
REDUCING ENERGY CONSUMPTION IN PROGRAMS USING COHESION
TECHNIQUE

Nattachart Ia-manee and Peraphon Sophatsathit
Advanced Virtual and Intelligent Computing (AVIC) Center

Department of Mathematics, Faculty of Science, Chulalongkorn University
Patumwan, Bangkok, Thailand

Nattachart.ia@chula.ac.th, Peraphon.S@chula.ac.th

Abstract—The objective of this work is to reduce energy
consumption of source programs written in C. The underlying
technique employs code transformation which focuses on
cohesion. Four classes of transformations will be considered:
function, loop optimization, control structure, and operator.
Code transformation is evaluated by effectiveness, efficiency,
space complexity, number of instructions executed, number of
pages, size of memory page allocated, and energy consumption.
The results suggest that different cohesion level will affect the
energy consumption. Moreover, different types of source code
yield different energy consumptions based on cohesion
measures.

Keywords- Cohesion, energy consumption, code
transformation.

I. INTRODUCTION
Global warming is the biggest and most serious problem

faced by us in this century. Climate change is happening and
its effects are real. If we do not attempt to stop global
warming, it will be too late to save our planet.

One of the culprits that attributes to the above problem is
energy consumed by the use of computerization. The
underlying technology rests heavily on hardware and
software. The proliferation of software development,
especially the high ability of a computer program to assist a
user in various forms of communications such as chat, e-
mail, WWW, and the Internet, etc. However, these programs
still exhibit high power consumption owing to a number of
short falls, ranging from poor program design, inefficient
algorithms, to bad code. One research area to solve the
above problems focuses on source code transformation. The
inherent difficulty lies in code comprehension and
complexity which render the transformation process hard to
reduce energy consumption and maintenance.

The objective of this research aims to reduce energy
consumption of computer programs. Our approach exploits
program related issues such as memory optimization,
instruction scheduling and execution, and code
rearrangement, etc. We envision that the impacts of source
code transformations [1] on software and energy
consumption [2] will be a worthwhile undertaking.

The primary principle of our approach to source code
transformation deals with design. Cohesion is a measure of

how various program components, namely, input/output,
variables and their related structure, are strongly-related and
focused on the various responsibilities of a program module.
The higher the cohesion level, the tighter the components
are knitted. In a highly-cohesive system, code readability
and the likelihood of reuse is increased, while complexity is
kept manageable. Such advantages benefit easy maintenance,
code reuse, and most important of all, less energy
consumption by the program. When source code is
transformed by resorting to higher cohesion, complexity,
number of instructions executed, number of pages allocated,
and size of memory pages allocated are lower. In this work,
we employ SimpleScalar Simulator and Wattch Simulator to
measure program energy consumption.

The rest of the paper is organized as follows. Section 2
briefly describes what cohesion is. Section 3 elucidates on
Power Simulator tools. The proposed method is described in
Section 4 and the experimental results are in Section 5.
Section 6 concludes the paper with some final thoughts.

II. COHESION
Cohesion [3] is a measure of how strongly-related is the

functionality expressed by the source code of a software
module. Methods of measuring cohesion vary from
qualitative measures classifying the source text being
analyzed to quantitative measures which examine textual
characteristics of the source code to arrive at a numerical
cohesion score. Cohesion is an ordinal type of measurement
and is usually expressed as "high cohesion" or "low
cohesion." Modules with high cohesion tend to be
preferable because high cohesion is associated with several
desirable traits of software including robustness, reliability,
reusability, and understandability whereas low cohesion is
associated with undesirable traits such as being difficult to
maintain, difficult to test, difficult to reuse, and even
difficult to understand.

High cohesion [4, 5] emphasizes on how a single
module is responsible to the underlying functionality. As
applied to C code, if a module that serves the given function
tends to be similar in many aspects, the function is said to
have high cohesion. In a highly cohesive programming
system, high cohesion also attributes to code readability and
the likelihood of reuse, while complexity is kept

2010 International Conference on Software and Computing Technology (ICSCT 2010)

V1-273978-1-4244-8319--8/10/$26.00 ©2010 IEEE

manageable. Nevertheless, some disadvantages of low
cohesion persist.

• Increased difficulty in understanding the
program modules.

• Increased difficulty in maintaining a system,
because logical changes in the domain affect
multiple modules, and because changes in one
module require changes in related modules.

• Increased difficulty in reusing a module
because most applications won’t need the
random set of operations provided by a module.

The design level cohesion measures [6, 7, 8], in order of
the worst to the best type, are as follows:

A. Coincidental cohesion (worst)
Two outputs of a module have neither dependence

relationship with each other, nor dependence on a common
input.

B. Conditional cohesion
Two outputs are flag-control dependent on a common

input.

C. Iterative cohesion
Two outputs are loop-control dependent on a common

input.

D. Communicational cohesion
Two outputs are dependent on a common input. An

input is used to compute both outputs, but as neither a
condition flag to select one of two outputs nor a loop
invariant to compute both outputs.

E. Sequential cohesion
One output is dependent on the other output.

F. functional cohesion (best)
There is only one output in a module.

III. Power simulators
We will explain the two major components of the

simulator, namely, SimpleScalar and Wattch below.

A. SimpleScalar
SimpleScalar [9, 10] is a virtual CPU evaluation tool in

cycle level on Linux based platform. 'Virtual' means it does
not evaluate the actual processor conducts, but emulates a
specific processor by C code. SimpleScalar compiles a given
piece of C code with emulated CPU and evaluates the
performance by analyzing program execute time. The tool
set includes a machine definition infrastructure that permits
most architectural details to be separated from simulator
implementations. All of the simulators distributed with the
current release of SimpleScalar can run programs from the

above instruction sets. Complex instruction set emulation can
be implemented with or without microcode, making the
SimpleScalar tools particularly useful for modeling CISC
instruction sets.

SimpleScalar is a cycle-accurate architectural level
processor simulator. It is distributed free-of-charge to
academic non-commercial users, with all source code,
making it possible to relatively easily extend the simulator.
Ever since SimpleScalar was released, it has become a
popular toolset as it included several simulators ranging from
a fast functional simulator to a detailed, dynamically
scheduled processor model that supported non-blocking
caches, speculative execution and state-of-the-art branch
prediction. SimpleScalar cannot simulate a whole system, i.e.,
it can only simulate applications, and does not produce
power consumption of the whole system as a result of the
simulation.

Some inclusion of SimpleScalar power analysis tools
such as Simpower and Wattch are furnished in the form of
plugin software. It models physical power comsumption
using only numerical expression to measure the gap between
actual power consumption and the calculated one. In this
research, we use SimpleScalar tool to generate object code.

B. Wattch
Wattch [11, 12] is a simulator that estimates processor

power consumption at the architectural level, developed at
Princeton University, and is one of the simulators that are
based on SimpleScalar. SimpleScalar is used as the cycle
level performance simulator that keeps track of which units
are accessed per cycle and records the total energy consumed
for an application. Wattch uses a modified version of
SimpleScalar’s sim-outorder, which is extended with an
additional number of pipeline stages so that it will be more in
line with current microprocessors. Sim-outorder of wattch
simulator reports detail on power usage in watts.

IV. RESEARCH METHODOLOGY
The proposed methodology employs code

transformations [13] to reduce the energy consumption at
program level. The original C source code is firstly compiled
by gcc [14]. The compiled code is then simulated using
SimpleScalar and Wattch.

The next step applies code transformation to the same C
source code and, following the same previous steps, the
simulation results, energy, and power consumption are
collected. Finally, the processor energy and the system
energy are compared to identify the effectiveness of the
transformation under analysis. The flow of this code
transformation analysis is illustrated in Figure 1

2010 International Conference on Software and Computing Technology (ICSCT 2010)

V1-274

(a) (b)

Fig. 1 Analysis Flow of original (a) and transformed code (b).

The simulation is performed using a desktop PC having
the following specifications: OS Ubuntu 10.4, CPU Intel
Core 2 Duo Processor 2 GHz, 4 GB memory.

The transformation methods [15, 16] have been
partitioned in four classes, each focusing on a specific code
aspect:

A. Loop Transformation

B. Data Structure Transformation

C. Subroutine Transformation

D. Control Structure Transformation

A. Loop Transformations
This class includes transformations modifying either the

loop body or the control structure of the loop. The proposed
transformation produces positive effects in term of reduction
of the number of Instruction Cache (I-cache) and Data Cache
(D-cache) misses.

The basic idea is to reduce the size of the loop body in
order to decrease the number of the I-cache (Instruction
cache) misses. In particular, the transformed codes are
distributed in disjoint loops to enable the storing of a
complete loop in the cache, preventing to access the upper
memory levels.

Loop Transformation is effective with I-cache when a
loop body is larger than the cache or than a given number of
cache blocks and/or the cache is unified.

D-cache could probably occur when the original loop
presents expressions with non-interacting arrays so that
different arrays can be distributed on disjoined loop bodies.

B. Data Structure Transformation
This type of transformation either modifies the data

structure included in the source code or introduces new data
structure or modifies the access mode and the access paths.
This transformation aims to maximize the use of register to
reduce memory and cache accesses.

Array Declaration Sorting is to modify the local array
declaration ordering so that the arrays more frequently
accessed are placed on top of the stack.

Array Scope Modification converts local arrays into
global arrays to store them within data memory rather than
on the stack.

C. Subroutine Transformation
This class of transformations includes the set of source

code manipulations operating at subroutine level, typically
not considered by compilers, analyzing whether or not it is
convenient to modify the subroutine interface.

Compilers usually produce object code by queueing the
subroutines depending on the source code structure.
Subroutine Queueing Reordering sorts the subroutine
declarations according to the subroutine call sequence in
order to reduce the I-cache misses.

Substitution of a variable passed as an address with a
local variable replaces a routine argument passed as an
address with a local copy of a variable. This transformation
drives the compiler to use registers, minimizing the energy
necessary to access such data.

D. Control Structure Transformation
This class gathers source code transformations

optimizing either specific operations or control structures.
Conditional Expression Reordering analyzes a complex

conditional expression by rearranging the sub-expressions set
in order to save energy by exploiting implicit shortcuts
operations. The proposed transformation reassembles the
sub-expressions by following two sub-conditions being
reordered, placing the sub-condition whose probability to be
true is higher.

Function Call Preprocessing associates with a specific
function a proper set of macros that will substitute a function
call with either an equivalent but low energy function call or
a specific result. The transformation skips a function call, or
reduces its impact, when its actual parameters allow to
directly identifying either the returned value or another
equivalent function.

V. EXPERIMENTAL RESULTS
Two samples C source code were taken from [4] for the

experiment that served as a standard benchmark. The results
of the simulation are collections of the following factors:
Clock Cycle, No. of Instructions Executed, Avg. Clock
Power, Avg. Total Power, I-Cache Miss, and D-Cache Miss.

Clock Cycle refers to the total number of the processor
cycle of the current simulation.

No. of Instructions Executed refers to the number of
processor instructions being executed.

Avg. Clock Power refers to the average power in milli-
watt (mW.) that is consumed by the processor.

Avg. Total Power refers to the average power in milli-
watt (mW.) of overall process.

The Instruction Cache Miss (I-Cache Miss) refers to a
cache read miss from an instruction cache.

The Data Cache Miss (D-Cache Miss) refers to a cache
read miss from a data cache.

2010 International Conference on Software and Computing Technology (ICSCT 2010)

V1-275

Table I shows the original C code (having conditional
cohesion) in comparison with the transformed C code
(having functional cohesion).

TABLE I. ORIGINAL VS TRANSFORMED CODE LISTING 1

Original C code Transformed C code
void main()
{
 int n1 = 100;
 int n2 = 200;
 int flag = 1;
 int arr1[100];
 int arr2[200];
 int sum1;
 int sum2;

 Sum1_or_Sum2(n1, n2, flag,
arr1, arr2, &sum1, &sum2);
}
void Sum1_or_Sum2(
 int n1, n2;
 int flag,
 int arr1[], int arr2[],
 int *sum1, int *sum2)
{
 int i;

 *sum1 = 0;
 *sum2 = 0;
 if (flag == 1)
 for (i = 0; i < n1; i++)
 *sum1 = *sum1 + arr1[i];
 else
 for (i = 0; i < n2; i++)
 *sum2 = *sum2 + arr2[i];
}

void main()
{
 int n1 = 100;
 int n2 = 200;
 int flag = 1;
 int arr1[100];
 int arr2[200];
 int sum1;
 int sum2;

 if (flag == 1)
 Sum(n1, arr1, &sum1);
 else
 Sum(n2, arr2, &sum2);
}

void Sum(
 int n,
 int arr[],
 int *sum)
{
 int i;

 *sum = 0;
 for (i = 0; i < n; i++)
 *sum = *sum + arr[i];
}

Table II summarizes the simulation statistics based on
simulation run of code listing 1.

TABLE II. RESULTS OF SIMULATION OF CODE LISTING 1

Parameter Original Transformed %
Clock Cycle 11,034.00 10,878.00 -1.41

No. of Instructions Executed 8368 8354 -0.17

Avg. Clock Power (mW) 28.8 28.4 -1.39

Avg. Total Power (mW) 79.6 78.5 -1.38

I-Cache Miss 335.00 333.00 -0.60

D-Cache Miss 436.00 436.00 -0.00

Table III shows the original C code (having
communicational cohesion) in comparison with the
transformed C code (having functional cohesion).

Table IV summarizes the simulation statistics based on
simulation run of code listing 2.

TABLE III. ORIGINAL VS TRANSFORMED CODE LISTING 2

Original C code Transformed C code
void main()
{
 int n = 100;
 int arr[100];
 int sum;
 int prod;
 float avg;

 Sum_and_Prod(n, arr, &sum,
&prod, &avg);
}

void Sum_and_Prod(
 int n,
 int arr[],
 int *sum,
 int *prod,
 float *avg)
{
 int i;

 *sum = 0;
 *prod = 1;
 for (i = 0; i < n; i++)
 {
 *sum = *sum + arr[i];
 *prod = *prod * arr[i];
 }
 *avg = *sum / n;
}

void main()
{
 int n = 100;
 int arr[100];
 int sum;
 int prod;
 float avg;

 sum = Sum(n, arr);
 prod = Prod(n, arr);
 avg = sum / n;
}

void Sum(int n, int arr[])
{
 int i;
 int sum = 0;

 sum = 0;
 for (i = 0; i < n; i++)
 {
 sum = sum + arr[i];
 }
 return sum;
}

void Prod(int n, int arr[])
{
 int i;
 int prod;

 prod = 1;
 for (i = 0; i < n; i++)
 {
 prod = prod * arr[i];
 }
 return prod;
}

TABLE IV. RESULTS OF SIMULATION OF CODE LISTING 2

Parameter Original Transformed %

Clock Cycle 11,762.00 11,589.00 -1.47

No. of Instructions Executed 6690 6782 +1.38

Avg. Clock Power (mW) 30.7 30.5 -0.65

Avg. Total Power (mW) 84.9 84.3 -0.71

I-Cache Miss 343.00 339.00 -1.17

D-Cache Miss 426.00 405.00 -4.93

Other results of coincidental, iterative, and sequential
cohesion, in comparison with functional cohesion yield
similar outcomes.

VI. CONCLUSION
In this paper, we propose a simple technique to reduce

energy consumption of a computer program using design
cohesion measure. This method is to transform a given piece
of C code to increase tighter cohesion level. Both samples
source code were simulated on the designated simulation

2010 International Conference on Software and Computing Technology (ICSCT 2010)

V1-276

tool environment. The results show that the original source
code consumes more power than the transformed code. This
is because we can reduce both I-cache and D-cache misses,
clock cycle, and power consumed, with an exception of
increase in number of instructions executed in code listing 2.
Although we were able to reduce the energy consumption
upon improvement with cohesion, the amount of reduced
energy was not significantly noticeable. However, the
proposed approach exhibited promising opportunities in
larger programs. The higher the level of cohesion attained,
the more power is conserved by a program. As such, good
design level code translates into less energy consumption by
subsequent programming applications.

The windfall benefits from the proposed code
transformation technique are program readability, better
design, lower complexity, and more code reuse.

REFERENCES

[1] C. Brandolese, W. Fornaciari, and F. Salice, “Code-level
transformations for software power optimization,” CEFRIEL, Tech.
Rep. N. RT-02-004, 2002.

[2] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “The impact
of source code transformations on software power and energy
consumption,” J. Circuits Systems & Computers, vol. 11, May 2002,
no. 5, pp. 477-502.

[3] E. B. Allen and T. M. Khoshgoftaar, “MeasuringCoupling and
Cohesion: An Information-theory Approach,” Proc. Sixth
International Software Metrics Symposium, pp. 119-127, November
1999.

[4] J. M. Bieman and B.-K. Kang, “Measuring Design-Level Cohesion,”
Proc. IEEE Transactions on Software Engineering, vol. 24, no. 2, pp.
111-124, Feb. 1998.

[5] G. Gui and P. D. Scott, “Coupling and cohesion measures for
evaluation of component reusability,” Proc. the 2006 international
workshop on Mining software repositories, May 2006.

[6] B. D. Bois, S. Demeyer, and J. Verelst, “Refactoring-Improving
Coupling and Cohesion of Existing Code,” Proc. 11th Working Conf.
Reverse Eng. pp. 144-151, November 2004.

[7] J. M. Bieman and L. M. Ott, “Measuring functional cohesion,” IEEE
Transl. Software Engineering, vol. 20, no. 8, pp. 644-657, August
1994.

[8] T. M. Meyers and D. Binkley, “An empirical study of slice-based
cohesion and coupling metrics,” ACM Transl., vol. 17, no. 1,
December 2007.

[9] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure
for Computer System Modeling,” Proc. IEEE, Feb. 2002, pp. 59-67.

[10] D. Burger and T. Austin, “The simplescalar tool set, version 2.0,”
Technical report, Computer Sciences Department, University of
Wisconsin, Jun. 1997.

[11] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level poweranalysis and optimizations," Proc. 27th
Annual International Symposium on Computer Architecture, Jun.
2000.

[12] J. Chen, M. Dubois, and P. Stenstrom, “Integrating Complete-System
and User-level Performance/ Power Simulators: The SimWattch
Approach,” Proc. IEEE, IEEE Press, Jul. 2007, vol. 27, no. 4, pp. 34-
48.

[13] M. Fowler, Refactoring: Improving the Design of Existing Code, 1st
ed., Addison Wesley, 1999.

[14] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low
energy: an overview," Proc. IEEE Int. Symp. Low Power Electronics,
Digest of Technical Papers, 1994, pp. 38-39.

[15] H. Falk and P. Marwedel, “Control flow driven splitting of loop nests
at the source code level,” Proc. Europe Conference and Exhibition,
Mar. 2007, pp 410–415.

[16] G. Cai and C. H. Lim, “Architectural Level Power/Performance
Optimization and Dynamic Power Estimation,” Proc. Cool Chips
Tutorial, in conjunction with MICRO32, Nov. 1999, pp. 90-113.

2010 International Conference on Software and Computing Technology (ICSCT 2010)

V1-277

