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Abstract—We propose some criteria for GUI regression testing to 

determine the appropriate time to stop without wasting too much 

testing cost. This is essential for all software upgrades that can be 

released in a reasonably short time, yet still guarantees the product 

quality. One difficulty to achieve such a target depends on the 

sequence of test cases being input. The order affects the number of 

found failures. As such, the proposed methodology randomizes the 

order of test cases into different sequences for the regression test 

input. When a failure is found, it is edited immediately before the test 

resumes. Performance of the proposed criteria encompasses three 

measures, namely, failure intensity, cost of testing and editing, and 

reliability. The reliability function incorporates Weibull distribution 

to better reflect the test data. The proposed methodology is tested 

using real GUI applications as test data and shows satisfactory 

results on stopping criteria. 
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I.  INTRODUCTION  

Graphical user interface (GUI) is an important part of a 
software system. It makes software applications easy to use by 
providing a front end that receives events from users and 
interacting with the underlying applications through messages or 
method calls. Compare to traditional software systems, GUI 
applications have wider range of user bases which increase the 
chance of encountering failures and repeated requirement 
changes. This results in frequent code modifications that may 
introduce new faults. These in turn lead to new failures in 
already tested applications. To cope with such predicament, 
testing for their correctness is essential to ensure safety, 
robustness, and usability of the software. The process of testing 
a software system after changes has two main parts: regression 
testing for ensuring that the modifications do not affect existing 
software functionalities and non-regression testing for ensuring 
that new functionalities are implemented correctly. 

The nature of GUI applications poses unique challenges for 
regression testing. Firstly, because GUI inputs and outputs 
depend on the graphical layout of components, the expected 
results of existing test cases may become obsolete when there 
are changes in input-output mapping. Secondly, in addition to 
technical understanding, GUI application testers are required to 
understand the modes of operation in order to produce failures 
that are not expected by the developing team. Lastly, detecting 

frequent code modifications and adapting the old test cases to 
them demand efficient testing mechanisms. 

From the business perspective, releasing software early has 
the benefits of an earlier market introduction. On the contrary, 
hurriedness of releasing may lead to insufficient testing time and 
unsatisfactory software quality. In general, software quality 
depends on many factors such as the intricacy of user’s 
requirements, algorithm complexity, level of reliability that 
needs to be reached, etc. Exhaustive testing, while providing the 
best software quality, requires too much time, cost, effort, and 
impractical to carry out. Thus, determining the appropriate time 
to stop testing is crucial for maximizing the profits from early 
software release and reducing the risk of inadequate software 
quality.  

This research proposes a new method to determine when 
regression testing should be stopped. As each test sequence 
contains many test iterations where the number of iterations 
depends on the number of failures, the estimated failure intensity 
of the test cases can be measured. A number of statistics are 
collected, namely, failure intensity and cumulative average 
failure to determine the reliability of test results. The procedural 
details will be described in the sections that follow. 

The rest of this paper is organized as follows. Section II 
reviews some related work. The proposed methodology is 
described in Section III. Section IV shows the experiment and 
the results so obtained. Some concluding remarks and future 
work are given in Section V. 

II. LITERATURE REVIEW 

There are three issues pertaining to this work, namely, 
regression testing, GUI testing, and criteria for when to stop 
testing. We will look into a brief overview of each issue. 

A. Regression Testing 

Regression testing focuses mainly on testing to ensure that 
modifications of the previous version of the application do not 
alter existing software functionalities. Normally, regression 
testing is done by rerunning old test cases. As the software 
system grows, the number of test cases increases tremendously. 
Unfortunately, only a fraction is relevant to modifications. To 
save time and resources, test case selection must be employed to 
select only the test cases that are pertinent to the modifications. ____________________________________
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Many techniques have been proposed in the literature based on 
methods such as textual differencing, dataflow analysis, etc. A 
detailed list of regression test selection techniques can be found 
in [1,8]. 

B. GUI Testing 

A GUI testing method based on function diagram was 

proposed by Hui, et al. [9] to improve the efficiency of object–

oriented software. The method compared the function diagram 

of the previous version of the software with the modified 

version to determine which test cases should be used. Memon, 

et al. [10] used GUI control flow graph (G-CFG) and GUI call-

graph to represent the event behavior and invoking behavior of 

the components. The original and modified GUIs’ 

representations were compared to detect obsolete test cases. 

These test cases were subsequently modified for reuse. 

However, constructing G-CFG of the application under test 

could be time-consuming for large application and therefore 

was not very practical in some cases. 

C. Criteria for When to Stop Testing 

The question of when to stop testing involves many factors. 
Some of them are related to economic reasons, such as the cost 
of continued testing and the expected losses due to faults that 
remain. Others depend on the expected quality of the software 
system, such as fault detection rate, mean time between failures, 
the complexity and difficulty of the system, and severity of the 
failures that may occur.  

One way to determine the appropriate stop is by quantifying 
the reliability of a software system. This leads to the 
development of models collectively known as Software 
Reliability Models (SRMs). These models try to estimate system 
reliability by fitting a theoretical distribution to failure data and 
use it to design stopping criteria of testing. 

The followings are the assumptions used in software 
reliability modeling [2,3]: 

(1) The software system is subject to failures at random times 
caused by the manifestation of remaining faults in the system. 

(2) The total number of faults at the beginning of testing is 
finite and the failures caused by it are also finite. 

(3) The mean number of expected failures during the time 

interval (t, t+t] is proportional to the mean number of 
remaining faults in the system. It is equal likely that a fault will 
generate more than one failure and a failure may be caused by a 
series of dependent faults. 

(4) Each time a failure occurs, the fault that caused it is 
completely removed and no new faults will be introduced. 

From assumption (3) above, the following relationships can 
be derived: 
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which, by solving boundary condition m(0) = 0, leads to  
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where m(t) is the expected number of software failures at time 

t, r is the failure detection rate per remaining fault, a is the 

expected number of initial faults, α is the quantified ratio of 

faults to failures, and (t) is the failure intensity function. Thus, 

software reliability function is defined as follows [4]: 

       
|

m t t m t
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where t ≥ 0, t > 0. The function R(t/t) represents the 

probability that a software failure doesn’t occur during the time 

interval (t, t+t]. 
It is also assumed, in an ideal situation, that fault correction 

during software testing process does not introduce any new 
faults and the reliability of the software increases as faults are 
uncovered and fixed. Unfortunately, in practice, it is difficult to 
meet the assumptions of the above ideal case. 

III. PROPOSED METHODOLOGY 

In this research, a model to determine a set of stopping test 
criteria in order to achieve software application reliability is 
proposed. Several factors affecting software reliability are 
considered, namely, number of faults, number of failures, testing 
time, editing time, fault detection rate (FDR), failure intensity, 
testing cost, editing cost, and reliability. 

A fault is defined as a mistake in the software application, 
and a failure occurs when the application does not comply with 
the specifications due to a fault or combination of faults. Testing 
time is the time the test team needs to execute the previously 
planned test cases. Editing time is the time the developing team 
needs to edit the software application. Failure intensity is the 
number of failures divided by testing time. Fault detection rate 
is the number of faults divided by the sum of testing time and 
editing time. Testing and editing costs are estimated from testing 
and editing time using average salary given in [5]. The outcome 
of this estimation is the expected cost of continuing testing 
which is proposed as follows: 

        testing t editing eExpected Cost C T C T      (5) 

where Tt is the expected testing time estimated from failure 

intensity function (t) of Equation (3) and the failure intensity 
objective F0, which is set to 0.01 in this study. Finding Tt such 

that (Tt+Ttp)  F0 yields 
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where Ttp is the sum of actual testing time of the previous 
iterations, and Te is the expected editing time estimated from 
the expected number of remaining faults divided by the editing 
speed of the previous iteration, that is, 
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The software reliability [Eq(4)] is modified to incorporate 

stretched exponential function known as the complementary 

cumulative Weibull distribution [2]. The distribution 

characteristics depend on the value of Weibull 2-parameter, i.e., 
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the shape parameter  and the scale parameter . Thus, the 

modified reliability function becomes 

  
    

|
m t t m t

R t t e
 

  

    (8) 

where >0 and >0. In this study, the proper values obtained 

from preliminary experiment are =0.75 and =0.1. 

The stopping criteria are decided by one of the two 

conditions as follows: 

 
The proposed methodology starts with production software 

that involves a number of GUI screens. It is used in a preliminary 
test to decide the threshold cost of initial total cost and software 
reliability. Additional test code is added to set the stage of 
regression test, i.e., seeded faults are injected to be tested by 
selected data sets and test cases. The selection process considers 
how each GUI function of the software works. A set of test cases 
is then created based on the guidelines in [6] to comply with the 
software function. Since execution sequence of the test cases 
affects the occurrence of faults and failures, all test cases will be 
organized into many sequences of tests in random order. The 
regression test proceeds one iteration at a time for each test 
sequence. The first test case of the first sequence is executed. If 
a fault occurs, the corresponding faulty code is edited to fix the 
erroneous code. The second test case is then executed. This 
process repeats until all test cases in the first sequence are 
exhausted. The first regression test iteration is said to finish. 
Meanwhile, test statistics are collected to analyze if the test 
stopping criteria are met and the entire process terminates. 
Otherwise, the test continues on next iteration of the second 
sequence. 

IV. EXPERIMENTS AND RESULTS 

The proposed method was tested with an open-source GUI 

application named jsyntaxpane [7], which consisted of 99 

classes and approximately 3,550 lines of code. This application 

is a sub-class of Java jEditorPane with added support for syntax 

highlighting of 22 file types. Each file type has its own lexical 

analyzer to serve different functionalities. Additional 

functionalities could also be added. Fault seeding was performed 

to initialize the test process and the regression test began as 

described earlier. 

The test toolset and their environment were NetBeans IDE 

8.0.2 [7] running on Windows 7 64-bit operating system with 

Intel(R) Core(TM) i7-3520M CPU and 8.00 GB RAM. 
The version of jsyntaxpane used in the experiment contained 

two types of faults, namely, initial faults and seeded faults. An 
initial fault is an unintended fault that exists in the application 
before enhancement. Bug reports provided in the application 
project page and selected test cases were employed to uncover 
the initial faults. Seeded faults were added during test execution 
according to the average fault distribution of the software 
systems provided in [6]. There were 21 and 19 lines of code that 
contained initial faults and seeded faults, respectively. A total of 
40 faults were tallied which caused 37 failures in the application. 
Table I summarizes the types of faults in the experiment. 

TABLE I. FAULTS DISTRIBUTION IN PRELIMINARY EXPERIMENT. 

Type of faults 
#lines 

Initial  faults Seeded  faults 

FUNCTIONALITY AS IMPLEMENTED   

Feature misunderstood, wrong    9  

Feature interaction 4  

Missing feature  8  

STRUCTURAL BUGS   

Control logic and predicates  2 

Loops and iterations  1 

Arithmetic expressions  2 

Logic or Boolean, not control  1 

Initialization  1 

Other processing  6 

DATA   

Other data definition, structure, declaration 

bugs 

 1 

Value  2 

Wrong object accessed  1 

Other access and handling  2 

Total 21 19 

Table II shows the expected testing time, expected editing 
time, and expected cost of each iteration computed from 
previous iteration using Equation (5). The cost is estimated in 
dollars ($) using average salary given in [5]. #rem-faults, #faults, 
and #fails are the number of remaining faults at the beginning of 
each iteration, the number of faults that have been corrected, and 
the number of failures that have occurred in each iteration, 
respectively. FDR represents the number of faults per minute. 
Failure intensity is the number of failures per minute of testing 

time. α, r, and (t) are defined earlier. (t) avg is the average of 

(t) from the start of each sequence. m(t) and m(t+t) are the 
expected number of failures used to calculate the reliability 

R(t/t) by means of Equation (8), where t is set to one year. 

It can be seen that the expected testing time and expected 
editing time tend to overestimate the actual testing time and 
actual editing time. At any rate, both the expected and actual 

time tend to go in the same direction. The  calculated in each 

iteration is used to estimate the actual , which turned out to be 

1.081. Meanwhile, (t) gives a projection of how future failure 
intensity will behave. As the number of faults decreases in each 
iteration, the reliability increases. Note that the final value of 
reliability in each sequence is not equal to one another. This is 
because the sequence of test cases affects the number of test 

1) If failure intensity (t) is less than or equal to cumulative 
average failure intensity in current iteration, compute the 
expected cost using Eq(5) to determine if 
a) the cumulative cost in current iteration plus the expected 

cost of the next iteration are less than or equal to the 
threshold cost, use Eq(8) as the stopping criterion provided 
that 
i) R(t/t) is greater than or equal to 85%, stop; 
ii) R(t/t) is less than 85%, continue testing; or 

b) the cumulative cost in current iteration plus the expected 
cost of the next iteration are greater than the threshold cost, 
use Eq(8) as the stopping criterion provided that 
i) R(t/t) is greater than or equal to 75%, stop; 
ii) R(t/t) is less than 75%, continue testing. 

2) If failure intensity (t) is greater than cumulative average 
failure intensity in current iteration, then 
a) If the cumulative cost is less than or equal to the threshold 

cost, continue testing; or 
b) If the cumulative cost is greater than the threshold cost, use 

Eq(8) as the stopping criterion provided that 
i) R(t/t) is greater than or equal to 75%, stop; 
ii) R(t/t) is less than 75%, continue testing. 
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iterations, the number of uncovered faults, and failures in each 
iteration, all of which affect the value of reliability. 

The experimental results supported our hypothesis that the 
sequence of test case affected the reliability and failure intensity. 
Because test cases were generated according to software 
functionality, the order of the test cases was grouped by type of 
functions. For example, in sequence 1, the test cases were sorted 
according to the similarity of function and the arrangement of 
GUI options. The ordering was randomized and tested in a 
similar manner for each sequence, yielding the test statistics as 
shown in Table II. 

From Table II, sequence 1 stopped in iteration 2 because, in 
iteration 1, the cumulative average failure intensity equaled the 
failure intensity and the sum of cumulative cost. The expected 
cost of iteration 2 was less than the threshold cost which was set 
to $600. However, reliability function in iteration 1 was less than 
75% and testing continued. In iteration 2, the reliability function 
was greater than 75%. Applying the stopping criteria to test 
sequence 2 and 3, the reliability values became 1.00 and 0.90, 
respectively. 

Since the stopping criteria depended on failure intensity, 
reliability and cost, the total cost was controlled not to exceed 
the threshold cost within budget while keeping the reliability of 
software at the proper level before releasing the software. This 
set up determines the appropriate time to stop testing. 

V. CONCLUSION 

Determining when to stop regression testing is one of the 
most critical problems, thus finding the stopping criteria of 
regression testing is important. The proposed methodology not 
only considers the theoretical testing aspects such as failure 
intensity, reliability, and time, but also administrative aspects, in 

particular, testing cost to confine it within the allotted budget. 
Thus, stopping criteria become a multi-aspect issue that calls for 
careful considerations. Optimizing regression test techniques to 
arrive at minimal cost will be a challenging future work. More 
efficient test sequence algorithms are needed to improve the 
probability of fault occurrences, thereby reducing time 
complexity of the proposed methodology. 
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TABLE II.             EXAMPLES OF FAULT STATISTICS BEING COLLECTED. 
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1 1 N/A N/A N/A 23.94 465.82 387.29 40 20 9 2.22 0.0094 0.04 0.38 0.23 0.23 7.08 18.00 0.64 

 2 140.45 465.82 461.73 44.14 174.23 167.34 20 12 4 2.46 0.0045 0.06 0.09 0.06 0.09 3.16 8.13 0.78 

 3 115.47 116.15 166.53 23.91 79.84 79.03 8 6 1 2.71 0.0052 0.06 0.04 0.03 0.06 0.85 2.95 0.87 

 4 3.15 26.61 23.27 21.23 0.00 13.56 2 0 0 2.71 0.0000 0.00 0.00 0.00 0.05 0.00 0.00 1.00 

 5 N/A N/A N/A                

2 1 N/A N/A N/A 39.76 370.02 320.90 40 26 11 2.36 0.0069 0.06 0.28 0.14 0.14 8.09 16.92 0.70 

 2 138.88 199.24 247.84 27.44 79.84 81.29 14 6 2 2.46 0.0052 0.05 0.07 0.05 0.09 1.69 5.69 0.80 

 3 111.33 106.45 156.14 25.95 45.34 52.78 8 0 0 2.46 0.0000 0.00 0.00 0.00 0.06 0.00 0.00 1.00 

 4 N/A N/A N/A                

3 1 N/A N/A N/A 28.34 226.48 198.97 40 27 9 3.00 0.0079 0.11 0.32 0.16 0.16 6.54 13.33 0.75 

 2 98.00 109.05 149.69 20.91 90.10 85.31 13 7 5 2.43 0.0184 0.06 0.24 0.09 0.12 3.25 5.35 0.90 

 3 53.76 77.23 96.02 21.43 0.00 13.69 6 0 0 2.43 0.0000 0.00 0.00 0.00 0.09 0.00 0.00 1.00 

 4 N/A N/A N/A                
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