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Abstract—The objective of this work is to reduce energy 
consumption of source programs written in C. The underlying 
technique employs code transformation which focuses on 
cohesion. Four classes of transformations will be considered: 
function, loop optimization, control structure, and operator. 
Code transformation is evaluated by effectiveness, efficiency, 
space complexity, number of instructions executed, number of 
pages, size of memory page allocated, and energy consumption. 
The results suggest that different cohesion level will affect the 
energy consumption. Moreover, different types of source code 
yield different energy consumptions based on cohesion 
measures. 

Keywords- Cohesion, energy consumption, code 
transformation. 

I.  INTRODUCTION  
Global warming is the biggest and most serious problem 

faced by us in this century. Climate change is happening and 
its effects are real. If we do not attempt to stop global 
warming, it will be too late to save our planet. 

One of the culprits that attributes to the above problem is 
energy consumed by the use of computerization. The 
underlying technology rests heavily on hardware and 
software. The proliferation of software development,  
especially the high ability of a computer program to assist a 
user in various forms of communications such as chat, e-
mail, WWW, and the Internet, etc. However, these programs 
still exhibit high power consumption owing to a number of 
short falls, ranging from poor program design, inefficient 
algorithms, to bad code. One research area to solve the 
above problems focuses on source code transformation. The 
inherent difficulty lies in code comprehension and 
complexity which render the transformation process hard to 
reduce energy consumption and maintenance. 

The objective of this research aims to reduce energy 
consumption of computer programs. Our approach exploits 
program related issues such as memory optimization, 
instruction scheduling and execution, and code 
rearrangement, etc. We envision that the impacts of source 
code transformations [1] on software and energy 
consumption [2] will be a worthwhile undertaking. 

The primary principle of our approach to source code 
transformation deals with design. Cohesion is a measure of 

how various program components, namely, input/output, 
variables and their related structure, are strongly-related and 
focused on the various responsibilities of a program module. 
The higher the cohesion level, the tighter the components 
are knitted. In a highly-cohesive system, code readability 
and the likelihood of reuse is increased, while complexity is 
kept manageable. Such advantages benefit easy maintenance, 
code reuse, and most important of all, less energy 
consumption by the program. When source code is 
transformed by resorting to higher cohesion, complexity, 
number of instructions executed, number of pages allocated, 
and size of memory pages allocated are lower.  In this work, 
we employ SimpleScalar Simulator and Wattch Simulator to 
measure program energy consumption.  

The rest of the paper is organized as follows. Section 2 
briefly describes what cohesion is. Section 3 elucidates on 
Power Simulator tools. The proposed method is described in 
Section 4 and the experimental results are in Section 5. 
Section 6 concludes the paper with some final thoughts. 

II. COHESION 
Cohesion [3] is a measure of how strongly-related is the 

functionality expressed by the source code of a software 
module. Methods of measuring cohesion vary from 
qualitative measures classifying the source text being 
analyzed to quantitative measures which examine textual 
characteristics of the source code to arrive at a numerical 
cohesion score. Cohesion is an ordinal type of measurement 
and is usually expressed as "high cohesion" or "low 
cohesion." Modules with high cohesion tend to be 
preferable because high cohesion is associated with several 
desirable traits of software including robustness, reliability, 
reusability, and understandability whereas low cohesion is 
associated with undesirable traits such as being difficult to 
maintain, difficult to test, difficult to reuse, and even 
difficult to understand. 

High cohesion [4, 5] emphasizes on how a single 
module is responsible to the underlying functionality. As 
applied to C code, if a module that serves the given function 
tends to be similar in many aspects, the function is said to 
have high cohesion. In a highly cohesive programming 
system, high cohesion also attributes to code readability and 
the likelihood of reuse, while complexity is kept 
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manageable. Nevertheless, some disadvantages of low 
cohesion persist. 

• Increased difficulty in understanding the 
program modules. 

• Increased difficulty in maintaining a system, 
because logical changes in the domain affect 
multiple modules, and because changes in one 
module require changes in related modules. 

• Increased difficulty in reusing a module 
because most applications won’t need the 
random set of operations provided by a module. 

The design level cohesion measures [6, 7, 8], in order of 
the worst to the best type, are as follows: 

A. Coincidental cohesion (worst) 
Two outputs of a module have neither dependence 

relationship with each other, nor dependence on a common 
input. 

B. Conditional cohesion 
Two outputs are flag-control dependent on a common 

input. 

C. Iterative cohesion 
Two outputs are loop-control dependent on a common 

input. 

D. Communicational cohesion 
Two outputs are dependent on a common input. An 

input is used to compute both outputs, but as neither a 
condition flag to select one of two outputs nor a loop 
invariant to compute both outputs. 

E. Sequential cohesion 
One output is dependent on the other output. 

F. functional cohesion (best) 
There is only one output in a module. 
 

III. Power simulators 
We will explain the two major components of the 

simulator, namely, SimpleScalar and Wattch below. 

A. SimpleScalar 
SimpleScalar [9, 10] is a virtual CPU evaluation tool in 

cycle level on Linux based platform. 'Virtual' means it does 
not evaluate the actual processor conducts, but emulates a 
specific processor by C code. SimpleScalar compiles a given 
piece of C code with emulated CPU and evaluates the 
performance by analyzing program execute time. The tool 
set includes a machine definition infrastructure that permits 
most architectural details to be separated from simulator 
implementations. All of the simulators distributed with the 
current release of SimpleScalar can run programs from the 

above instruction sets. Complex instruction set emulation can 
be implemented with or without microcode, making the 
SimpleScalar tools particularly useful for modeling CISC 
instruction sets. 

SimpleScalar is a cycle-accurate architectural level 
processor simulator. It is distributed free-of-charge to 
academic non-commercial users, with all source code, 
making it possible to relatively easily extend the simulator. 
Ever since SimpleScalar was released, it has become a 
popular toolset as it included several simulators ranging from 
a fast functional simulator to a detailed, dynamically 
scheduled processor model that supported non-blocking 
caches, speculative execution and state-of-the-art branch 
prediction. SimpleScalar cannot simulate a whole system, i.e., 
it can only simulate applications, and does not produce 
power consumption of the whole system as a result of the 
simulation. 

Some inclusion of SimpleScalar power analysis tools 
such as Simpower and Wattch are furnished in the form of 
plugin software. It models physical power comsumption 
using only numerical expression to measure the gap between 
actual power consumption and the calculated one. In this 
research, we use SimpleScalar tool to generate object code. 

 

B. Wattch 
Wattch [11, 12] is a simulator that estimates processor 

power consumption at the architectural level, developed at 
Princeton University, and is one of the simulators that are 
based on SimpleScalar. SimpleScalar is used as the cycle 
level performance simulator that keeps track of which units 
are accessed per cycle and records the total energy consumed 
for an application. Wattch uses a modified version of 
SimpleScalar’s sim-outorder, which is extended with an 
additional number of pipeline stages so that it will be more in 
line with current microprocessors. Sim-outorder of wattch 
simulator reports detail on power usage in watts. 

IV. RESEARCH METHODOLOGY 
The proposed methodology employs code 

transformations [13] to reduce the energy consumption at 
program level. The original C source code is firstly compiled 
by gcc [14]. The compiled code is then simulated using 
SimpleScalar and Wattch. 

The next step applies code transformation to the same C 
source code and, following the same previous steps, the 
simulation results, energy, and power consumption are 
collected. Finally, the processor energy and the system 
energy are compared to identify the effectiveness of the 
transformation under analysis. The flow of this code 
transformation analysis is illustrated in Figure 1 
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(a) (b) 

Fig. 1 Analysis Flow of original (a) and transformed code (b). 
 

The simulation is performed using a desktop PC having 
the following specifications: OS Ubuntu 10.4, CPU Intel 
Core 2 Duo Processor 2 GHz, 4 GB memory. 

The transformation methods [15, 16] have been 
partitioned in four classes, each focusing on a specific code 
aspect: 

A. Loop Transformation 

B. Data Structure Transformation 

C. Subroutine Transformation 

D. Control Structure Transformation 

A. Loop Transformations 
This class includes transformations modifying either the 

loop body or the control structure of the loop. The proposed 
transformation produces positive effects in term of reduction 
of the number of Instruction Cache (I-cache) and Data Cache 
(D-cache) misses. 

The basic idea is to reduce the size of the loop body in 
order to decrease the number of the I-cache (Instruction 
cache) misses. In particular, the transformed codes are 
distributed in disjoint loops to enable the storing of a 
complete loop in the cache, preventing to access the upper 
memory levels. 

Loop Transformation is effective with I-cache when a 
loop body is larger than the cache or than a given number of 
cache blocks and/or the cache is unified.  

D-cache could probably occur when the original loop 
presents expressions with non-interacting arrays so that 
different arrays can be distributed on disjoined loop bodies. 

B. Data Structure Transformation 
This type of transformation either modifies the data 

structure included in the source code or introduces new data 
structure or modifies the access mode and the access paths. 
This transformation aims to maximize the use of register to 
reduce memory and cache accesses. 

Array Declaration Sorting is to modify the local array 
declaration ordering so that the arrays more frequently 
accessed are placed on top of the stack. 

Array Scope Modification converts local arrays into 
global arrays to store them within data memory rather than 
on the stack. 

C. Subroutine Transformation 
This class of transformations includes the set of source 

code manipulations operating at subroutine level, typically 
not considered by compilers, analyzing whether or not it is 
convenient to modify the subroutine interface. 

Compilers usually produce object code by queueing the 
subroutines depending on the source code structure. 
Subroutine Queueing Reordering sorts the subroutine 
declarations according to the subroutine call sequence in 
order to reduce the I-cache misses. 

Substitution of a variable passed as an address with a 
local variable replaces a routine argument passed as an 
address with a local copy of a variable. This transformation 
drives the compiler to use registers, minimizing the energy 
necessary to access such data. 

D. Control Structure Transformation 
This class gathers source code transformations 

optimizing either specific operations or control structures. 
Conditional Expression Reordering analyzes a complex 

conditional expression by rearranging the sub-expressions set 
in order to save energy by exploiting implicit shortcuts 
operations. The proposed transformation reassembles the 
sub-expressions by following two sub-conditions being 
reordered, placing the sub-condition whose probability to be 
true is higher. 

Function Call Preprocessing associates with a specific 
function a proper set of macros that will substitute a function 
call with either an equivalent but low energy function call or 
a specific result. The transformation skips a function call, or 
reduces its impact, when its actual parameters allow to 
directly identifying either the returned value or another 
equivalent function. 

V. EXPERIMENTAL RESULTS 
Two samples C source code were taken from [4] for the 

experiment that served as a standard benchmark. The results 
of the simulation are collections of the following factors: 
Clock Cycle, No. of Instructions Executed, Avg. Clock 
Power, Avg. Total Power, I-Cache Miss, and D-Cache Miss. 

Clock Cycle refers to the total number of the processor 
cycle of the current simulation. 

No. of Instructions Executed refers to the number of 
processor instructions being executed. 

Avg. Clock Power refers to the average power in milli-
watt (mW.) that is consumed by the processor. 

Avg. Total Power refers to the average power in milli-
watt (mW.) of overall process. 

The Instruction Cache Miss (I-Cache Miss) refers to a 
cache read miss from an instruction cache. 

The Data Cache Miss (D-Cache Miss) refers to a cache 
read miss from a data cache. 
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Table I shows the original C code (having conditional 
cohesion) in comparison with the transformed C code 
(having functional cohesion). 

TABLE I.  ORIGINAL VS TRANSFORMED CODE LISTING 1 

Original C code Transformed C code 
void main() 
{ 
  int n1 = 100; 
  int n2 = 200; 
  int flag = 1; 
  int arr1[100]; 
  int arr2[200]; 
  int sum1; 
  int sum2; 
 
  Sum1_or_Sum2(n1, n2, flag, 
arr1, arr2, &sum1, &sum2); 
} 
void Sum1_or_Sum2( 
  int n1, n2; 
  int flag,  
  int arr1[], int arr2[],  
  int *sum1,  int *sum2) 
{ 
  int i; 
 
  *sum1 = 0; 
  *sum2 = 0; 
  if (flag == 1) 
    for (i = 0; i < n1; i++) 
      *sum1 =  *sum1 + arr1[i]; 
    else 
      for (i = 0; i < n2; i++) 
        *sum2 =  *sum2 + arr2[i]; 
} 

void main() 
{ 
  int n1 = 100; 
  int n2 = 200; 
  int flag = 1; 
  int arr1[100]; 
  int arr2[200]; 
  int sum1; 
  int sum2; 
 
  if (flag == 1) 
    Sum(n1, arr1, &sum1); 
  else 
    Sum(n2, arr2, &sum2); 
} 
 
void Sum( 
  int n,  
  int arr[],  
  int *sum) 
{ 
  int i; 
 
  *sum = 0; 
  for (i = 0; i < n; i++) 
    *sum =  *sum + arr[i]; 
} 

 

Table II summarizes the simulation statistics based on 
simulation run of code listing 1. 

TABLE II.  RESULTS OF SIMULATION OF CODE LISTING 1 

Parameter Original Transformed % 
Clock Cycle 11,034.00 10,878.00 -1.41

No. of Instructions Executed 8368 8354 -0.17

Avg. Clock Power (mW) 28.8 28.4 -1.39

Avg. Total Power (mW) 79.6 78.5 -1.38

I-Cache Miss 335.00 333.00 -0.60

D-Cache Miss 436.00 436.00 -0.00
 

Table III shows the original C code (having 
communicational cohesion) in comparison with the 
transformed C code (having functional cohesion). 

Table IV summarizes the simulation statistics based on 
simulation run of code listing 2. 

TABLE III.  ORIGINAL VS TRANSFORMED CODE LISTING 2 

Original C code Transformed C code 
void main() 
{ 
  int n = 100; 
  int arr[100]; 
  int sum; 
  int prod; 
  float avg; 
 
  Sum_and_Prod(n, arr, &sum, 
&prod, &avg); 
} 
 
void Sum_and_Prod( 
  int n,  
  int arr[],  
  int *sum,  
  int *prod,  
  float *avg) 
{ 
  int i; 
 
  *sum = 0; 
  *prod = 1; 
  for (i = 0; i < n; i++) 
  { 
    *sum =  *sum + arr[i]; 
    *prod =  *prod * arr[i]; 
  } 
  *avg =  *sum / n; 
} 

void main() 
{ 
  int n = 100; 
  int arr[100]; 
  int sum; 
  int prod; 
  float avg; 
 
  sum = Sum(n, arr); 
  prod = Prod(n, arr); 
  avg = sum / n; 
} 
 
void Sum(int n, int arr[ ]) 
{ 
  int i; 
  int sum = 0; 
 
  sum = 0; 
  for (i = 0; i < n; i++) 
  { 
    sum = sum + arr[i]; 
  } 
  return sum; 
} 
 
void Prod(int n, int arr[]) 
{ 
  int i; 
  int prod; 
 
  prod = 1; 
  for (i = 0; i < n; i++) 
  { 
    prod = prod * arr[i]; 
  } 
  return prod; 
} 

 

TABLE IV.  RESULTS OF SIMULATION OF CODE LISTING 2 

Parameter Original Transformed % 

Clock Cycle 11,762.00 11,589.00 -1.47

No. of Instructions Executed 6690 6782 +1.38

Avg. Clock Power (mW) 30.7 30.5 -0.65

Avg. Total Power (mW) 84.9 84.3 -0.71

I-Cache Miss 343.00 339.00 -1.17

D-Cache Miss 426.00 405.00 -4.93
 

Other results of coincidental, iterative, and sequential 
cohesion, in comparison with functional cohesion yield 
similar outcomes. 

VI. CONCLUSION 
In this paper, we propose a simple technique to reduce 

energy consumption of a computer program using design 
cohesion measure. This method is to transform a given piece 
of C code to increase tighter cohesion level. Both samples 
source code were simulated on the designated simulation 
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tool environment. The results show that the original source 
code consumes more power than the transformed code. This 
is because we can reduce both I-cache and D-cache misses, 
clock cycle, and power consumed, with an exception of 
increase in number of instructions executed in code listing 2. 
Although we were able to reduce the energy consumption 
upon improvement with cohesion, the amount of reduced 
energy was not significantly noticeable. However, the 
proposed approach exhibited promising opportunities in 
larger programs. The higher the level of cohesion attained, 
the more power is conserved by a program. As such, good 
design level code translates into less energy consumption by 
subsequent programming applications. 

The windfall benefits from the proposed code 
transformation technique are program readability, better 
design, lower complexity, and more code reuse. 
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