
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

A Quantitative Cohesion Complexity Measure to
Enhancing Software Quality

Pimvard Charoenporn and Peraphon Sophatsathit
Advanced Virtual and Intelligent Computing (AVIC) Center

Department of Mathematics and Computer Science
Faculty of Science, Chulalongkorn University

Bangkok, Thailand
pimvard@gmail.com

Abstract—This paper proposes a quantitative approach to
measure module cohesion. The relatedness of elements within a
module is quantified in the form of cohesion complexity. We first
identify variable relatedness using variable dependence graph.
Cohesion complexity is then analyzed and mathematically
formulated in accordance with standard definitions. Variable
relatedness being analyzed are data, selection, and loop. As such,
traditional ordinal measure can be objectively clarified to
distinguish the differences of design cohesion classification,
reflecting the desired software quality. The result so obtained will
help developers achieve better cohesive design of software.

Keywords—cohesion; cohesion complexity; software quality;
design cohesion

I. INTRODUCTION
High cohesion provides several desirable characteristics in

software quality such as maintainability, flexibility, portability,
code readability, reusability, etc. The notion of module
cohesion was originally defined by Stevens, et al. [1] that it
was the strength of functional relatedness among the
processing elements within a module. The processing elements
can be defined as many things like statements or output
variables. Module cohesion is a measurement in ordinal scale,
ranked into seven levels, namely, functional, sequential,
communicational, procedural, temporal, logical, and
coincidental cohesion, where functional is the highest (good)
and coincidental is the lowest (bad). Any module can be
defined in one of these seven levels. We can use several
methods to measure level of a module. If there are modules
classified in the same level, we may not be able to tell the
differences between them. On the other hand, if they are in
close levels, we may not assure that the higher cohesion is
better. For example, if two modules are classified as
communicational and procedural cohesion, we may say that the
former tends to be better in quality since communicational is
higher ranked than procedural. However, there are many
factors that affect the quality of software such as number of
variables, loops, and selections. Consequently, being classified
at a particular level is not good enough to determine the design
quality of software.

This paper introduces a quantitative measurement in
software quality based on cohesion principle. It provides the
same objectives as cohesion with quantifiable measurement to

differentiate levels of module relatedness. The results of this
proposed measurement will help developers decide whether the
designated module should be further decomposed to improve
the design.

There are five sections in this paper. The next section
describes main related works of the proposed method by
Stevens, et al., A. Lakhotia, and J. Nandigam. Section 3
presents the proposed method. The experiment is described in
Section 4. Some final conclusions are given in Section 5.

II. RELATED WORK
Stevens, et al., defines module cohesion (SMC cohesion) as

the strength of functional relatedness among the processing
elements within a module [1]. The processing elements can be
a statement, a group of statements, a data definition, or a
procedure call. There are seven levels of cohesion as shown in
Table I. The best or the strongest is functional and the worst or
weakest is coincidental cohesion.

TABLE I. ASSOCIATIVE PRINCIPLE BETWEEN TWO PROCESSING
ELEMENTS

Cohesion Associative principles

Coincidental
Little or no meaningful relationship among the
processing elements

Logical
Processing elements of a module perform a set of
related functions, one of which is selected by the
calling module at the time of the invocation

Temporal Processing elements of a module are executed within
the same limited period of time

Procedural
Processing elements share a common procedural unit.
The common procedural unit may be a loop or a
decision structure.

Communicational Processing elements reference the same input data
and/or produce the same output data

Sequential
Processing elements are sequentially cohesive when
the output data or results from one processing element
serve as input data for the other processing element.

Functional Processing elements of a module contribute to the
computation of a single specific result

978-1-4799-4963-2/14/$31.00 ©2014 IEEE

ICSEC 2014 1569960095

1

2014 International Computer Science and Engineering Conference: ICSEC 2014 InternationalTrack

472

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

 To consider if a given module will fit any of the above
associative principles, Page-Jones has provided a decision tree
that helps determine the cohesion level [5] as shown in Fig. 1.

In SMC, the concept of cohesion is emphasized on design-
level rather than coding. On the other hand, Lakhotia defines
term of processing elements in a more specific way which
gives a suitable programming practice. In Lakhotia’s work,
output variables are considered as processing elements [3].
Output variables in a module are interpreted in a directed graph
called Variable Dependence Graph (VDG) which is used to
determine the level of cohesion. Nandigam [4] constructed a
set of associative rules for each level of cohesion as shown in
Table II.

Can the module be considered to be doing one problem-related function?

Fig. 1. Decision tree for determining module cohesion.

TABLE II. ASSOCIATIVE RULES BETWEEN TWO PROCESSING ELEMENTS

 Cohesion Associative rules :

1 Coincidental , … (,)

2 Logical
(,) (,)

3 Procedural , , () () (,) (,)

4 Communicational

5 Sequential

 In this table, x and y represent output variables, z is a
common variable, n is the line number of loop or selection
statements in the module, and k is the selected branch. For
functional cohesion, a module is considered to be functional if
there is only one output variable in the module. In this
research, temporal cohesion is omitted because static analysis
of code cannot handle time-dependent relationships among
processing elements. Details on associative rules will be
further elaborated in Section III(A). The algorithm for
determining the cohesion level is shown in Fig. 2.

Algorithm-1 Compute-Module-Cohesion Input: VDG of module M Output: Cohesion of module M begin output variables in ; if | | 0 then else if | | 1 then else begin cohesion_between_pairs ; for all and in and do begin cohesion_between_pairs cohesion_between_pairs max | 1 … 5 (,) ; end for; if (cohesion_between_pairs) then ; else min(cohesion_between_pairs); end; end; return end Compute-Module-Cohesion

Fig. 2. Algorithm for determining module cohesion.

In Algorithm-1, a module will be considered as undefined
cohesion if there is no output variable in the module. If there is
only one output, the module will be considered as functional
cohesion. A module will only be considered as coincidental
cohesion if all pairs of processing elements are coincidentally
combined. For others level of cohesion, we will select the
minimum cohesion_between_pairs that does not include
coincidental cohesion to define the whole module.

Three quantitative measures based on data-slice called
Functional Cohesion (FC), namely, Weak Functional Cohesion
(WFC), Strong Functional Cohesion (SFC), and Adhesiveness
(A) were introduced by Bieman and Ott [9]. These measures
give the ratio of glue or superglue tokens to the total number of
data tokens in the range of [0, 1].

III. PROPOSED METHOD
In the proposed method, a module will be considered in

terms of VDG whose output variables are considered as
processing elements. Common variables and output variables
are extracted from a module and dependencies are added to
form a directed graph. This VDG will be passed along
Algorithm-1 to determine the level of cohesion, which in turn
will be used to compute cohesion complexity of the module.
We define cohesion complexity as the summation of
dependency of each variable, some of which are assigned
proper weight to indicate their dependencies. This process will
be elucidated in the sections that follow.

A. Variable Dependence Graph
According to Nandigam [4], common variables and output

variables are represented as nodes, while their dependencies are
represented as edges. Dependencies are classified into two
types, namely, data dependency and control dependency.
Control dependency is further classified into two sub-types,

Yes

What relates the activities within
the module?

No

Are the activities
in the same

general category?

Data
Control
Flow

Neither

Fun. Seq. Com. Pro. Tem. Log. Coin.

Yes Yes Yes No No No

Is sequential
Important?

Is sequential
Important?

2

2014 International Computer Science and Engineering Conference: ICSEC 2014 InternationalTrack

473

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

namely, loop-control and data-control. The dependencies come
from data and control flow analysis of the module [6][7]. The
following definitions define the dependencies used in this
paper.

Let x and y be variables in a module, n1 and n2 be
statements that define x and y. y has data dependency on x,
denoted by if there exists a path in control flow graph
from n1 to n2. For control dependence, n is a statement with a
predicate that uses x on which y is dependent. x and y are
associated by selection dependence if n is a selection statement.
For example, in an if or case statement

(,) , designates
the selection condition. If the statement is a loop, n will
designate iteration condition such as for or while, denoted by ()

. If data and control dependencies exist between the
same two variables, control dependency will be chosen as it
dictates the execution flow of the module. Examples of VDG
are shown in Fig. 3.

 1: 1_ _ 2 (1, 2, ; 1, 2 _ ; 1, 2); 2: ; 3: 4: 1: 0; 5: 2: 0; 6: 1 7: : 1 1 8: 1: 1 1 ; 9: 10: : 1 2 11: 2: 2 2 ; 12: ;

Fig. 3. Procedure and variable dependence graph of module Sum1_or_Sum2.

B. Cohesion Complexity
In computation of cohesion complexity, dependency of

each variable will be considered. Complexity of a variable will
be assigned the value 1 if the variable depends on nothing.
Otherwise, it will be assigned to sum of the number of
dependencies involved with the variable. Weights are also
added to each type of dependency to balance the complexity.
The variable complexity is shown in (1). () () () (1)

where c denotes variable complexity, n denotes the number of
dependencies associated with the variables, wd, ws, and wl
denote weights for data, selection, and loop dependency,
respectively. From our preliminary experiment, wd holds the

minimum value while wl holds the maximum value. It was
found that choosing prime factor to be the weight values
yielded better discriminating power than any arbitrary values.
Thus, total variable complexity (tc) can be determined by (2),
where N denotes the number of variables in the module. ∑ (2)

Cohesion complexity (Cc) is the value of total variable
complexity bounded with cohesion level as shown in (3) √ (3)

where a denotes cohesion level. The algorithm for computing
cohesion complexity is shown in Fig. 4.

 Algorithm-2 Compute-Cohesion-Complexity Input: VDG and Cohesion of Module M Output: Cohesion_complexity of Module M begin , , , , , , ; 0; 1 7 () ; break; end for; | () |; 1 (() 0) 1; () () () ; ; _ √ ; _ ; ;
Fig. 4. Algorithm for determining cohesion complexity.

 The cohesion complexity based on sample code in Fig. 3 is
described as follows. Module Sum1_or_Sum2 in Fig. 3 has five
common variables and two output variables, the relationship

among processing elements matches
(,) (,)

which is logical cohesion. Note that z denotes flag, x denotes
sum1 and y denotes sum2. The relationships among z, x and z, y
are S(6, t) and S(6, f), respectively. If a variable associates with
a particular type of dependency, the value of wd, ws, and wl will
be set to the smallest prime factors 3, 5, and 7 for data,
selection, and loop dependencies, respectively. Otherwise, they
are set to 0.

There is no such in-degree of nodes n1, arr1, flag, n2, and
arr2 in the graph shown in Fig. 3, so variable complexity of
each of these variables is 1. There are three in-degrees of
sum1 node and three in-degrees of sum2 node, so n in (1) for
sum1 and sum2 is 3. Hence, tc = 1 + 1 + 1 + 1 + 1 + (3(3) +
5(3) + 7(3)) + (3(3) + 5(3) + 7(3)) = 95. Since module
Sum1_or_Sum2 is considered logical cohesion, the value of a

arr2n2 flag arr1 n1
sum1 sum2 L(7) D DL(10) S(6,t) S(6,f)

3

2014 International Computer Science and Engineering Conference: ICSEC 2014 InternationalTrack

474

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

in (3) is 2, so cohesion complexity for module Sum1_or_Sum2
is √95 9.7468

 To prove how the proposed cohesion complexity yields
different Cc values for the same two modules having different
cohesion levels, we selected Sum_and_Prod procedure [8] and
modified it to use different variable sets, hereafter referred to as
the original and modified procedures shown in Fig 5. The
variables participate in cohesion classification consideration
are as follows: sum, prod, and avg designate output variables or
processing elements, and n, arr, arr1, and arr2 designate
common variables.

Original procedure 1. _ _ (: ; : _ ; , : ; :) 2. 3. : 0; 4. : 1; 5. : 1 6. : ; 7 : ; 8. ; 9. ; 10. ;

Modified procedure 1. _ _(: ; 1, 2: _ ; , : ; :) 2. 3. : 0; 4. : 1; 5. : 1 6 : 1 ; 7. : 2 ; 8. ; 9. ; 10. ;
Fig. 5. Procedure of module Sum_and_Prod.

TABLE III. DEPENDENCIES OF MODULE SUM_AND_PROD

Dependency Original procedure Modified procedure
 ()

()

 ()

()

 2
 1

 Table III lists the dependencies of Sum_and_Prod original
and modified procedures. In both procedures, they cannot be
considered as cohesion because the number of
processing elements is more than one. Using the association
rules in Table II and Algorithm-1, D1 and D2 of the original

procedure match associative rule 3
() ()

,

while D5 and D6 match associative rule 4
. There are two cohesion levels, namely, procedural

and communicational between the same Sum_and_Prod
procedure, hence communicational is selected since it is the
higher level. D4 matches associative rule 5 . D3
does not participate in Algorithm-1 and is not considered. The
overall assessment of the original module is therefore
communicational cohesion since it is lower than sequential
cohesion of D4. Similarly, D1 and D2 of the modified procedure

match associative rule 3
() ()

, and D4

matches associative rule 5 . So the modified
procedure is determined as procedural cohesion.

TABLE IV. DEPENDENCIES OF MODULE SUM_AND_PROD

Variable complexity ()
Original procedure Modified procedure 0 0 0 0 () () 0 () () () () () () ()

 ()
Total variable complexity ()

In Table IV, the values of variable complexity (c) in both
procedures are the same, so are total variable complexity (tc).
Thus, the values of a in the original and modified modules are
a1 and a2, respectively, where a1 > a2 (communicational >
procedural). So, √ √ .

C. Module decomposition process
In case the number of members in cohesion_between_pairs

is more than one which means there is more than one type of
cohesion involved, the lowest level will be selected. Higher
cohesion is still hidden inside the module. From the above
original Sum_and_Prod procedure which is classified as
communicational cohesion, it can be further decomposed to
improve for higher cohesion construct. Such an explicit
decomposition is illustrated in Fig. 6.

Fig. 6. Variable dependence graph of module Sum_and_Prod.

There are two cohesion_between_pairs in the original
Sum_and_Prod procedure, i.e., sequential and
communicational cohesion as shown earlier. We further
decompose this module into two blocks. The first block is
composed of n, arr, sum, and avg as the two output variables
form sequential cohesion. The other one is composed of n, arr,
sum and prod that form communicational cohesion as they
refer to the same input arr. Cohesion complexity of this
module before decomposition is 2.1689 and after
decomposition for both blocks are 1.5552 and 2.1118. Thus,
the modules are classified to be sequential and
communicational cohesion. Note that the lower the value, the
higher the cohesion level. In principle, modules are

D arr n
sum prod avg

D
D D L(5) L(8)

4

2014 International Computer Science and Engineering Conference: ICSEC 2014 InternationalTrack

475

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

decomposed as finer grained as the number of output variables
found.

IV. EXPERIMENT
We tested two programs written in C from [9] and [10] and

nine modules from [8] and [11]. The first program is a game
called “Tic Tac Toe” and the second one is a phone service
called “PHONEV2A.” The former contains six modules and
the latter contains thirteen modules. Table V shows the results
of independent module cohesion level. The value of cohesion
complexity indicates the degree by which developers can
objectively discriminate their design cohesion through the
proposed quantitative technique. Table VI and VII depict the
results of all test program (whose name appears in column one)
cohesion complexity with help of our CCM (Cohesion
Complexity Measurement) tool. The second column shows all
types of cohesion found in the module. The third column
shows the resulting cohesion level of the module under
investigation based on Algorithm-1. The fourth column shows
the resulting Cc value which has been demonstrated using
Sum_and_Prod in Section III (B). For Sum_and_Prod
example, there were three types of cohesion found, namely,
coincidental, communicational, and sequential, the resulting
cohesion using Algorithm-1 turned out to be communicational,
having Cc = 2.1689 by (3).

TABLE V. RESULTS OF MODULE COHESION LEVEL AND
CORRESPONDING CC VALUE

Name Cohesion Found Module
Cohesion

Cohesion
Complexity

Sum1_and_Sum2 Coincidental Coincidental 44
Sum1_or_Sum2 Logical Logical 9.7468
Prod1_and_Prod2 Procedural Procedural 2.5607

Sum_and_Prod
Coincidental
Communicational Sequential Communicational 2.1689

Fibo_Avg Sequential Sequential 1.6035
Sum Functional Functional 1.5552
Avg_or_Range Logical Logical 12.6491
Avg_and_SD Communicational Communicational 2.2974
SD_and_Var Sequential Sequential 1.8644

TABLE VI. RESULTS OF TIC TAC TOE MODULE AND CC ASSESSMENT

Name Cohesion Found Module
Cohesion

Cohesion
Complexity Showframe Coincidental Coincidental 11.0000 Showbox Undefined Undefined - Putintobox Functional Functional 1.5112 Gotobox Undefined Undefined - Navigate Functional Functional 1.3459 Checkforwin Functional Functional 1.2917

TABLE VII. RESULTS OF PHONEV2A MODULE AND CC ASSESSMENT

Name Cohesion Found Module
Cohesion

Cohesion
Complexity

menu Functional Functional 1.000
chkstrdig Undefined Undefined -

DeleteEntry
Coincidental
Procedural
Sequential

Procedural 4.4238

FindPhone Procedural Procedural 3.6109

Sequential

FindRoom Procedural
Sequential Procedural 3.6109

GeTotalEntries Functional Functional 1.0000
ListAll Sequential Sequential 1.6189

SortAllEntries
Coincidental
Procedural
Sequential

Procedural 3.4879

AddEntry coincidental coincidental 9.0000
drawscreen undefined undefined -

exitmenu Procedural
Sequential Procedural 3.1137

LoadDB Coincidental
Procedural Procedural 3.6002

refreshscreen undefined undefined -

From the experiment, coincidental cohesion gives the
highest result and functional cohesion yields the lowest value.
This is in concert with standard classification. Notice that the
same cohesion level can have different values in cohesion
complexity. This is because more complex programming
modules have higher values than the simple ones, despite the
same cohesion classification. In the program “PHONEV2A”,
cohesion complexity of FindPhone and FindRoom module are
the same because the code are identical, but variable names are
different which result in more variables involved. Fig. 7 shows
the variable dependency matrix and the resulting cohesion
complexity value of module FindPhone computed by CCM
tool. However, cohesion complexities of some modules do not
exist because we cannot classify the level of module cohesion
since they have no output variable, i.e., processing element. All
modules in Table V were also tested against the FC measure as
shown in Table VIII.

TABLE VIII. RESULTS OF PHONEV2A MODULE AND CC
ASSESSMENT

Name SMC Cohesion CcMeasure FC Measure

Sum1_and_Sum2 Coincidental 44
WFC 0.28
SFC 0.28

A 0.28

Sum1_or_Sum2 Logical 9.7468
WFC 0.3846
SFC 0.3846

A 0.3846

Prod1_and_Prod2 Procedural 2.5607
WFC 0.2380
SFC 0.2380

A 0.2380

Sum_and_Prod Communicational 2.1689
WFC 0.6957
SFC 0.2174

A 0.5362

Fibo_Avg Sequential 1.6035
WFC 1
SFC 1

A 1

Sum Functional 1.5552
WFC 0
SFC 1

A 0

Avg_or_Range Logical 12.6491
WFC 0.3333
SFC 0.3333

A 0.3333

Avg_and_SD Communicational 2.2974
WFC 0.3214
SFC 0.3214

A 0.3214

SD_and_Var Sequential 1.8644
WFC 1
SFC 1

A 1

5

2014 International Computer Science and Engineering Conference: ICSEC 2014 InternationalTrack

476

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Fig. 7. Screen capture of CCM on FindPhone.

V. DISCUSSION AND CONCLUSION
 A module should encapsulate some well-defined, coherent
piece of functionality so that it is easy to maintain, reuse, and
portable. We have followed SMC cohesion by adopting
association rules, variable dependence graph, and using output
variables as processing elements [3] to determine the level of
cohesion. Such a quantification help distinguish finer grained
of measure for the same level of cohesion in accordance with
the de facto cohesion standard [2]. Case in point, as Cc method
operates at design stage, developers can decide to rectify
modular flaw well in advance rather than prolonging the
problem till coding stage. Another benefit is that the FC
measure could yield the same value for different design
characteristics and complexity. For example, in Table VIII,
procedure Fibo_Avg and SD_and_Var have the same result
value for both SMC cohesion and FC measure, but the Cc
values discern that SD_and_Var is more complex than
Fibo_Avg.

 We envision that more comprehensive quantification
schemes can be derived with the help of elaborate VDG
construct and realized as a programming tool. The benefits of
cohesion complexity measure are several folds. First and
foremost, quantitative analysis infers more objective design
level of software than traditional subjective ordinal analysis.
Software developers and maintainers can pinpoint the module
in question and make proper redesign, improvement, or
corrective adjustment to enhance software quality. Second,
performance of software maintenance is efficient and effective
since the job can be carried out easier and better understanding.
Third, production of software can keep pace with rapid
technological innovation. As a case in the third point, various
modifications, feature enhancement, and bug fixes of facebook
[12] that have undergone world-wide test and used over the
years could have been performed with fewer effort and more
objective design decision. All in all, well design modules
having less cohesion complexity ease software development
and maintenance effort which in turn will be conducive toward
software quality.

REFERENCES
[1] W. P. Stevens , G. J. Myers and L. L. Constantine "Structured

design", IBM Systems Journal, vol. 13, no. 2, pp.115 -139 1974.
[2] E. Yourdon and L. Constantine. “Structured Design”. Yourdon Press,

1978
[3] A. Lakhotia "Rule-based approach to computing module

cohesion", Proc. 15th Int. Conf. Software Eng. (ICSE-15), pp.35 -44
1993.

[4] J. Nandigam, “A Measure for Module Cohesion”, The University of
Southwestern Louisiana, 1995

[5] Page-Jones, M., The Practical Guide to Structured Systems Design, 2nd
Edition, Yourdon Press Computing Series, 1988.

[6] Aho, A. V., Sethi, R. and Ullman, J. D., Compilers Principles,
Techniques, and Tools, Addison-Wesley, 1986.

[7] Hecht, M. S., Flow Analysis of Computer Programs, North-Holland,
Inc.,1977

[8] J.M. Bieman, B-K. Kang, “Measuring Design-Level Cohesion”, IEEE
Transactions on Software Engineering, 24(2), 1998. pp. 111-123.

[9] J.M. Bieman and L. Ott. “Measuring Functional Cohesion”, IEEE
Transactions on Software Engineering, 20(8), pp.644–657, August 1994

[10] http://www.codeproject.com/Articles/447332/Game-Programming-in-C-
For-Beginners (access on April 1, 2014)

[11] http://www.cprogramming.com/source/phone.zip?action=Jump&LID=4
4 (access on April 1, 2014)

[12] https://www.dropbox.com/s/y8902tb6or6s8j9/3_procedures.txt (access
on April 1, 2014)

[13] https://www.facebook.com/notes/facebook-android-beta/facebook-for-
android-beta-app-change-history/190854467764586 (access on April 1,
2014)

6

2014 International Computer Science and Engineering Conference: ICSEC 2014 InternationalTrack

477

