying techniques are also taken 

into account, such as Fuzzy C-Means clustering technique, 
which is a simple and straightforward approach but 
requires two predefined clusters where every data point 

membership depends on membership grade.  It is clear 
from existing approaches that clustering technique is the 
fundamental building block of data classification.  As such, 
we proposed Fuzzy Subtractive Clustering (FSC) technique 
[14] which is a fast one-pass algorithm for estimating the 
number of clusters and cluster centers in a set of data [15] 
to pre-process the software components.  Once the software 
component groups are formed, classification process can 
proceed. 

 
3. Software Component Representation 
The proposed approach employs a formal specification [2] 
describing three properties of software component, namely, 
structure, functional, and behavioral properties, free from 
most implementation details.  These specifications are 
denoted in matrix form to support classification in the 
component repository.  Subsequent retrieval of the desired 
component will utilize the same matrix to find the 
appropriate matching.  As such, we will present a 
formulation of the classification matrix below. 
 Define software component X to be 

X = (S, F, B) 
where S denotes structural properties, F denotes functional 
properties, and B denotes behavioral properties.  Each 
property is a list of the form 

S = { S1 , S2 , S3 ,…, Sm }, 
F = { F1 , F2 , F3 ,…, Fn }, and 
B = { B1 ,B2 , B3 ,…, Bp }, respectively. 

Each member of the list S, F, and B is also a list of the form 
   Si= { Si,1 , Si,2 , Si,3 , … , Si,ui }, 1 ≤  i ≤ m and Si,j ∈D(Si) 
   Fi= { Fi,1 , Fi,2 , Fi,3 , … , Fi,vi }, 1 ≤  i ≤ n  and Fi,j ∈D(Fi) 
   Bi= { Bi,1 , Bi,2 , Bi,3 , … , Bi,wi }, 1 ≤  i ≤ p  and Bi,j ∈D(Bi) 
and ui, vi, and wi denote the number of members within Si , 
Fi, and Bi, respectively.  Each member is ordered from left 
to right, followed by the software component specification  
[2].  D(Si), D(Fi), and D(Bi) define separate equivalent 
classes (EC).  For example, a system designer may wish to 
define a family of data objects to be stack-like, all belong 
to equivalent class of LIFO.  This formulation entails a set 
of equivalent classes to be predefined within a component 
repository system by designer or developer. 
 Two preamble assumptions of our component 
repository stipulate that the number of elements in the set 
of equivalent classes for a given software component be 
finite, and that the number of each equivalent class in each 
property of the components be known.  Denote the number 
of each structural, functional, and behavioral equivalent 
class properties by TSi, TFj, and TBk, where 1 ≤ i ≤ m, 1 ≤ j ≤ 
n, and 1 ≤ k ≤ p, respectively, we define property matrix 
representation as follows: 
 
 Col_s = Max(TSi  ,1 ≤ i ≤ m),  Row_s  = m 
 Col_f  = TF1,  Row_f  = 1 +  Σn

i=2 TFi 
   Col_b = TB1, Row_b  = 1 +   Σp

i=2 TBi 
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First: S Row_s×Col_s 
 For i = 1 to m 
    For j = 1 to TSi 
   S  (i,j) = l (Si  has l terms in equivalent class j) 
Second: F Row_f×Col_f 
 For i = 1 to Fnum 
 Begin 
  j = Eq_class_number(function(i)) 
  F(1,j) = 1 
     For k = 2 to Row_f 
   F(k,j) = m (Fj  has m terms in equivalent class k) 
  End for i 
Third: B Row_b×Col_b 
 For i = 1 to Bnum 
 Begin 
  j = Eq_class_number(Behavior(i)) 
  B(1,j) = 1 
  For k = 2 to Row_b 
   B(k,j) = p (Bj  has p terms in equivalent class k) 
 End for I 
 

Figure 1. Matrix calculation algorithm 
 
Based on this representation, a software component matrix 
X can be written as follows: 

C = (SRow_s×Col_s  ,  FRow_f×Col_f ,  BRow_b×Col_b) 
The algorithm for component matrix formulation proceeds 
as Figure 1, where Fnum denotes the number of functions 
in a component and Bnum denotes the number of behavior 
in the component. The final matrix becomes 
                         X = (S, F, B) 
This matrix will be transformed for use by subsequent 
proposed neural network computations. 
 
4. Software Component Classification 
Our approach for component classification is based on how 
software component is reused through the reuse model in 
order to establish a classification framework over the 
applicable component domain.  We employed formal 
notations presented in [2] to represent component class, 
along with an example to demonstrate the applicability of 
the proposed framework.  Various components are then 
grouped by coarse grain criteria (structure, function, and 
behavior). We measured classification correctness by 
means of recall and precision techniques.  If the result is 
satisfactory, we proceed to fine grain classification to 
ensure proper reuse indicator for the designated 
components being retrieved. 
4.1 Software Reuse Model 
The software reuse model encompasses a repository which 
stores formal specifications of software components and 
retrieval mechanisms to facilitate component check-
in/check-out during the development process.  The 
underlying principle of the proposed classification scheme 
relies on component similarity comparison that is derived 
from a user-defined classification function.  This offers a 
quantitative technique to enumerate the component 
suitability in coarse grain level.  Assessment begins by 
representing software components in matrix form.   

 
Figure 2. Software reuse model 
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Figure 3. The n cluster partitions generated by 
FSC algorithm.  The black dots and double line 
black dots denote software components and 

cluster centers, respectively 
 
This permits quantitative evaluation of the requirements 
specification of the designated component and the 
components stored in the repository, based on the 
requirement specification of the cluster component.  
Subsequent classification process will sort out the closest 
matched component for reuse purpose.  Detail on how 
classification and retrieval are carried out is described in 
the next section.  Evaluation is performed using FSC 
algorithm to arrive at a similarity value.  This process is 
depicted in Figure 2. 
4.2 Coarse Grain Level Software Component 
Classification Techniques 
The three properties used to classify software components 
are component structure, function, and behavior.  The 
component structure is made up of a component name, a 
subcomponent name, a class name, a signature, and an 
interaction name.  The component function consists of a 
function name, input parameters, local variables, output 
parameters, and pre/post-expressions.  The component 
behavior is composed of a behavior name, a state name, 
and an action name.  These properties are represented in 
matrix form described in Section 3. 
 The classification process starts by dividing software 
components into groups using FSC algorithm.  These 



clusters are used to construct the index structure as shown 
in Figure 3.  Searching for the closest match between the 
specified requirement and those in the index yields optimal 
software component retrieval.  When a match is found, all 
components belonging to that cluster are retrieved.  In 
general, more than one match may result.  A fine grain 
certification step is required to ensure the best candidate 
being retrieved.  Details on how certification proceeds will 
be postponed till Section 4.3. 
 Two measures of software component retrieval 
performance used in this paper are recall and precision 
[16].  Recall is the ratio of the number of relevant items 
retrieved to the total number of relevant items in the 
repository.  High recall indicates that relatively few 
relevant software components were overlooked.  Precision 
is the ratio of the number relevant items retrieved to the 
total number of items retrieved.  High precision means that 
relatively few irrelevant software components were 
retrieved.  In general, there is tradeoff between precision 
and retrieval.  The goal is to find a practical balance 
between the two.  The relevance condition is fundamental 
to the evaluation of a retrieval system. 
 It was also informative to observe the number of 
software components retrieved by the system.  This number 
helped estimate the load that would be placed on the 
designer to interpret the results of a query in an interactive 
system, or similarly, the search space that would be faced 
by an adaptation system when considering software 
component compositions. 
 Given a set of a priori clusters C = {c}1

n  and the 
calculated FSC clusters, C’ = {c’}1

m , the performance 
measures of FSC is defined as follows [17]: 
Recall = Number of target software components retrieved / 
Number of target software components 

 
Precision = Number of target software components 
retrieved / Number of software components retrieved 

 
where #ci denoted the number of elements on cluster ci and 
0 ≤ recall,  precision ≤ 1.  Based on the above definitions, 
recall expresses the ratio of the target repository objects 
being actually retrieved out of all the expected target 
repository objects, whereas precision indicates the ratio of 
target repository objects to the retrieved set.  For example, 
there are 10 repository objects and 4 of them are pre-
specified as target repository objects.  Given a query 
retrieving 5 objects and 3 out of those five objects are 

target objects.  In this case, recall is 0.75 and precision is 
0.6.  The higher the recall and precision get, the more 
accurate the method for retrieval becomes.  We can 
calculate the accuracy for each FSC clusters based on the 
information pertaining to their natural clusters.  The 
response time of the system was measured to determine the 
practicality of the method.  For each measured quality, the 
minimum and median were calculated from every scenario 
in the experiment, which will be discussed in Section 5. 
4.3 Fine Grain Level Software Component 
Selection Technique  
In this level, we will try to find the most suitable software 
component for reuse.  The degree of significance defined 
by user will be used as the selection criteria.  The following 
notations will be given: 
• Øs, Øf, and Øh are the degree of significance of 

structural, functional, and behavioral properties, 
respectively, satisfying 0 ≤ Øs , Øf , Øh ≤ 1 and Øs + Øf 
+ Øh = 1.  The degree of significance depends on 
system environment under which developers can 
define in accordance with the underlying system; 

• Nr is the number of retrieved software components 
from the cluster whose center is closest to the required 
software component; 

• Xi is the ith retrieved software component in the 
component matrix described in Section 3, i.e., Xi = (S, 
F, B) where   1 ≤  i ≤ Nr ; 

• Xr is the component requirements; and 
• SC is the most suitable software component which can 

be determined as follows: 
SC = Xreuse 

where the value of reuse can be computed from  
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5. Experiment 
5.1 Data Collection 
One hundred software component specification data were 
generated by uniform distribution generator.  The data were 
arranged in matrix form suitable for the proposed algorithm 
described in Section 3.  Components were classified 
according to their structural, functional, and behavioral 
properties which, in turn, were grouped into appropriate 
equivalent classes.  In so doing, each component data 
vector encompassed 1320 dimensions. 
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 The data set was divided into two groups, namely, 50 
training set and 50 test set.  Each data vector was 
normalized within [0,1] according to  
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where vnew is the new value of the designated variable for 
that data point, vold is the old value of the data point, vmin is 
the minimum value of the variable from all data points, and 
vmax is the maximum value of the variable from all data 
points. 
5.2 Cluster Center Detection 
We selected FSC approach to determine cluster centers 
using parameter ra = 14.  This value is the maximum 
distance between any two points within the same cluster, 
yet less than the distance between any two points from 
different clusters where each point belongs.  The multiplier 
Sqsh = 1.25 is the default squash factor value of MATLAB 
5.3. 
 The criteria for cluster center consideration are based 
on acceptance and rejection ratios.  Acceptance ratio can be 
determined by fractions of the potential first cluster center, 
above which another data point will be accepted.  Rejection 
ratio is the condition to reject a data point to be a cluster 
center, which is obtained from fractions of the potential 
first cluster center, below which a data point will be 
rejected as a cluster center.  We chose 0.5 as the acceptance 
ratio (which is the default value from MATLAB version 
5.3) for the first cluster center.  We chose the rejection ratio 
(η) between 0.15-0.5 to derive other cluster centers.  The 
resulting rejection ratios from various cluster centers were 
used to compare and evaluate the component classification.  
The procedure for grouping 50 data point clusters   { X1 , 
X2 , X3 ,…, Xn=50 } in the training set is described below. 

1. Compute the initial potential value for each data 
point (xi) 

where    α= 4/ ra
2   

|| . || is the Euclidean distance 
ra  is a positive constant representing a normalized 

neighborhood data radius 
Any point falls outside this encircling region will have little 
influence to the potential point.  The point with the highest 
potential value is selected as the first cluster center.  This 
tentatively define the first cluster center. 
 2. A point is qualified as the first center if its 
potential value (P(1)) is equal to the maximum of initial 
potential value (P(1)*) 

 
3. Define a threshold δ as the decision to continue or 

stop the cluster center search.  This process will continue if 
the current maximum potential remains greater than δ. 
δ = (reject ratio) × (potential value of the first cluster 
center) 
where the rejection ratio (η)  used in this work is 0.15-0.5, 
and P(1)* is the potential value of the first cluster center. 

 4. Remove the previous cluster center from further 
consideration. 
 5. Revise the potential value of the remaining points 
according to the equation 
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where   xk

* is the point of the kth cluster center, Pk
*  is its 

potential value, and β = 4/1.25 (sqsh * ra
 ). 

6. For the point having the maximum potential value, 
calculate the acceptance ratio.  If this value is greater than 
the predefined constant (0.5), the point is accepted to be the 
next cluster center.  Otherwise, compute the rejection ratio.  
If the rejection ratio is greater than the predefined threshold 
(η = 0.15-0.5), this point is accepted. 
 This procedure is repeated to generate the cluster 
centers until the maximum potential value in the current 
iteration is equal to or less than the threshold δ.  After 
applying subtractive clustering, we get different cluster 
center numbers from 50 training patterns depending on 
different rejection ratios.  We used these different cluster 
center numbers to compare and evaluate software 
classification. 
5.3 Evaluation 
From the 100 vector data participated in the experiment, we 
regulated the rejection ratio in the range of 0.15-0.5 to 
avoid high rejection rate, whereby yielding too many 
unclassified or misclassification of the above data. 
 We assessed the accuracy of FSC algorithm by 
measuring recall and precision performance. The derived 
centers were anticipated to correctly classify software 
components in repository into each group of its predefined 
equivalent classes.  From 50 training data set with 
predefined 10 equivalent classes, we conducted 5 trials 
using the remaining 50 test data with different rejection 
ratio (η) groups (0.15-0.20, 0.25, 0.30, and 0.35-0.50) and 
used the derived cluster centers from each trial to calculate 
its recall and precision performance.  The results can be 
interpreted as follows.  Based on 0.15-0.20, 0.25, 0.30, and 
0.35-0.50 rejection ratio (η) groups, the values of cluster 
centers so derived are 18, 15, 11, and 10, respectively.   
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 Table 1 shows the comparative results of all 4 rejection 
groups obtaining from FSC classification of software 
component being quite satisfactory.  Note that recall 
performance suffers a slight drop due to the decreasing of 
rejection ratio (η).  There was, however, no fault 
classification in each equivalent class since the centers 
were closely located to their corresponding component 
groups.  As such, retrieval was accomplished with 
relatively few attempts.  The high number of centers 
selected from the 10 equivalent classes having 0.15-0.20, 
0.25, and 0.30 rejection ratio (η), implied that there were 
more than one center in each equivalent class, whereby 
yielding 98-100% accuracy. 
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5.4 Example of Fine Grain Component Selection 
We employed cluster centers obtained from the experiment 
to create an index structure for use as an example to select 
the most suitable software component.  Suppose X denotes 
a software component requirement matrix, which matches 
cluster center SC19, this cluster encompasses SC16, SC17, 
SC18, SC19, and SC20.  Table 2 shows the results of most 
suitable software component selection from Equation 3 
having different degrees of significance on structural, 
functional, and behavioral properties. 
 

Table 1. Recall and precision performance 
comparison 

Rejection Ratio Number of 
Center Selected 

Recall Precision

0.15-0.20 18 0.56 1.00 
0.25 15 0.73 1.00 
0.30 11 0.89 0.98 

0.35-0.50 10 0.98 0.98 
 

Table 2. Software Component Selection with 
Different Degree of Significance 

Degree of Significance 

Structural Functional Behavioral 

The most 
Suitable 
Software 

Component for 
Reuse 

0.8 0.1 0.1 SC18 
0.1 0.8 0.1 SC19 
0.1 0.1 0.8 SC18 
0.3 0.3                 0.3 SC18 

 
 
6. Conclusion 
We have proposed two computational intelligent 
approaches to classify software components for effective 
archival and retrieval purposes, namely, fuzzy subtractive 
clustering algorithm and neural network technique.  
Component specifications are represented in matrix form to 
quantitatively organize these software artifacts for 
subsequent applications.  Components were indexed based 
on the cluster centers so obtained.  As such, subsequent 
reference and retrieval could be carried out efficiently 
through this indexing mechanism.  We also conducted an 
experiment to assess the validity of the proposed approach, 
which turned out to be quite satisfactory. 
 We envision in our future work concerning software 
certification process to benefit from this rigorous 
formulation that will eventually be incorporated as part of 
the machine learning research endeavor.  As a 
consequence, pervasive use of software components in the 
same manner as their hardware counterparts, as well as the 
ultimate COTS application, can be realized. 
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