
Fuzzy Subtractive Clustering Based Indexing Approach for Software Components
Classification

Sathit Nakkrasae1,2,3

1Department of Computer
Technology, Faculty of

Science, Ramkhamhaeng
University,

Bangkok, 10240, Thailand.
Khunsathit@hotmail.com

Peraphon Sophatsathit2

2Advanced Virtual and Intelligent
Computing (AVIC) Center, Faculty

of Science,
Chulalongkorn University,
Bangkok, 10330, Thailand.
Peraphon.S@Chula.ac.th

William R. Edwards, Jr.3

3Center for Advanced
Computer Studies (CACS),
The University of Louisiana

at Lafayette,
Lafayette, LA 70504, U.S.A.

wre@cacs.louisiana.edu

Abstract
Software Engineering is not only a technical discipline of
its own, but also a problem domain where technologies
coming from other disciplines are relevant and can play
important roles. One important example is knowledge
engineering [1], a term that is used in a board sense to
encompass artificial intelligence, computational
intelligence, knowledge bases, data mining, and machine
learning. Many typical software development issues can
benefit from these disciplines. For this reason, this paper
will employ computational intelligence approach to
classify software component repository into similarity
component cluster groups with the help of Fuzzy
Subtractive Clustering algorithm. The center of each
cluster will be used to construct a coarse grain
classification indexing structure. Subsequent retrieval
requirements of software component are compared with all
the indexed cluster centers. Any software components
belonging to the cluster partition whose center is closest to
the required software component will be retrieved for
subsequent participation in component selection at fine
grain level. This approach not only is suitable for
multidimensional data, but also automatically decides the
correct model classification.
Keyword: software component classification, knowledge
engineering, neural networks, and Fuzzy Subtractive
Clustering.

1. Introduction
Reuse is a popular design methodology common to
engineering discipline. It has two primary aspects: (a) cost
reduction resulting from not design a new solution; and (b)
increased confidence in the solution because of its
successful reusing. For reuse to be an effective problem
solving methodology, the designer must be able to reuse
appropriate solutions, adapt a solution to fit the new
problem, and evaluate the resulting solution. In software

engineering, reuse is popularly applied in design domain.
Owing to creativity and complexity of design paradigms,
approaches, and the process itself, design reuse must, in
many cases, be tailored to suit specific requirements.
Moreover, automated software reuse support has been slow
to emerge due to the difficulty in providing a useful design
representation for software components. This design
representation must be able to efficiently support
component storage, retrieval, adaptation, and verification.

This paper presents software component matrix
representation based on a well-defined software component
specification [2] and an alternative software component
classification and retrieval approach, utilizing
computational intelligence on neural networks [3].

The remaining of this paper is organized as follows.
Section 2 discusses related papers on formal specification,
and classification of software components. Other related
topics are also incorporated. Matrix representation of
software component based on structural, functional, and
behavioral properties is presented in Section 3. Models
and methodologies of software component classification in
both coarse and fine grain are described in Section 4.
Section 5 discusses the experiment and the results of
component classification. Our final thought is discussed in
Section 6.

2. Related Work
A popular method for describing repositories of reusable
software components is a faceted classification scheme [4].
Using this methodology, components are classified by a set
of attribute-value pairs, or features. A domain expert, who
is required to analyze the repository of software
components and classify them according to predefined
terms, performs the classification. The knowledge of
domain expert is implicit in the classification. To provide a
basis for similarity calculations, the terms that represent the
set of possible values for a feature are often related by a

conceptual distance graph [4]. The informality and
imprecision of these classification schemes complicates the
automation of the overall reuse process. Automation of the
classification process requires reverse engineering from
source code. The imprecision of the classification scheme
does not support formal component verification since
reasoning about identically classified components requires
source code analysis.

The use of formal specifications to augment software
reuse has been proposed to solve problems [2, 5, 6, 7, 8, 9,
10, 11]. There are many benefits to applying formal
methods to software reuse. First, formal specifications
provide an explicit representation of structure, function,
and behavior of a software component free from many
implementation details. This is valuable because structure,
function, and behavior are the primary point of interest
when determining reusability. Next, the expressiveness of
formal specification languages allows precision beyond
that of faceted classification. Equivalent specifications
perform equivalent properties of software component
(structural, functional, and behavioral). Finally, formal
specifications and their associated formal system provide a
basis for automated reasoning. A formal specification
defines the structure, function, and behavior within a
domain model, which is a collection of axioms that define
the data types and operation used in the system. Formal
reasoning based on the domain model can be used logically
to verify the reusability of a software component.

This paper proposes a systematic approach for
classifying software components in the form of machine
learning through computational intelligence such as neural
networks, fuzzy logic, and artificial intelligence. Some
suggest Self-Organizing Map (SOM) [1, 12] for software
component classification. However, there are limitations
on this method:
• Its determination is not based on optimizing any model

of process or data;
• Prototype parameters may be severely affected by

noise from data points and outliners. This is due to the
fact that learning rates in SOM are computed as a
function of the number of input presentations and node
positions in the grid, while they are independent of the
actual distance separating the input pattern from the
cluster template;

• The size of the output lattice, the step size, and the size
of the resonance neighborhood must vary empirically
from one data set to another to achieve useful results;
and

• It should not be employed in topology-preserving
mapping when the dimension of the input space is
larger than three [13].
Other popular classifying techniques are also taken

into account, such as Fuzzy C-Means clustering technique,
which is a simple and straightforward approach but
requires two predefined clusters where every data point

membership depends on membership grade. It is clear
from existing approaches that clustering technique is the
fundamental building block of data classification. As such,
we proposed Fuzzy Subtractive Clustering (FSC) technique
[14] which is a fast one-pass algorithm for estimating the
number of clusters and cluster centers in a set of data [15]
to pre-process the software components. Once the software
component groups are formed, classification process can
proceed.

3. Software Component Representation
The proposed approach employs a formal specification [2]
describing three properties of software component, namely,
structure, functional, and behavioral properties, free from
most implementation details. These specifications are
denoted in matrix form to support classification in the
component repository. Subsequent retrieval of the desired
component will utilize the same matrix to find the
appropriate matching. As such, we will present a
formulation of the classification matrix below.
 Define software component X to be

X = (S, F, B)
where S denotes structural properties, F denotes functional
properties, and B denotes behavioral properties. Each
property is a list of the form

S = { S1 , S2 , S3 ,…, Sm },
F = { F1 , F2 , F3 ,…, Fn }, and
B = { B1 ,B2 , B3 ,…, Bp }, respectively.

Each member of the list S, F, and B is also a list of the form
 Si= { Si,1 , Si,2 , Si,3 , … , Si,ui }, 1 ≤ i ≤ m and Si,j ∈D(Si)
 Fi= { Fi,1 , Fi,2 , Fi,3 , … , Fi,vi }, 1 ≤ i ≤ n and Fi,j ∈D(Fi)
 Bi= { Bi,1 , Bi,2 , Bi,3 , … , Bi,wi }, 1 ≤ i ≤ p and Bi,j ∈D(Bi)
and ui, vi, and wi denote the number of members within Si ,
Fi, and Bi, respectively. Each member is ordered from left
to right, followed by the software component specification
[2]. D(Si), D(Fi), and D(Bi) define separate equivalent
classes (EC). For example, a system designer may wish to
define a family of data objects to be stack-like, all belong
to equivalent class of LIFO. This formulation entails a set
of equivalent classes to be predefined within a component
repository system by designer or developer.
 Two preamble assumptions of our component
repository stipulate that the number of elements in the set
of equivalent classes for a given software component be
finite, and that the number of each equivalent class in each
property of the components be known. Denote the number
of each structural, functional, and behavioral equivalent
class properties by TSi, TFj, and TBk, where 1 ≤ i ≤ m, 1 ≤ j ≤
n, and 1 ≤ k ≤ p, respectively, we define property matrix
representation as follows:

 Col_s = Max(TSi ,1 ≤ i ≤ m), Row_s = m
 Col_f = TF1, Row_f = 1 + Σn

i=2 TFi
 Col_b = TB1, Row_b = 1 + Σp

i=2 TBi

 S o ftw a re
c o m p o n e n t

re q u ire m en t (B a se d
o n fo rm a l

sp ec if ic a t io n)

T h e m o s t s im ila r i ty
s o ftw a re c o m p o en t

A s s ig n v a lu e o f
so f tw a re c o m p o n e n t

 (M a tr ix
re p re se n ta t io n)

C o m p u te th e s im ila r li ty
o f S C u s in g

 fu z zy a n d n e u ra l
n e tw o rk te c h iq u es

(C o a rse G ra in)

S e le c t S C u s in g f in e
g ra in s e lec t io n o r

c e rt i f ic a t io n m e th o d
(F in e G ra in)

S im ila r i ty so ftw a re
c o m p o n e n t

S im ila r i ty fu n c t io n

S o ftw a re c o m p o n e n t
re p o s i to ry

A s s ig n v a lu e o f
s o ftw a re c o m p o n en t

(M a tr ix
rep res e n ta t io n)

First: S Row_s×Col_s
 For i = 1 to m
 For j = 1 to TSi
 S (i,j) = l (Si has l terms in equivalent class j)
Second: F Row_f×Col_f
 For i = 1 to Fnum
 Begin
 j = Eq_class_number(function(i))
 F(1,j) = 1
 For k = 2 to Row_f
 F(k,j) = m (Fj has m terms in equivalent class k)
 End for i
Third: B Row_b×Col_b
 For i = 1 to Bnum
 Begin
 j = Eq_class_number(Behavior(i))
 B(1,j) = 1
 For k = 2 to Row_b
 B(k,j) = p (Bj has p terms in equivalent class k)
 End for I

Figure 1. Matrix calculation algorithm

Based on this representation, a software component matrix
X can be written as follows:

C = (SRow_s×Col_s , FRow_f×Col_f , BRow_b×Col_b)
The algorithm for component matrix formulation proceeds
as Figure 1, where Fnum denotes the number of functions
in a component and Bnum denotes the number of behavior
in the component. The final matrix becomes
 X = (S, F, B)
This matrix will be transformed for use by subsequent
proposed neural network computations.

4. Software Component Classification
Our approach for component classification is based on how
software component is reused through the reuse model in
order to establish a classification framework over the
applicable component domain. We employed formal
notations presented in [2] to represent component class,
along with an example to demonstrate the applicability of
the proposed framework. Various components are then
grouped by coarse grain criteria (structure, function, and
behavior). We measured classification correctness by
means of recall and precision techniques. If the result is
satisfactory, we proceed to fine grain classification to
ensure proper reuse indicator for the designated
components being retrieved.
4.1 Software Reuse Model
The software reuse model encompasses a repository which
stores formal specifications of software components and
retrieval mechanisms to facilitate component check-
in/check-out during the development process. The
underlying principle of the proposed classification scheme
relies on component similarity comparison that is derived
from a user-defined classification function. This offers a
quantitative technique to enumerate the component
suitability in coarse grain level. Assessment begins by
representing software components in matrix form.

Figure 2. Software reuse model

C 1

C (n -1)

C j

C n

C 2

.. .

. . .

C 1

C 2

.

.

.

C j

.

.

.

C (n -1)

C n

Figure 3. The n cluster partitions generated by
FSC algorithm. The black dots and double line
black dots denote software components and

cluster centers, respectively

This permits quantitative evaluation of the requirements
specification of the designated component and the
components stored in the repository, based on the
requirement specification of the cluster component.
Subsequent classification process will sort out the closest
matched component for reuse purpose. Detail on how
classification and retrieval are carried out is described in
the next section. Evaluation is performed using FSC
algorithm to arrive at a similarity value. This process is
depicted in Figure 2.
4.2 Coarse Grain Level Software Component
Classification Techniques
The three properties used to classify software components
are component structure, function, and behavior. The
component structure is made up of a component name, a
subcomponent name, a class name, a signature, and an
interaction name. The component function consists of a
function name, input parameters, local variables, output
parameters, and pre/post-expressions. The component
behavior is composed of a behavior name, a state name,
and an action name. These properties are represented in
matrix form described in Section 3.
 The classification process starts by dividing software
components into groups using FSC algorithm. These

clusters are used to construct the index structure as shown
in Figure 3. Searching for the closest match between the
specified requirement and those in the index yields optimal
software component retrieval. When a match is found, all
components belonging to that cluster are retrieved. In
general, more than one match may result. A fine grain
certification step is required to ensure the best candidate
being retrieved. Details on how certification proceeds will
be postponed till Section 4.3.
 Two measures of software component retrieval
performance used in this paper are recall and precision
[16]. Recall is the ratio of the number of relevant items
retrieved to the total number of relevant items in the
repository. High recall indicates that relatively few
relevant software components were overlooked. Precision
is the ratio of the number relevant items retrieved to the
total number of items retrieved. High precision means that
relatively few irrelevant software components were
retrieved. In general, there is tradeoff between precision
and retrieval. The goal is to find a practical balance
between the two. The relevance condition is fundamental
to the evaluation of a retrieval system.
 It was also informative to observe the number of
software components retrieved by the system. This number
helped estimate the load that would be placed on the
designer to interpret the results of a query in an interactive
system, or similarly, the search space that would be faced
by an adaptation system when considering software
component compositions.
 Given a set of a priori clusters C = {c}1

n and the
calculated FSC clusters, C’ = {c’}1

m , the performance
measures of FSC is defined as follows [17]:
Recall = Number of target software components retrieved /
Number of target software components

Precision = Number of target software components
retrieved / Number of software components retrieved

where #ci denoted the number of elements on cluster ci and
0 ≤ recall, precision ≤ 1. Based on the above definitions,
recall expresses the ratio of the target repository objects
being actually retrieved out of all the expected target
repository objects, whereas precision indicates the ratio of
target repository objects to the retrieved set. For example,
there are 10 repository objects and 4 of them are pre-
specified as target repository objects. Given a query
retrieving 5 objects and 3 out of those five objects are

target objects. In this case, recall is 0.75 and precision is
0.6. The higher the recall and precision get, the more
accurate the method for retrieval becomes. We can
calculate the accuracy for each FSC clusters based on the
information pertaining to their natural clusters. The
response time of the system was measured to determine the
practicality of the method. For each measured quality, the
minimum and median were calculated from every scenario
in the experiment, which will be discussed in Section 5.
4.3 Fine Grain Level Software Component
Selection Technique
In this level, we will try to find the most suitable software
component for reuse. The degree of significance defined
by user will be used as the selection criteria. The following
notations will be given:
• Øs, Øf, and Øh are the degree of significance of

structural, functional, and behavioral properties,
respectively, satisfying 0 ≤ Øs , Øf , Øh ≤ 1 and Øs + Øf
+ Øh = 1. The degree of significance depends on
system environment under which developers can
define in accordance with the underlying system;

• Nr is the number of retrieved software components
from the cluster whose center is closest to the required
software component;

• Xi is the ith retrieved software component in the
component matrix described in Section 3, i.e., Xi = (S,
F, B) where 1 ≤ i ≤ Nr ;

• Xr is the component requirements; and
• SC is the most suitable software component which can

be determined as follows:
SC = Xreuse

where the value of reuse can be computed from

)3()||||(minarg
,,1

EqXpXpreuse
BFSp

irp
rNi

∑ −=
=≤≤

φ
)1(

#''

'

Eq
c

cc
CjcCic i

ji∑
∩

=
∈∧∈

5. Experiment
5.1 Data Collection
One hundred software component specification data were
generated by uniform distribution generator. The data were
arranged in matrix form suitable for the proposed algorithm
described in Section 3. Components were classified
according to their structural, functional, and behavioral
properties which, in turn, were grouped into appropriate
equivalent classes. In so doing, each component data
vector encompassed 1320 dimensions.

)2(
#'' '

'

Eq
c

cc
CjcCic j

ji∑
∩

=
∈∧∈

 The data set was divided into two groups, namely, 50
training set and 50 test set. Each data vector was
normalized within [0,1] according to

)4(
minmax

min Eq
vv
vv

v old
new −

−
=

where vnew is the new value of the designated variable for
that data point, vold is the old value of the data point, vmin is
the minimum value of the variable from all data points, and
vmax is the maximum value of the variable from all data
points.
5.2 Cluster Center Detection
We selected FSC approach to determine cluster centers
using parameter ra = 14. This value is the maximum
distance between any two points within the same cluster,
yet less than the distance between any two points from
different clusters where each point belongs. The multiplier
Sqsh = 1.25 is the default squash factor value of MATLAB
5.3.
 The criteria for cluster center consideration are based
on acceptance and rejection ratios. Acceptance ratio can be
determined by fractions of the potential first cluster center,
above which another data point will be accepted. Rejection
ratio is the condition to reject a data point to be a cluster
center, which is obtained from fractions of the potential
first cluster center, below which a data point will be
rejected as a cluster center. We chose 0.5 as the acceptance
ratio (which is the default value from MATLAB version
5.3) for the first cluster center. We chose the rejection ratio
(η) between 0.15-0.5 to derive other cluster centers. The
resulting rejection ratios from various cluster centers were
used to compare and evaluate the component classification.
The procedure for grouping 50 data point clusters { X1 ,
X2 , X3 ,…, Xn=50 } in the training set is described below.

1. Compute the initial potential value for each data
point (xi)

where α= 4/ ra
2

|| . || is the Euclidean distance
ra is a positive constant representing a normalized

neighborhood data radius
Any point falls outside this encircling region will have little
influence to the potential point. The point with the highest
potential value is selected as the first cluster center. This
tentatively define the first cluster center.
 2. A point is qualified as the first center if its
potential value (P(1)) is equal to the maximum of initial
potential value (P(1)*)

3. Define a threshold δ as the decision to continue or

stop the cluster center search. This process will continue if
the current maximum potential remains greater than δ.
δ = (reject ratio) × (potential value of the first cluster
center)
where the rejection ratio (η) used in this work is 0.15-0.5,
and P(1)* is the potential value of the first cluster center.

 4. Remove the previous cluster center from further
consideration.
 5. Revise the potential value of the remaining points
according to the equation

)7(
2||*||* EqePPP kxix

kii
−−−= β

where xk

* is the point of the kth cluster center, Pk
* is its

potential value, and β = 4/1.25 (sqsh * ra
).

6. For the point having the maximum potential value,
calculate the acceptance ratio. If this value is greater than
the predefined constant (0.5), the point is accepted to be the
next cluster center. Otherwise, compute the rejection ratio.
If the rejection ratio is greater than the predefined threshold
(η = 0.15-0.5), this point is accepted.
 This procedure is repeated to generate the cluster
centers until the maximum potential value in the current
iteration is equal to or less than the threshold δ. After
applying subtractive clustering, we get different cluster
center numbers from 50 training patterns depending on
different rejection ratios. We used these different cluster
center numbers to compare and evaluate software
classification.
5.3 Evaluation
From the 100 vector data participated in the experiment, we
regulated the rejection ratio in the range of 0.15-0.5 to
avoid high rejection rate, whereby yielding too many
unclassified or misclassification of the above data.
 We assessed the accuracy of FSC algorithm by
measuring recall and precision performance. The derived
centers were anticipated to correctly classify software
components in repository into each group of its predefined
equivalent classes. From 50 training data set with
predefined 10 equivalent classes, we conducted 5 trials
using the remaining 50 test data with different rejection
ratio (η) groups (0.15-0.20, 0.25, 0.30, and 0.35-0.50) and
used the derived cluster centers from each trial to calculate
its recall and precision performance. The results can be
interpreted as follows. Based on 0.15-0.20, 0.25, 0.30, and
0.35-0.50 rejection ratio (η) groups, the values of cluster
centers so derived are 18, 15, 11, and 10, respectively.

)5(
1

2|||| EqeP
n

j

jxix

i ∑=
=

−−α

 Table 1 shows the comparative results of all 4 rejection
groups obtaining from FSC classification of software
component being quite satisfactory. Note that recall
performance suffers a slight drop due to the decreasing of
rejection ratio (η). There was, however, no fault
classification in each equivalent class since the centers
were closely located to their corresponding component
groups. As such, retrieval was accomplished with
relatively few attempts. The high number of centers
selected from the 10 equivalent classes having 0.15-0.20,
0.25, and 0.30 rejection ratio (η), implied that there were
more than one center in each equivalent class, whereby
yielding 98-100% accuracy.

)6())((max)1(*)1(EqxPP ii=

5.4 Example of Fine Grain Component Selection
We employed cluster centers obtained from the experiment
to create an index structure for use as an example to select
the most suitable software component. Suppose X denotes
a software component requirement matrix, which matches
cluster center SC19, this cluster encompasses SC16, SC17,
SC18, SC19, and SC20. Table 2 shows the results of most
suitable software component selection from Equation 3
having different degrees of significance on structural,
functional, and behavioral properties.

Table 1. Recall and precision performance
comparison

Rejection Ratio Number of
Center Selected

Recall Precision

0.15-0.20 18 0.56 1.00
0.25 15 0.73 1.00
0.30 11 0.89 0.98

0.35-0.50 10 0.98 0.98

Table 2. Software Component Selection with
Different Degree of Significance

Degree of Significance

Structural Functional Behavioral

The most
Suitable
Software

Component for
Reuse

0.8 0.1 0.1 SC18
0.1 0.8 0.1 SC19
0.1 0.1 0.8 SC18
0.3 0.3 0.3 SC18

6. Conclusion
We have proposed two computational intelligent
approaches to classify software components for effective
archival and retrieval purposes, namely, fuzzy subtractive
clustering algorithm and neural network technique.
Component specifications are represented in matrix form to
quantitatively organize these software artifacts for
subsequent applications. Components were indexed based
on the cluster centers so obtained. As such, subsequent
reference and retrieval could be carried out efficiently
through this indexing mechanism. We also conducted an
experiment to assess the validity of the proposed approach,
which turned out to be quite satisfactory.
 We envision in our future work concerning software
certification process to benefit from this rigorous
formulation that will eventually be incorporated as part of
the machine learning research endeavor. As a
consequence, pervasive use of software components in the
same manner as their hardware counterparts, as well as the
ultimate COTS application, can be realized.

7. References
[1] W. Pedrycz, “Computational Intelligence as an Emerging

Paradigm of Software Engineering”, in Proceedings of the
Fourteenth International Conference on Software
Engineering and Knowledge Engineering, 2002, pp.7-14.

[2] S. Nakkrasae and P. Sophatsathit, “Formal Approach for
Specification and Classification of Software Components”,
in Proceedings of the Fourteenth International Conference
on Software Engineering and Knowledge Engineering, 2002,
pp.773-780.

[3] S. Haykin, Neural Network, Prentice Hall, pp.256-312, 1999.
[4] Eduardo Ostertag, James Hendler, Ruben Prieto Diaz, and

Christine Braun, “Computing similarity in a reuse library
system: An AI Base Approach”, ACM Transactions on
Software Engineering and Methodology, pp. 205-228, 1992.

[5] A. M. Zaremski and J. M. Wing, “Specification matching
software components”, in the 3rd ACM SIGSOFT Symposium
on the Foundations of Software Engineering, 1995.

[6] D. E. Perry and S. S. Popovitch, “In quire: Predicate-Based
Use and Reuse”, in Proceedings of the 8th Knowledge-Based
Software Engineering Conference, 1993, pp. 144-151.

[7] S. A. Ehikioya, “A formal model for the reuse of software
specifications”, in IEEE Canadian Conference on Electrical
and Computer Engineering, Volume: 1, 1999, pp. 283-288.

[8] J. J. Jeng and B. H. C. Cheng, “Using formal methods to
construct a software library”, in Proceedings of 4th European
software Engineering Conference, Lecture Notes in
Computer Science, 1993, pp.397-417.

[9] J. J. Jeng and B. H. C. Cheng, “A formal approach to using
more general components”, in Proceedings of the 9th
Knowledge-Based Software Engineering Conference, 1994,
pp. 90-97.

[10] P. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W.
Ballard, “LaSSIE: A knowledge-base software assistant”,
Communications of the ACM, pp. 34-49, 1991.

[11] R. S. Pressman, Software Engineering, A Practitioner’s
Approach, 4th Editon, New York:McGraw-Hill, 1997.

[12] S. M. Charters, C. Knight, N. Thomas and M. Munro,
“Visualization for informed decision making; Form code to
components”, in Proceedings of the Fourteenth International
Conference on Software Engineering and Knowledge
Engineering: SEKE’02, 2002, pp.765-772.

[13] A. Baraldi and P. Blonda, “A survey of fuzzy clustering
algorithms for pattern recognition Part 2”, IEEE
Transactions on Systems, Man, and Cybernetics-Part B:
Cybernetics, Vol. 29 No.6, 1999.

[14] S. Chiu, “Method and Software for Extracting Fuzzy
Classification Rules by Subtractive Clustering”, in Fuzzy
Information Proceeding Society, Biennial Conference of the
North American, 1996, pp. 461-465.

[15] P. Eklund, L. Kallin and T. Riissanen, Fuzzy Systems,
Lecture notes prepared for courses at Department of
computing Science at Aumea University, Sweden, February,
2000.

[16] H. Mili, F. Mili, and A. Mili, “Reusing software: Issues and
research directions”, IEEE Transactions on Software
Engineering, pp. 528-562, 1995.

[17] I. King and T. K. Lau, “Performance analysis of clustering
algorithm for information retrieval in image databases”,
International Joint Conference on IEEE World Congress on
Computational Intelligence, 1998, pp.932-937.

	Fuzzy Subtractive Clustering Based Indexing Approach for Software Components Classification
	
	Abstract
	Software Engineering is not only a technical discipline of its own, but also a problem domain where technologies coming from other disciplines are relevant and can play important roles. One important example is knowledge engineering [1], a term that is

	Begin
	Begin
	
	
	
	
	
	
	The algorithm for component matrix formulation proceeds as Figure 1, where Fnum denotes the number of functions in a component and Bnum denotes the number of behavior in the component. The final matrix becomes

	4.1 Software Reuse Model
	4.2 Coarse Grain Level Software Component Classification Techniques

