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Abstract—Visual attention detection is an important tech-
nique in many computer vision applications. In this paper,
we propose an algorithm to extract a salient object from an
image using bottom-up and top-down computations. In bottom-
up computation, segment-based color contrast and attention
values are employed to compose a bottom-up saliency map.
In top-down computation, in-focus areas of the image are
extracted to derive attention values using wavelet transforms for
constructing a segment-based top-down saliency map. Attention
values from both maps are combined by linear combination. The
foreground/background-based salient object extraction is applied
to form an output object. Experiments on 1,200 color images show
that the proposed algorithm yields high level of satisfaction.

I. INTRODUCTION

When a person sees an image, there are some parts or
objects of the image that stimulate his visual system and brain.
We call such a segment a visual attention region (VAR). Thus,
for a given image, VAR refers to a region or regions that are
distinguishable from other regions perceived by the viewer.
Detecting the regions of interest in an image is the essential
part in a wide range of computer vision researches, e.g., image
recognition, scene understanding, and content-based image
retrieval.

In order to arrive at a correct and efficient method for VAR
identification, most researches in image visual attention de-
tection utilize VAR through saliency map where computations
are performed with the help of bottom-up attention model.
Important features of VAR to be focused on are color, texture,
intensity, and orientation. Itti [6] presented a visual attention
model based on the properties of primate vision, employing
the aforementioned bottom-up features. Contrast-based model
was introduced by Ma [9], forming a saliency map by color
contrast of image pixels and using face detection as a top-
down feature. The attended areas were located with the help
of a fuzzy growing algorithm. In still image, a pixel-level
saliency map used color contrast as a feature represented
in hierarchical attention regions [14]. Y.Hu [5] presented a
robust subspace analysis-based VAR detection method. Simple
features like hue and intensity were used, along with proposed
subspace estimation algorithms based on generalized principal
component analysis. In all these works, VAR was represented
in circle and rectangle to delineate important features under
investigation. To fulfill the gap between the semantic of image
and low-level features, the rectangular attention region is not

enough as it is limited by its boundary and dimensions. As
such, an effective VAR representation takes a form of a salient
object.

Several research endeavors have attempted to represent VAR
as an object. Z. Yu [13] presented a rule-based VAR extraction
based on real time clustering algorithms. They represented
VAR in object based and arranged in hierarchical fashion.
Z. C. Zhao [15] presented a segment based approach using
shifts of focus of attention under Gestalt principle. H. Fu
[3] proposed a segment based attention model that applied
attention-driven image interpretation for image retrieval. They
used color and texture as features to form a VAR object. Han
[4] presented saliency based object extraction using a seed
growing method. Nonetheless, object-based VAR detection
approach uses only bottom-up computation scheme instead
of top-down scheme. Oliva [10] used top-down information
to control the salient object detection in an image. Ouerhani
[11] proposed scene depth based VAR detection. T. Liu [8]
proposed a supervised VAR detection by means of a set
of multi-scale contrast, center-surround histogram, and color
spatial distribution to locate the salient object. A conditional
random field was learned and evaluated the results using
labeled image by multiple users as top-down information for
the detection process.

In this paper, we present a salient object extraction algo-
rithm for image processing using both bottom-up and top-
down computations. The former utilizes color contrast to
locate the salient region of the image, while the later extracts
information from the image focus to delimit the area of
attention in the image. We translate the focus of the image
to be the theme of a photograph for constructing a saliency
map from the linear combination of VAR. A salient region
extraction algorithm performs foreground/background object
extraction to extract salient regions that subsequently form the
salient object as the output.

The rest of the paper is organized as follows. Section II
elucidates a four-step algorithm encompassing saliency map
bottom-up computation, saliency map top-down computation,
bottom-up and top-down convolution, and saliency object
extraction. The experiments and sample results are shown in
Section III. Our proposed approach is discussed, accompanied
by conclusion and future work in Section IV.
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Fig. 1. The proposed visual attention framework.

II. PROPOSED FRAMEWORK

Our proposed saliency object extraction overall work flow
is shown in Fig. 1. The framework considers the saliency
regions of an image on segmentation levels. The framework
operates in two stages, i.e., bottom-up and top-down com-
putations, where the total saliency value is obtained through
the linear combination. In object extraction process based on
foreground/background classification, there are three types of
region states or seeds: foreground, background, and unlabeled
seeds. The regions having high saliency value are marked as
foreground seeds. The regions having low saliency value are
marked as background seeds. The rest is defined as unlabeled
seeds. The object extraction process forms an output saliency
object from these seeds. The resulting image will be further
processed by image segmentation.

Image segmentation process is an initial preprocessing work
using JSEG segmentation technique [2] which is an unsuper-
vised color-texture based image segmentation. We assume that
the result of segmentation is complete. This means that we
can form individual objects from segments of the segmented
regions in the image. Details are described in the sections that
follow.

A. Saliency map based on bottom-up computation
We use color contrast to represent the bottom-up saliency

map. Color contrast is a very well-known feature that repre-
sents image saliency regions. In previous color contrast ground
work [8],[9],[14], a pixel level color contrast can be deter-
mined by the color difference between the current pixel and
its neighbors. Unfortunately, such a process is a computation
intensive operation. To reduce computation complexity, we
process color contrast computations in hierarchy. First, the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. An example of how the salient region is extracted by our algorithm. (a)
original image (b) segmented image (c) focal points in an image using wavelet
transforms (d) saliency map based on top-down computation (e) saliency map
based on bottom-up computation (f) total saliency map (g) white segments
represent foreground seeds, black segments represent background seeds, and
gray segments represent unlabeled seeds (h) The experimental result.

original image is smoothed by Gaussian filter. Thereby, all
colors in the image are quantized to 11-20 colors that do not
affect image quality in human vision [2]. For each quantized
color, a dominated color is selected as the representative color
of the entire L*a*b* space.

A segment-based color contrast of each image segment
(SalCC ) is defined as

SalCCi =
S

�

j=1

(�Ai − Aj� × nj) (1)

where SalCCi denotes color contrast value of segment i, A i

is the mode of the dominating color in segment i, S is the
number of segments in the image, and nj is the total pixels
in segment j.

Hence, normalization is performed on all SalCC values in
the range [0, 1]. A bottom-up saliency map can be constructed
from the SalCC as shown in Fig. 2(e).

B. Saliency map based on top-down computation
The top-down computation poses difficulties in selecting

appropriate features to use. If the given image is not a human
picture, face and human features will be useless to incorporate
in the detection process.

To overcome feature selection problem, we resort to features
that can be applied in a wide range of images not being
restricted to only human or specific objects. Therefore, we
propose the in-focus region of an image as the top-down fea-
ture for the saliency map computation. The in-focus region is
the information provided by the photographer for the viewers
to indicate which regions or objects are in focus. In order to
determine these in-focus regions, we use two-dimension Haar
wavelet transform technique to classify in-focus regions and
out-of-focus regions of the image [7].

Generally, most images are divided into two types: a low
depth and a high depth of field image. Fig. 3 shows the
characteristics of the low and high depth of field images as the
results of applying two-dimension Haar wavelet transforms.
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(a) (b) (c)

Fig. 3. Two examples of different depths. First row shows the high depth of
field image and the second row shows low depth of field images. (a) Given
images, rabbit and butterfly. (b) The wavelet transforms graph of both images.
(c) The focal points of both images after applying wavelet transforms.

To check whether the input image is a low or high depth of
field image, we compute the ratio of high frequency regions
over all image regions (R). In this work, we set the maximum
of R (mR) to be 0.7. From our observation on the wavelet
transform results in the low depth of field images, there were
many levels of the low depth of field images. If R was very
close to 1, it indicated that the high frequency pixels dispersed
over the entire image. Thus, the image is a high depth of
field type. On the other hand, if hight frequency pixels clutter
around some regions of the image, the value of R will drop
farther from 1. In which case, the image is considered a low
depth of field type.

From the results of wavelet transform, we extract high
frequency pixels as the focal points of the image. The focal
point filter of each pixel is defined as

focal pointi,j =
�

1 if |pi,j | ≥ stdw

0 otherwise
(2)

where pi,j is the wavelet transform value of pixel at row i and
column j of the image, stdw is the standard deviation of the
image pixel values from wavelet transform. Some residuals
may exist which appear as scattered noise in the image. These
noisy spots are eliminated immediately before determining an
in-focus region. The in-focus region is the segment of the
image that has the focal point in the segment.

For a low depth of field image, a segment-based in-focus
saliency of each segment (SalF ) is defined as

SalFi =
�

1 if i is an in-focus region
0 otherwise

(3)

In a high depth of field image, the SalF value of every
segment equals to zero. Thus, we can construct a top-down
saliency map from SalF as shown in Fig. 2(d).

C. Bottom-up and top-down interaction
To study the interaction between both models, we apply a

linear combination of top-down and bottom-up saliency map
computations based on the following assumptions:

1) Regardless of the image type, the color contrast regions
are still considered as a complimentary stimulus to the
viewers’ attention; and

2) In-focus regions of the image will attract the viewer and
increase the overall attention value of the image.

From these assumptions, the saliency values of focused
regions should increase if the input image is a focused image.
In a de-focused image, however, the color contrast is the major
feature.

(a) (b)

(c) (d)

Fig. 4. Graphs between mR and t. (a) The relational plot of mR and t, where
X-axis represents the values of mR and Y -axis represents the values of t.
The relational plot of R and w1 based on different values of mR. (b) mR
equals to 0.6 and t equals to 4.6296. (c) mR equals to 0.7 and t equals to
2.9155. (d) mR equals to 0.8 and t equals to 1.9531.

The total saliency value of each segment in the image is
defined by the following formula

SalTi =
w1SalFi + SalCCi − w2

1 + w1
(4)

where SalTi is the total saliency value of image segment i.
w1 is in-focus weight defined by (5) and w2 by (7)

w1 =
�

1 − (t × R3) if R ≤ mR
0 otherwise

(5)

t =
1

mR3
(6)

w2 = SalFi × w1

3
× e−

SalCC2
i

2 (7)

where t is a weight value depending on mR. The relation of t
and mR is described in Fig. 4. w2 is an adjusted value of two
combined saliency values derived from the effect of range of
the in-focus regions. Fig. 5 shows sample results with different
values of t and mR.
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Fig. 5. Outcomes from different values of mR and t. (a) Given images. (b)
mR equals to 0.6 and t equals to 4.6296. (c) mR equals to 0.7 and t equals
to 2.9155. (d) mR equals to 0.8 and t equals to 1.9531.

D. Saliency object extraction

J.F. Wang [12] presented a foreground/background classifi-
cation based method for object extraction. An input image
can be divided into many regions by watershed technique.
The regions so obtained are labeled according to foreground
or background information that is provided by the user. The
unlabeled neighboring regions are enqueued to form a hierar-
chical queues based either on color similarity or index number.
The regions in the hierarchical queue are then dequeued from
the lowest index number and assigned the same label as the
neighboring labeled region having the smallest color distance.
For unlabeled neighboring regions being dequeued that have
not been labeled or are not in the hierarchical queue are
enqueued with the index number. The process terminates when
every region is dequeued.

We apply the above algorithm to suit the saliency object
extraction with slight modifications. Instead of taking user-
defined foreground seeds and background seeds, we replace
the foreground seeds by the high saliency value regions and
background seeds by the low saliency value regions. These
seeds are subsequently classified into three types as follows

rst (i) =

⎧
⎨
⎩

fseed if SalTi ≥ maxj (SalTj) − std
bseed if SalTi ≤ minj (SalTj) + std

2
nseed otherwise.

(8)

where rst(i) is the status of segment i, fseed is the segment
status to indicate foreground, bseed is the segment status to
indicate background. We call them labeled segments. The
segments that are neither foreground nor background are
classified as nseed or unlabeled segments. std is the standard
deviation of SalT .

We construct a region adjacency graph to represent the
relation between neighboring segments of the image. In seg-
ment labeling step, segment type assignment as foreground or
background is determined based on the index number of the
hierarchical queue. For each unlabeled segment B adjacent to

any labeled segments, we define saliency index value function
as

qB = floor (minn |SalTB − SalTi| × 100) (9)

where qB is the index number of segment B and n is the total
number of labeled segments adjacent to segment B.

For the hierarchical queue, the segment C with the lowest
index number is dequeued and classified as foreground or
background by the formula

St∗ = argminp |SalTC − SalTk| (10)

where St∗ is the segment status of the minimum distance of
SalT value between segment C and the labeled segment k. p
is the total number of labeled segments adjacent to segment
C.

After every segment is labeled, the results or salient objects
represent the foreground segments of the image. Fig. 6 shows
sample results with three types of saliency map.

III. EXPERIMENTAL AND RESULTS

We employed 1,200 test images which were divided into two
sets, namely, test set A and test set B. Test set A contained
1,000 well-segmented of both low and high depth of field
images that were randomly selected from standard image
database [8]. Test set B contained 200 low depth of field
images which were taken from various sources on the Internet.
Therefore, the attention value was very subjective depending
on knowledge and experience of the viewers. We considered
only the images that possessed only one attention region or
object. The results were rated in three levels, namely, good,
accept, and failed by nine users. The descriptions of the three
level ratings are given in Table I.

Table II displays the results of the experiments. In test set A,
71% of images are marked as “Good”, while “Failed” marked
images are 13%. Fig. 7 shows sample results on test set A.
From our observation on failed case, there were two main
causes involved. First, the attention object in the image was
not a stand out contrast. Second, the attention object was over
segmented by the segmentation algorithm, due to blurred color
contrast in some regions. Thus, some parts of the attention
object were missing after extraction as shown in Fig. 9.

In test set B, the results show that our approach is very
effective in the low depth of field images. The “Good” rating
was 87% of the images, whereas “Failed” rate occurred only
3%. Fig. 8 shows sample results on test set B.

TABLE I
DESCRIPTION OF RATING LEVELS

Rating of result Description

Good The saliency object is extracted with few
other segments.

Accept The saliency object is in the image result
but contain some unwanted segments.

Failed The saliency object is not in the image result
or comes with many unwanted segments.
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TABLE II
EXPERIMENTAL RESULTS

Test set
Level of satisfactory

Good Accept Failed

A 71% 16% 13%
B 87% 10% 3%

(a) (b) (c) (d) (e)

Fig. 6. Saliency object extraction outcomes. (a) Given images. (b) Saliency
map based on top-down computation. (c) Saliency map based on bottom-up
computation. (d) Total saliency map. (e) The experimental results.

IV. CONCLUSION

The proposed algorithm proves to be satisfactory in locating
the salient region of images in various categories and com-
positions. The combined “Good” and “Accept” of 87% on
standard test set A demonstrates the viability of the algorithm
effectiveness. Such a claim is reaffirmed by additional arbitrary
images from test set B that yielded 97% accuracy. Despite
some essential complexities [1] that are innate to the problem
under investigation as depicted in Fig. 9, our vision is set on
improving related computer vision applications such as scene
analysis, content-based image retrieval, image recognition, and
in particular, motion picture object extraction.

(1) (2) (3) (4)

Fig. 7. Object detection outcomes on test set A. The odd columns are input
images and the even columns are the experimental results.
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