
Stopping Criteria for Regression Testing in GUI

Application using Failure Intensity and Failure

Reliability

Chalita Somsorn and Peraphon Sophatsathit

Advanced Virtual and Intelligent Computing (AVIC) Center

Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University, Bangkok, Thailand

chai_ing22425@hotmail.com, peraphon.s@chula.ac.th

Abstract—We propose some criteria for GUI regression testing to

determine the appropriate time to stop without wasting too much

testing cost. This is essential for all software upgrades that can be

released in a reasonably short time, yet still guarantees the product

quality. One difficulty to achieve such a target depends on the

sequence of test cases being input. The order affects the number of

found failures. As such, the proposed methodology randomizes the

order of test cases into different sequences for the regression test

input. When a failure is found, it is edited immediately before the test

resumes. Performance of the proposed criteria encompasses three

measures, namely, failure intensity, cost of testing and editing, and

reliability. The reliability function incorporates Weibull distribution

to better reflect the test data. The proposed methodology is tested

using real GUI applications as test data and shows satisfactory

results on stopping criteria.

Keywords-GUI;regression testing; failure; reliability; test cases.

I. INTRODUCTION

Graphical user interface (GUI) is an important part of a
software system. It makes software applications easy to use by
providing a front end that receives events from users and
interacting with the underlying applications through messages or
method calls. Compare to traditional software systems, GUI
applications have wider range of user bases which increase the
chance of encountering failures and repeated requirement
changes. This results in frequent code modifications that may
introduce new faults. These in turn lead to new failures in
already tested applications. To cope with such predicament,
testing for their correctness is essential to ensure safety,
robustness, and usability of the software. The process of testing
a software system after changes has two main parts: regression
testing for ensuring that the modifications do not affect existing
software functionalities and non-regression testing for ensuring
that new functionalities are implemented correctly.

The nature of GUI applications poses unique challenges for
regression testing. Firstly, because GUI inputs and outputs
depend on the graphical layout of components, the expected
results of existing test cases may become obsolete when there
are changes in input-output mapping. Secondly, in addition to
technical understanding, GUI application testers are required to
understand the modes of operation in order to produce failures
that are not expected by the developing team. Lastly, detecting

frequent code modifications and adapting the old test cases to
them demand efficient testing mechanisms.

From the business perspective, releasing software early has
the benefits of an earlier market introduction. On the contrary,
hurriedness of releasing may lead to insufficient testing time and
unsatisfactory software quality. In general, software quality
depends on many factors such as the intricacy of user’s
requirements, algorithm complexity, level of reliability that
needs to be reached, etc. Exhaustive testing, while providing the
best software quality, requires too much time, cost, effort, and
impractical to carry out. Thus, determining the appropriate time
to stop testing is crucial for maximizing the profits from early
software release and reducing the risk of inadequate software
quality.

This research proposes a new method to determine when
regression testing should be stopped. As each test sequence
contains many test iterations where the number of iterations
depends on the number of failures, the estimated failure intensity
of the test cases can be measured. A number of statistics are
collected, namely, failure intensity and cumulative average
failure to determine the reliability of test results. The procedural
details will be described in the sections that follow.

The rest of this paper is organized as follows. Section II
reviews some related work. The proposed methodology is
described in Section III. Section IV shows the experiment and
the results so obtained. Some concluding remarks and future
work are given in Section V.

II. LITERATURE REVIEW

There are three issues pertaining to this work, namely,
regression testing, GUI testing, and criteria for when to stop
testing. We will look into a brief overview of each issue.

A. Regression Testing

Regression testing focuses mainly on testing to ensure that
modifications of the previous version of the application do not
alter existing software functionalities. Normally, regression
testing is done by rerunning old test cases. As the software
system grows, the number of test cases increases tremendously.
Unfortunately, only a fraction is relevant to modifications. To
save time and resources, test case selection must be employed to
select only the test cases that are pertinent to the modifications. ____________________________________

978-1-4799-8353-7 /15/$31.00 ©2015 IEEE

289

Many techniques have been proposed in the literature based on
methods such as textual differencing, dataflow analysis, etc. A
detailed list of regression test selection techniques can be found
in [1,8].

B. GUI Testing

A GUI testing method based on function diagram was

proposed by Hui, et al. [9] to improve the efficiency of object–

oriented software. The method compared the function diagram

of the previous version of the software with the modified

version to determine which test cases should be used. Memon,

et al. [10] used GUI control flow graph (G-CFG) and GUI call-

graph to represent the event behavior and invoking behavior of

the components. The original and modified GUIs’

representations were compared to detect obsolete test cases.

These test cases were subsequently modified for reuse.

However, constructing G-CFG of the application under test

could be time-consuming for large application and therefore

was not very practical in some cases.

C. Criteria for When to Stop Testing

The question of when to stop testing involves many factors.
Some of them are related to economic reasons, such as the cost
of continued testing and the expected losses due to faults that
remain. Others depend on the expected quality of the software
system, such as fault detection rate, mean time between failures,
the complexity and difficulty of the system, and severity of the
failures that may occur.

One way to determine the appropriate stop is by quantifying
the reliability of a software system. This leads to the
development of models collectively known as Software
Reliability Models (SRMs). These models try to estimate system
reliability by fitting a theoretical distribution to failure data and
use it to design stopping criteria of testing.

The followings are the assumptions used in software
reliability modeling [2,3]:

(1) The software system is subject to failures at random times
caused by the manifestation of remaining faults in the system.

(2) The total number of faults at the beginning of testing is
finite and the failures caused by it are also finite.

(3) The mean number of expected failures during the time

interval (t, t+t] is proportional to the mean number of
remaining faults in the system. It is equal likely that a fault will
generate more than one failure and a failure may be caused by a
series of dependent faults.

(4) Each time a failure occurs, the fault that caused it is
completely removed and no new faults will be introduced.

From assumption (3) above, the following relationships can
be derived:

()

(())
dm t

r a m t
dt

   
 (1)

which, by solving boundary condition m(0) = 0, leads to

    1 r ta
m t e 



   (2)

   r tt ar e    (3)

where m(t) is the expected number of software failures at time

t, r is the failure detection rate per remaining fault, a is the

expected number of initial faults, α is the quantified ratio of

faults to failures, and (t) is the failure intensity function. Thus,

software reliability function is defined as follows [4]:

       
|

m t t m t
R t t e

  
  (4)

where t ≥ 0, t > 0. The function R(t/t) represents the

probability that a software failure doesn’t occur during the time

interval (t, t+t].
It is also assumed, in an ideal situation, that fault correction

during software testing process does not introduce any new
faults and the reliability of the software increases as faults are
uncovered and fixed. Unfortunately, in practice, it is difficult to
meet the assumptions of the above ideal case.

III. PROPOSED METHODOLOGY

In this research, a model to determine a set of stopping test
criteria in order to achieve software application reliability is
proposed. Several factors affecting software reliability are
considered, namely, number of faults, number of failures, testing
time, editing time, fault detection rate (FDR), failure intensity,
testing cost, editing cost, and reliability.

A fault is defined as a mistake in the software application,
and a failure occurs when the application does not comply with
the specifications due to a fault or combination of faults. Testing
time is the time the test team needs to execute the previously
planned test cases. Editing time is the time the developing team
needs to edit the software application. Failure intensity is the
number of failures divided by testing time. Fault detection rate
is the number of faults divided by the sum of testing time and
editing time. Testing and editing costs are estimated from testing
and editing time using average salary given in [5]. The outcome
of this estimation is the expected cost of continuing testing
which is proposed as follows:

     testing t editing eExpected Cost C T C T    (5)

where Tt is the expected testing time estimated from failure

intensity function (t) of Equation (3) and the failure intensity
objective F0, which is set to 0.01 in this study. Finding Tt such

that (Tt+Ttp)  F0 yields

0

ln

t testing previous

F

ar
T T

r

  
  

    
 
 
 

 (6)

where Ttp is the sum of actual testing time of the previous
iterations, and Te is the expected editing time estimated from
the expected number of remaining faults divided by the editing
speed of the previous iteration, that is,

e

previous

remaining faults
T

v
 (7)

The software reliability [Eq(4)] is modified to incorporate

stretched exponential function known as the complementary

cumulative Weibull distribution [2]. The distribution

characteristics depend on the value of Weibull 2-parameter, i.e.,

290

the shape parameter  and the scale parameter . Thus, the

modified reliability function becomes

  
    

|
m t t m t

R t t e
 

  

  (8)

where >0 and >0. In this study, the proper values obtained

from preliminary experiment are =0.75 and =0.1.

The stopping criteria are decided by one of the two

conditions as follows:

The proposed methodology starts with production software

that involves a number of GUI screens. It is used in a preliminary
test to decide the threshold cost of initial total cost and software
reliability. Additional test code is added to set the stage of
regression test, i.e., seeded faults are injected to be tested by
selected data sets and test cases. The selection process considers
how each GUI function of the software works. A set of test cases
is then created based on the guidelines in [6] to comply with the
software function. Since execution sequence of the test cases
affects the occurrence of faults and failures, all test cases will be
organized into many sequences of tests in random order. The
regression test proceeds one iteration at a time for each test
sequence. The first test case of the first sequence is executed. If
a fault occurs, the corresponding faulty code is edited to fix the
erroneous code. The second test case is then executed. This
process repeats until all test cases in the first sequence are
exhausted. The first regression test iteration is said to finish.
Meanwhile, test statistics are collected to analyze if the test
stopping criteria are met and the entire process terminates.
Otherwise, the test continues on next iteration of the second
sequence.

IV. EXPERIMENTS AND RESULTS

The proposed method was tested with an open-source GUI

application named jsyntaxpane [7], which consisted of 99

classes and approximately 3,550 lines of code. This application

is a sub-class of Java jEditorPane with added support for syntax

highlighting of 22 file types. Each file type has its own lexical

analyzer to serve different functionalities. Additional

functionalities could also be added. Fault seeding was performed

to initialize the test process and the regression test began as

described earlier.

The test toolset and their environment were NetBeans IDE

8.0.2 [7] running on Windows 7 64-bit operating system with

Intel(R) Core(TM) i7-3520M CPU and 8.00 GB RAM.
The version of jsyntaxpane used in the experiment contained

two types of faults, namely, initial faults and seeded faults. An
initial fault is an unintended fault that exists in the application
before enhancement. Bug reports provided in the application
project page and selected test cases were employed to uncover
the initial faults. Seeded faults were added during test execution
according to the average fault distribution of the software
systems provided in [6]. There were 21 and 19 lines of code that
contained initial faults and seeded faults, respectively. A total of
40 faults were tallied which caused 37 failures in the application.
Table I summarizes the types of faults in the experiment.

TABLE I. FAULTS DISTRIBUTION IN PRELIMINARY EXPERIMENT.

Type of faults
#lines

Initial faults Seeded faults

FUNCTIONALITY AS IMPLEMENTED

Feature misunderstood, wrong 9

Feature interaction 4

Missing feature 8

STRUCTURAL BUGS

Control logic and predicates 2

Loops and iterations 1

Arithmetic expressions 2

Logic or Boolean, not control 1

Initialization 1

Other processing 6

DATA

Other data definition, structure, declaration

bugs

 1

Value 2

Wrong object accessed 1

Other access and handling 2

Total 21 19

Table II shows the expected testing time, expected editing
time, and expected cost of each iteration computed from
previous iteration using Equation (5). The cost is estimated in
dollars ($) using average salary given in [5]. #rem-faults, #faults,
and #fails are the number of remaining faults at the beginning of
each iteration, the number of faults that have been corrected, and
the number of failures that have occurred in each iteration,
respectively. FDR represents the number of faults per minute.
Failure intensity is the number of failures per minute of testing

time. α, r, and (t) are defined earlier. (t) avg is the average of

(t) from the start of each sequence. m(t) and m(t+t) are the
expected number of failures used to calculate the reliability

R(t/t) by means of Equation (8), where t is set to one year.

It can be seen that the expected testing time and expected
editing time tend to overestimate the actual testing time and
actual editing time. At any rate, both the expected and actual

time tend to go in the same direction. The  calculated in each

iteration is used to estimate the actual , which turned out to be

1.081. Meanwhile, (t) gives a projection of how future failure
intensity will behave. As the number of faults decreases in each
iteration, the reliability increases. Note that the final value of
reliability in each sequence is not equal to one another. This is
because the sequence of test cases affects the number of test

1) If failure intensity (t) is less than or equal to cumulative
average failure intensity in current iteration, compute the
expected cost using Eq(5) to determine if
a) the cumulative cost in current iteration plus the expected

cost of the next iteration are less than or equal to the
threshold cost, use Eq(8) as the stopping criterion provided
that
i) R(t/t) is greater than or equal to 85%, stop;
ii) R(t/t) is less than 85%, continue testing; or

b) the cumulative cost in current iteration plus the expected
cost of the next iteration are greater than the threshold cost,
use Eq(8) as the stopping criterion provided that
i) R(t/t) is greater than or equal to 75%, stop;
ii) R(t/t) is less than 75%, continue testing.

2) If failure intensity (t) is greater than cumulative average
failure intensity in current iteration, then
a) If the cumulative cost is less than or equal to the threshold

cost, continue testing; or
b) If the cumulative cost is greater than the threshold cost, use

Eq(8) as the stopping criterion provided that
i) R(t/t) is greater than or equal to 75%, stop;
ii) R(t/t) is less than 75%, continue testing.

291

iterations, the number of uncovered faults, and failures in each
iteration, all of which affect the value of reliability.

The experimental results supported our hypothesis that the
sequence of test case affected the reliability and failure intensity.
Because test cases were generated according to software
functionality, the order of the test cases was grouped by type of
functions. For example, in sequence 1, the test cases were sorted
according to the similarity of function and the arrangement of
GUI options. The ordering was randomized and tested in a
similar manner for each sequence, yielding the test statistics as
shown in Table II.

From Table II, sequence 1 stopped in iteration 2 because, in
iteration 1, the cumulative average failure intensity equaled the
failure intensity and the sum of cumulative cost. The expected
cost of iteration 2 was less than the threshold cost which was set
to $600. However, reliability function in iteration 1 was less than
75% and testing continued. In iteration 2, the reliability function
was greater than 75%. Applying the stopping criteria to test
sequence 2 and 3, the reliability values became 1.00 and 0.90,
respectively.

Since the stopping criteria depended on failure intensity,
reliability and cost, the total cost was controlled not to exceed
the threshold cost within budget while keeping the reliability of
software at the proper level before releasing the software. This
set up determines the appropriate time to stop testing.

V. CONCLUSION

Determining when to stop regression testing is one of the
most critical problems, thus finding the stopping criteria of
regression testing is important. The proposed methodology not
only considers the theoretical testing aspects such as failure
intensity, reliability, and time, but also administrative aspects, in

particular, testing cost to confine it within the allotted budget.
Thus, stopping criteria become a multi-aspect issue that calls for
careful considerations. Optimizing regression test techniques to
arrive at minimal cost will be a challenging future work. More
efficient test sequence algorithms are needed to improve the
probability of fault occurrences, thereby reducing time
complexity of the proposed methodology.

REFERENCES

[1] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, “Regression test
selection techniques: A survey,” Informatica: An International Journal of
Computing and Informatics, vol. 35, no. 3, pp. 289–321, 2011.

[2] M. R. Lyu and others, Handbook of software reliability engineering, vol.
222. IEEE computer society press CA, 1996.

[3] C.-T. Lin and C.-Y. Huang, “Software Release Time Management: How
to Use Reliability Growth Models to Make Better Decisions”, in 2006
IEEE International Conference on Management of Innovation and
Technology, 2006, vol. 2, pp. 658–662.

[4] M. Xie, Software Reliability Modelling. World Scientific, 1991.

[5] “Software Engineer I Salary”, Salary.com. [Online] http://www1.
salary.com/Software-Engineer-I-salary.html. [Accessed: 28-Mar-2015].

[6] B. Beizer, “bug taxonomy - Otto Vinter”, [Online]
https://ottovinter.dk/bugtaxst.doc.

[7] “NetBeans IDE The Smarter and Faster Way to Code”, Netbeans IDE
8.0.2. [Online] https://netbeans.org/. [Accessed: 15-Mar-2015].

[8] A.K. Onoma, W.T. Tsai, M.H. Ponawala, and H. Suganuma, “Regression
Testing in an Industrial Environment”, Communicaiton of the ACM,
May1988, vol. 41, no. 5, pp. 81-86.

[9] Z. Hui, R. Chen, S. Huang, B. Hu, "GUI regression testing based on
function-diagram", 2010 IEEE International Conference on Intelligent
Computing and Intelligent Systems (ICIS), 2010: pp. 559–563.
doi:10.1109/ICICISYS.2010.5658394.

[10] A.M. Memon, M.L. Soffa, "Regression Testing of GUIs", Proceedings of
the 9th European Software Engineering Conference Held Jointly with 11th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ACM, New York, NY, USA, 2003: pp. 118–127.

TABLE II. EXAMPLES OF FAULT STATISTICS BEING COLLECTED.

T
es

t
se

q
.

R
ev

.

E
x

p
ec

te
d

te
st

in
g
 t

im
e

(m
in

)
E

x
p

ec
te

d

ed
it

in
g
 t

im
e

(m
in

)

E
x

p
ec

te
d

 c
o

st

($
)

A
ct

u
a
l

te
st

in
g

ti
m

e
(m

in
)

A
ct

u
a
l

ed
it

in
g

ti
m

e
(m

in
)

A
ct

u
a
l

co
st

 (
$

)

#
re

m
.
fa

u
lt

s

#
fa

u
lt

s

#
fa

il
s



r F
D

R

F
a
il

u
re

in
te

n
si

ty


(t

)


(t

)
a

v
g

m
(t

)

m
(t

+


t)

R
el

ia
b

il
it

y

1 1 N/A N/A N/A 23.94 465.82 387.29 40 20 9 2.22 0.0094 0.04 0.38 0.23 0.23 7.08 18.00 0.64

 2 140.45 465.82 461.73 44.14 174.23 167.34 20 12 4 2.46 0.0045 0.06 0.09 0.06 0.09 3.16 8.13 0.78

 3 115.47 116.15 166.53 23.91 79.84 79.03 8 6 1 2.71 0.0052 0.06 0.04 0.03 0.06 0.85 2.95 0.87

 4 3.15 26.61 23.27 21.23 0.00 13.56 2 0 0 2.71 0.0000 0.00 0.00 0.00 0.05 0.00 0.00 1.00

 5 N/A N/A N/A

2 1 N/A N/A N/A 39.76 370.02 320.90 40 26 11 2.36 0.0069 0.06 0.28 0.14 0.14 8.09 16.92 0.70

 2 138.88 199.24 247.84 27.44 79.84 81.29 14 6 2 2.46 0.0052 0.05 0.07 0.05 0.09 1.69 5.69 0.80

 3 111.33 106.45 156.14 25.95 45.34 52.78 8 0 0 2.46 0.0000 0.00 0.00 0.00 0.06 0.00 0.00 1.00

 4 N/A N/A N/A

3 1 N/A N/A N/A 28.34 226.48 198.97 40 27 9 3.00 0.0079 0.11 0.32 0.16 0.16 6.54 13.33 0.75

 2 98.00 109.05 149.69 20.91 90.10 85.31 13 7 5 2.43 0.0184 0.06 0.24 0.09 0.12 3.25 5.35 0.90

 3 53.76 77.23 96.02 21.43 0.00 13.69 6 0 0 2.43 0.0000 0.00 0.00 0.00 0.09 0.00 0.00 1.00

 4 N/A N/A N/A

292

