
A Hybrid Technique for Complete Viral Infected Recovery

Pawut Satitsuksanoh, Peraphon Sophatsathit, and Chidchanok Lursinsap
Advanced Virtual and Intelligent Computing (AVIC) Center

Department of Mathematics, Faculty of Science
Chulalongkorn University

Bangkok, Thailand
nnumbkrub@yahoo.com, peraphon.s@pioneer.netserv.chula.ac.th,

lchidcha@pioneer.netserv.chula.ac.th

Abstract

 This research proposes a hybrid technique for
computer virus detection and recovery. We made
use of the well-established BWT to pinpoint where
the infection was located. To insure perfect
detection, the CRC technique was supplemented.
In the mean time, the original uninfected code was
analyzed to obtain necessary unique
identifications, whereby recovery process can be
carried out directly with reference to these unique
identifications. The proposed technique was
gauged against a couple of commercial virus
software and found to perform its task to
perfection.

Keyword computer viruses, virus detection and
disinfection, BWT compression, data integrity
check, information security.

1. Introduction

Anti-virus software today is fairly
sophisticated, but virus writers are often a step
ahead of the software. New computer viruses are
constantly being released which the current anti-
virus software cannot recognize. Most anti-virus
systems are still based on scanning detection using
virus signature because of their very low false
alarm [1,2]. To get a new virus signature, the anti-
virus researcher has to analyze the infected code of
a host file in order to extract the specific pattern of
a particular virus before releasing a new updated
signature file. This process may take quite a long
time for complicated coding viruses for instance,
armored virus, polymorphic or metamorphic virus.
This is a main drawback of using signature based
virus detector. We are interested in not only the
problem of detecting virus but also the problems of
disinfecting and cleaning virus from the target
program. There are many kinds of virus which

destroy or replace target files. Existing commercial
anti-virus systems cannot recover back the healthy
program from these kinds of infection. The only
possible solution is to delete the infected file and
reinstall from the previously back up file. From the
previously stated drawbacks, we have proposed a
framework to create a file archive together with
message digest for virus, change detection, file
recovery, and virus cleaning. Details of the
proposed technique will be described in subsequent
sections. This paper is organized as follows.
Section 2 describes background in computer virus.
Some fundamental techniques are described in
related work of Section 3. The proposed technique
is elucidated in Section 4, along with experimental
results in Section 5. Some final thoughts are given
in Section 6.

2. Background

In this research, we focus on real computer
viruses which infect or change the contents of files.
These viruses can be classified by the way they
operate on the host file.

2.1 Classification of virus infection
techniques

Computer viruses can be classified according to
different aspects such as target format, behavior of
each virus, payload type, etc. A popular technique
is based on infection techniques [1,2,3] as follows:

2.1.1 Overwriting viruses. This infection
technique simply overlays part of the existing
target code with the virus own copy. The size of
the infected files may increase or decrease if it is
completely replaced by the virus code. The infected
file may have the same size as the original one if it
is partly replaced with viral code. Overwriting
viruses cannot be disinfected from a system by the

existing anti-virus program. Infected files must be
deleted from the disk and restored from backups.

2.1.2 Adding viral code: appenders and
prependers. The technique gets its name from the
location of the virus body, which is added at the
beginning or the end of the target program. This
method will inevitably increase the size of the
infected file unless a stealth technique is applied.

 2.1.3 Code interlacing infection or hole cavity
infection. This infection technique typically does
not increase the size of the infected target. The
cavity virus overwrites a portion of the file to
safely store the virus code. It typically overwrites
areas of files that contain zeros in binary files or
code areas that have been allocated by the compiler
but only very partially used by the code itself.

2.1.4 Companion viruses. This infection
technique is quite different from all previously
mentioned techniques. The target code is not
modified, thus preserving the code integrity. The
companion virus operate as follows. The viral code
identifies a target program to attack and create an
additional file, which is somehow linked to the
target code to be executed in place of the target
file.

2.2 Anti-virus techniques

The most efficient modern anti-virus
applications have combined several different
techniques [1,2,3] which are briefly described
below.

2.2.1 Searching for virus signature. This
technique searches for any known sequence of bits
which distinguishes a particular infected program
from other programs. This technique is still used
by most commercial anti-virus programs because it
can detect known viruses efficiently. However, this
technique fails to handle unknown or armored
viruses such as polymorphic viruses or
metamorphic virus. A major drawback of this
technique is that it must keep the virus signature
database up-to-date and secured during
distribution and use.

2.2.2 Spectral analysis. This technique
statistically analyzes instructions of a given
program to find subsets of unusual instructions or
contain feature specific to viruses. Thus, this
technique may cause many false alerts.
Fortunately, the advantage of this technique is that
some unknown viruses may be detected by
incorporating into other known techniques.

2.2.3 Heuristic analysis. This technique uses rules
and strategies to study how a program behaves.
The purpose is to detect potential virus activities or
behavior. The advantage and drawback of this
technique are similar to spectral analysis which
can detect unknown viruses but produce more false
alerts.

2.2.4 Activity monitoring. This technique
monitors various activities of viral programs by
being memory-resident to detect and stop any
potential suspicious activities. This technique may
sometimes succeed in both detecting unknown
viruses and avoiding infections. The drawbacks are
producing more false alert, requiring frequent
update of virus behavior database, and degrading
system performance as it operates in real-time
mode.

2.2.5 Code emulation. This technique utilizes a
virtual machine to mimic code execution under
CPU and memory management systems. Thus,
infected code is simulated in the virtual machine of
the scanner having no actual virus code executed
by the real processor. This technique can detect
encrypted, polymorphic, and metamorphic viruses
at the expense of computer resources and time.

2.2.6 File integrity check or change detection.
This technique aims at monitoring and detecting
any modification of sensitive files such as
executables, documents, etc. Traditionally for each
file, the file digest is computed with the help of
either hash function such as MD5 or SHA-1, or
cyclic redundancy codes (CRC) [4]. Our proposed
technique is in this category. There is a known
issue of using CRC for the purpose of virus
detection or file integrity check is vulnerability to
be exploited by the virus writer [4,5]. This is not
the case for our proposed technique because CRC
is used as the supplementary check in the message
digests.

2.3 BWT compression

 Our proposed technique is primarily based on
Burrows-Wheeler Transformation (BWT) [6].
BWT is the heart of a compression algorithm. The
BWT itself is not a compression technique but
permutates the original data to be more
compressible for further processing.
 The first step of BWT compression is to take a
string S of N symbols S[0], S[1], …, S[N-1] and
construct the N rotation strings such that:
S[0], S[1], .., S[N-2], S[N-1]
S[1], S[2], .., S[N-1], S[0]
…

S[N-1], S[N-2], …,S[1], S[0]
A table of N rows is formed and sorted
lexicographically. The output of transformation is
the last column and the index which is called
r_index in this paper. The attribute of r_index is
the reverse BWT. An example of the
transformation over the string, ‘ubuntu’ is shown
in Figure 1.

S = ‘ubuntu’
N= 6

u b u n t u
b u n t u u
u n t u u b
n t u u b u
t u u b u n
u u b u n t

 Row
0 b u n t u u
1 n t u u b u
2 t u u b u n

 * 3 u b u n t u
4 u n t u u b
5 u u b u n t

TM = ‘uunubt’
r_index = 3

Figure 1. Example of performing BWT over

string S = ‘ubuntu’.

The transformed block is further processed by
Move-to-Front (MTF) and Run Length Encoding
(RLE) function before it is compressed by the
Compression Module using entropy encoding
techniques such as Huffman encoding or
Arithmetic encoding. Details on how it works can
be found in [6,7,8].

3. Related work

Because of the limitation in detecting unknown
computer viruses, many researchers have proposed
virus detection techniques based on biologically
inspired techniques [9,10,11,12,13]. Most of them
refer to the great ability of human immune system
in protecting human body from unknown pathogen
like biological viruses and propose an artificial
immune system to protect the computer from
computer viruses. For example, Lee, et al. [9] work
on artificial immune based virus detection system
that can detect unknown viruses. Their work is
based on self and nonself strings defined
previously in Forrest’s research [13]. Other
researchers [14,15] proposed computer viral
detection techniques based on artificial neural
networks. Their techniques do not required
signature for detecting unknown viruses. Some
recently researches emphasize on detecting hard to
detect metamorphic computer viruses [16,17],
introducing the term “virus localization” [18]. The
underlying principle of this research is a multiple
cryptography hashing technique to locate areas
within the infected file.

None of previously stated researches have
suggested any approach to heal the infected code,
which differ from our proposed approach.

4. Proposed technique

From the preliminary experiment, we found
that whenever the content of the message changed,
the r_index would change as well. Even though the
result of using indices from BWT process was
quite good, these indices alone could not be used
as a hash function for the integrity checking.
Therefore, CRC-32 [19] are applied to supplement
these indices, serving as the basis for our proposed
technique. Figure 3 shows the overview of error
detection and recovery process.

The proposed technique consists of three
processes namely, archival construction process,
error detection process, and recovery process,
which are described below.

Figure 2. Archival construction diagram.

4.1 Archival Construction Process

This is the first process that is responsible for
rearranging, compressing, and computing
necessary information for message archival
purpose. As shown in Figure 2 , a message (or a
file) is passed to this process where a compressed
message along with the message encoder of the
original message is returned. The process can be
described in pseudo code as shown in Figure 3. A
file and specified block size (block_size) are
passed to the Transformation Module. The entire
message is implicitly chopped down to N blocks.
Each block is transformed by the BWT algorithm
and the corresponding CRC checksum is
computed. The output of this stage is a blockwise
message digest(D, digest block), which is the
combination of r_index and CRC checksum. The
transformed message block is further processed by
the Compression Module in Figure 2 which
associates to compression function in the
pseudocode. The compression function can be
implemented using MTF and RLE function before

it is encoded in the final state by entropy encoding
techniques such as Huffman encoding or
Arithmetic encoding. In each iteration, the
blockwise message encoder and compressed block
separately form the message digest file and
compressed file, respectively.

The message block size can be arbitrary
selected to discourage any guess work of the virus
writers in decoding attempts. In addition, both
message digest file and compressed file can be
physically separated from the working file for
subsequent error detection and recovery processes,
making malicious decoding virtually impossible.

4.2 Error detection process

The main purpose of this process is to detect and
locate error blocks in the message (or the file). The
outputs of this process are the number of error
blocks, the information to be used in
decompression, and reverse transformation of the
specified message block, all of which will be used
in subsequent processing.

 The procedures of this process are described in
Figure 4. The input of this process are the message
digest file of the original file and the message
digest file of the suspected file. The message digest

Notation
OF Original file
MF Message digest file
CF Compressed file
t() Transformation function
(TMi, r_indexi) Output of transformation
 function, the first tuple is
 a transformed message block
 the second tuple is the
 association index at index i
crc() CRC checksum computation

function
CRCi CRC checksum at index i
compress() Compression function
Mi Message block at index i
CMi Compressed Message block at

index i
block_size block size
N number of blocks
Di Digest block at index i
A | B | is defined as a

concatenation operator

Archival Construction Process

Input : OF, block_size

1 N ß sizeof(OF)/ block_size
2 OF = M0M1...MN-1
3 open(MF) for write
4 open(CF) for write
5 For i ß 0 to N -1 do
6 (TMi, r_indexi) ß t(Mi)
7 CRCiß crc(TMi)
8 Di ß r_indexi | CRCi
9 write(MF,Di)
10 CMi ß compress(TMi)
11 write(CF,CMi)
12 end_do

Output : CF, MF

Figure 3. Pseudocode for archival

construction precess.

Notation
 Message digest file of the

 suspected file
 Digest block of suspected file at

 index i
Ns Number of blocks of suspected file
ErrB Used for keep error block number
 and associated digest block
ErrLoc Error locating file

Error Detection Process

Input : MF,

1 MF = D0D1…DN-1
2 = …
 open(ErrLoc)for write
3 if (N > Ns)
4 for i ß 0 to Ns -1 do
5 if (Di !=)
6 ErrB ß i | Di
7 write(ErrLoc,ErrB)
8 end_do
9 for j ß i to N -1 do
10 ErrB ß j | Dj
11 write(ErrLoc,ErrB)
12 end_do
13 else
14 for i ß 0 to N -1 do
15 if (Di !=)
16 ErrB ß i | Di
17 write(ErrLoc,ErrB)
18 end_do

Output : ErrLoc

Figure 4. Pseudocode for error detection

precess.

of the suspected file can be computed by using the
same procedure as in archival construction process
excepts that the compressed form of the suspected
message is not required. The digest block of the
original and suspected files will be compared one
by one. If they are not equal, the block number and
digest block, which is a pair of r_index and CRC
checksum, will be recorded into ErrLoc file. Three
possibilities to be considered of the number of
digested blocks of the original file and the
suspected file are greater, less, or equal.

4.3 Recovery process

This process will recover the original message
from file archive using information from the
previous process. The procedure of this process is
given in Figure 5. The inputs for this process are
infected file, CF, and ErrLoc. The number of error
blocks is retrieved from the ErrLoc file. For each
iteration, reverse transformation of the
uncompressed block will replace the specified error
block without having to go though the entire file.
Finally, the original file or message is restored .
Figure 6 shows an simple example of the process.

5. Experimental results

The experiments were conducted in two phases,
namely, the preliminary experiment and the
proposed method experiment.

5.1 Preliminary experiment

 In preliminary experiment phase, the indices
which derived from forward BWT were

investigated to locate any discrepancies caused by
content modification. We wanted to explore the
pattern of change indicated by these indices as the
contents were altered.

The Calgary corpus [20] and four other files
were selected to furnish an extensive file type
coverage in the test set. Four additional files are
added, consisting two Microsoft bitmap images
and two unix program files, namely, bmp1.bmp,
bmp2.bmp, sendmail.sendmail, and tcpdump,
respectively. Numerous test sets were generated
by arbitrarily selecting a pseudo random location
to seed contiguous change of various sizes from 1
bit to 16 bytes in different blocking volumes. The
results of the experiments are shown in Table 1. It
was observed that, in most cases, as the size of
seeded contiguous change increased, the indices
that indicated content change also increased.
Nevertheless, certain singularities remained
undetected, such as similar bit patterns or
coincidental computed values, etc. Such caveats
were compensated by additional CRC supplement
that yielded 100% correct detection.

Figure 6. Example of error detecting and
recovering

Notation
IF Infected file
Nerr Number of error blocks
Pos Used for keep error block
 number
uncompress() Uncompressing function
reverse_t() Reverse transformation function
replace() Replacement function
spilt() Spilt function which return a
 pair of variable (a,b)

Recovery Process

Input : IF, CF, ErrLoc

 open(ErrLoc) for read
1 For i ß 1 to Nerr do
2 ErrB ß read(ErrLoc)
3 (Pos,D) ß spilt(ErrB)
4 (r_index,CRC) ß spilt(D)
5 TM ß uncompress(CMPos)
6 M ß reverse_t(TM, r_index)
7 replace(IF, M, Pos)

Output : Disinfected file

Figure 5. Pseudocode for recovery process.

S1 = ‘ubuntu’,
block size = 3
M0 = ‘ubu’, M1 = ‘ntu’
TM0 = ‘uub’, r_index0 = 1
TM1 = ’unt’, r_index1 = 0

S2 = ‘ubantu’
M0 = ‘uba’, M1 = ‘ntu’
TM0 = ‘bua’, r_index0 = 2
TM1 = ‘unt’, r_index1 = 0

Error block is located and it can be decompressed
located block, reversed transform and derived ‘ubu’.
S2 = ‘ubantu’ replaced with ‘ubu’ at first block (0)
S2 = S1= ‘ubuntu’

Table 1. Show the result of using r_index as a
change detector.

Change Detection Rate (%)
File name

1 Byte 2 Bytes 4 Bytes 8 Bytes 16 Bytes

bib 45.67 49.83 71.33 89.83 97.83

bmp1.bmp 35.75 41.50 36.00 48.50 52.50

bmp2.bmp 58.83 59.17 62.67 66.33 67.67

book1 46.17 66.67 72.50 89.83 93.83

book2 42.17 59.00 73.67 89.00 95.83

geo 26.00 41.67 51.67 55.83 65.17

news 46.00 59.00 76.67 84.17 89.17

obj1 26.00 35.00 39.67 65.33 80.33

obj2 26.33 30.17 52.33 69.67 78.67

paper1 68.80 86.80 93.00 96.60 98.60

paper2 68.67 84.67 94.33 96.67 98.17

paper3 76.75 85.00 95.50 99.50 99.75

paper4 29.00 45.67 66.33 93.67 100.00

paper5 69.00 89.33 85.33 91.33 92.67

paper6 30.25 53.75 79.00 93.00 99.25

pic 57.67 58.33 54.17 60.17 61.17

progc 40.00 43.50 73.00 88.00 98.75

progl 33.00 58.20 73.60 86.00 92.40

progp 64.50 76.75 85.75 83.50 91.25

sendmail 41.83 64.50 74.00 79.50 89.67

tcpdump 30.17 48.83 63.67 78.33 85.50

trans 74.50 84.00 84.67 86.83 90.33

5.2 Proposed method experiment

The same testing sets were tested in the error
detection process that every error block can be
detected. The results are shown in Figure 7. For a
set of selected block sizes, the size of compressed
file of file archive is shown in Table 2.

Table 2. Show size of considered files after

apply with BWT compression.

Note from Table 2 that compressibility of the

original file (or message) depends primarily on file
type as observed from the resulting compression
ratio. Additional major benefits from the proposed
approach are (1) content verification of suspicious
files (or messages) can be carried out in
compressed from without any decompression
overhead; (2) off-line vital archives preserve the
integrity of the original information, thereby
easing the recovery process considerably

Figure 7. The graph shows using CRC as
the supplementary.

5.3 An experiment over real computer
viruses

 A collection of computer viruses were cultured
in a controlled environment. Various virus types
infected on target files were analyzed, namely,
overwriting virus, appending virus, prepending
virus, and companion virus. Two well-known
commercial anti-virus software were deployed
along with the proposed technique. They are Avira
Antivir Personal and ESET NOD32 Antivirus.
Table 3 summarizes the results from real computer
virus infection. Six major types of viruses were
deployed, namely, appending, prepending, adding,
hole cavity, overwriting, and companion viruses.
Four categories of viruses that were shown to be
detrimental are hole cavity, adding, prepending,
and overwriting viruses. All of which required
100% replacement owing to total infection. The
rest were relatively typical of virus infection with
one exception, i.e., MRT.exe having 0.06%
replacement. This was resulted from infection only
in small number of blocks in a large file. Note that
only hole cavity virus (PING.EXE) that yielded the
same file size after infection. At any rate, the
proposed technique successfully recovered the
infected files to their original status. No
commercial software could match the performance
by any measures.

6. Conclusion

This research proposes a practical, yet efficient
method for virus detection and virus disinfection in
a message or a file. The proposed method not only
is able to pinpoint the location of error, but also
perform a perfect error recovery. The approach
utilizes the fast BWT algorithm complemented by
the CRC technique to arrive at a 100% damage
repair. Moreover, the proposed method offers a
number of security-tight features such as 1) off-line
compressed archives of vital information 2)
parameterized block size and index to preclude any
illegal modifications, despite known algorithms,
and 3) low computation overheads as related
parameters can be made available during
verification and required to be updated
occasionally. We shall extend the proposed method
to cover randomized error seeding and gauge the
performance of our proposed method. We envision
that the proposed method can be incorporated in
other research and development areas, in
particular, commercialization as the method is
straightforward to implement on available
technology.

File size (Bytes)
File name

Original File
Compressed

File

Compression
Ratio

Bib 111,261 29,567 3.76

bmp1.bmp 67,854 17,431 3.89

bmp2.bmp 1,497,206 18,944 79.03

book1 768,771 275,831 2.79

book2 610,856 186,592 3.27

Geo 102,400 62,120 1.65

News 377,109 134,174 2.81

obj1 21,504 10,857 1.98

obj2 246,814 81,948 3.01

Paper1 53,161 17,724 3.00

Paper2 82,199 26,956 3.05

Paper3 46,526 16,995 2.74

Paper4 13,286 5,529 2.40

Paper5 11,954 5,136 2.33

Paper6 38,105 13,159 2.90

Pic 513,216 50,829 10.10

Progc 39,611 13,312 2.98

Progl 71,646 16,688 4.29

Progp 49,379 11,404 4.33

sendmail 3,859,419 1,375,653 2.81

tcpdump 448,056 207,949 2.15

Trans 93,695 19,301 4.85

Table 3. The summarization of virus detection and disinfection by using the proposed technique.

7. References

[1] P. Szor, “The Art of Computer Virus Research and
Defense”, Addison-Wesley Professional, Boston, MA
(2005).
[2] E. Filiol, “Computer viruses: from theory to
applications”, Springer-Velag France 2005.
[3] J. Aycock, “Computer Viruses and Malware”,
Springer 2006.
[4] D. Varney, “Adequacy of Checksum Algorithms for
Computer Virus Detection”, Proceedings of the 1990
ACM SIGSMALL/PC Symposium on Small Systems, pp.
280-282, March 28-30, 1990.
[5] B. Maxwell, D. R. Thompson, G. Amerson, and L.
Johnson, “Analysis of CRC methods and potential data
integrity exploits,” Proc. Int'l Conf. Emerging
Technologies, Minneapolis, MN, Aug. 25-26, 2003.
[6] M. Burrows, D.J. Wheeler, “A block sorting data
compression algorithm”, Tech. Report, Digital System
Research Center, 1994.
[7] M. Nelson, “Data compression with the Burrows-
Wheeler transform”, Dr. Dobb’s J. Softw. Tools,
Volume 21, issue 9, pp. 46-50, 1996.

[8] P. Ferragina, R Giancarlo, and G. Manzini,
“The engineering of a compression boosting
library: theory vs practice in BWT compression”,
LNCS, vol. 4168, pp. 756-767, 2006.
[9] H. Lee, W. Kim,and M. Hong, “Artificial Immune
System against Viral Attack”, ICCS2004, LNCS 3037,
pp. 499-506, Springer-Verlag Berlin Heidelberg 2004.

[10] K. S. Edge, G. B. Lamont, and R. A. Raines, “A
Retrovirus Inspired Algorithm for Virus Detection &
Optimization”, GECCO’06, pp. 103-110, July 8-12,
2006.
[11] J. O. Kephart, “A biologically inspired immune
system for computers”, Proceedings of the Fourth
International Workshop on Synthesis and Simulation of
Living Systems (R. A. Brooks and P. Maes, eds.), pp.
130-139, Cambridge, MA: MIT Press, 1994.
[12] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M.
Chess, G. J. Tesauro, and S. R. White, “Biologically
inspired defenses against computer viruses”,
Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI'95), (Montreal, PQ), pp.
985-996, Morgan Kaufman, 1995.
[13] S. Forrest, A.S. Perelson, L. Allen, and R.
Cherukuri, “Self-nonself discrimination in a computer”,
Proceedings of the 1994 IEEE Symposium on Research
in Security and Privacy, Los Alamitos, CA: IEEE
Computer Society Press, pp. 202-212 (1994).
[14] B. Zhang, J Yin, W. Tang, J. Hao, and D. Zhang
“Unknown Malicious Codes Detection Based on Rough
Set Theory and Support Vector Machine”, International
Joint Conference on Neural Networks, July 2006.
 [15] I. S. Yoo and U. Ultes-Nitsche ,“Non-signature
based virus detection” Journal in Computer Virology,
Volume 2, Number 3, pp. 163-186 (2006).
[16] M. Webster and G. Malcolm, “Detection of
metamorphic computer viruses using algebraic
specification”, Journal in Computer Virology, Volume
2, Number 3, pp. 149-161 (2006).

Infected File Name
original
file size
(bytes)

file size
after

infected
(bytes)

Virus Name Virus type

Proposed
Disinfection

(% of
recovery)

% of file
replacement

Commercial
Anti-virus
Software

suggestion

setup.exe 116880 120,464 Win32/Basket.A Appending virus 100% 16%
delete or

quarantine

WAVTOASF.EXE 111632 115216 Win32/Basket.A Appending virus 100% 17%
delete or

quarantine

DotNetInstaller.exe 5632 125440 Win32/BCB.A
companion virus (the
original file become

DotNetInstaller.exe.exe)
100% 100%

delete or
quarantine

notepad.exe 69120 8192 Win32/Belod.A
companion virus (the
original file become

notepad.dat)
100% 100%

delete or
quarantine

DTAC_Edge.doc 24064 28672 W97M/Deij.A
Macro Virus

(Overwriting Virus)
100% 100%

delete or
quarantine

smiley.doc 41472 11264 Wm/Over.A
Macro Virus

(Overwriting Virus)
100% 100%

delete or
quarantine

ChCfg.exe 49152 53328 Win32/Cabanas.3014.A Appending virus 100% 30%
delete or

quarantine

MRT.exe
2363539

2
2363854

5
Win32/Cabanas.3014.A Appending virus 100% 0.06%

delete or
quarantine

Foxit Reader.exe 5713920 6053916 Win32/HLLP.Shodi.I Prepending virus 100% 100%
delete or

quarantine

UpdatPnP.exe 128512 169984 Win32/Neshta.A Appending virus 100% 38%
delete or

quarantine

MOM.exe 49152 666,624 Win32/Muce.A Adding Viral Code 100% 100%
delete or

quarantine

PING.EXE 24576 24576 Win95/CIH-2563.B Hole Cavity virus 100% 60%
delete or

quarantine

[17] W. Wong and M. Stamp, “Hunting for metamorphic
engines”, Journal in Computer Virology, Volume 2,
Number 3, pp. 211-229 (2006).
[18] G. D. Crescenzo and F. Vakil, “Cryptographic
hashing for virus localization”, Proceedings of the 4th
ACM workshop on Recurring malcode, November 2006.
[19] P. Koopman, “32-bit cyclic redundancy codes for
Internet applications”, Intl. Conf. Dependable Systems
and Networks (DSN), Washington DC, pp.459-468,
2002.
[20] The Calgary corpus may be downloaded from
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.c
orpus

