Integrating Software Tool Communication Within An Environment

Peraphon Sophatsathit

and Joseph Urban

Arizona State University

Abstract

The proliferation of software tools has simplified the tasks of
software development. As demands and costs for improving
software quality escalate, more powerful development
support environments are required to carry out the tasks.
However, some obstacles have precluded software developers
from attaining those demands and objectives, such as tool
use, training, productivity metrics and measurement, and
maintenance problems. Various CASE tools are employed to
aid in the development process. In many cases, these tools are
developed by independent vendors to run on different
platforms. The results of these tool applications are therefore
incompatible.

To ease the burden of tool discrepancies and incompatibility,
standardized public tool interfaces were proposed to permit
tools developed by different vendors to coexist, interoperate
and be able to transport across comﬁuter systems. This paper
surveys some of the predominant Integrated Project Support
Environments (IPSE) to establish a viable architectural
framework and requirements for a Virtual Software
Communication System (VSTC) prototype.

Index Terms: SEE, CAIS, PCTE, VSTC, rapid prototyping,
tool-to-tool communication.

Introduction

Software tool communication is a means for different tools to
share, exchange, and manipulate information with minimal
conversion. e objective of tool communication is to
provide a common interface for various software tools
created by different vendors that run on different platforms
to interoperate with one another smoothly and effectively.
Sullivan {19] defines an integrated environment as:

"At the requirements level, an integrated environment is a
collection of user-level software tools and a collection of
automatically maintained relationships among these tools.
Relationships tie tools into cohesive environments,
freeing users from having to manually integrate the tools.”

Charette [7] points out problems with software development:

 tools and methodologies that work well for one project
may not be applicable to others,

 too much time and effort spent on documentation, and

+ lack of understanding on management part.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

© 1992 ACM 0-89791-502-X/92/0002/1070...$1.50

1070

He then defines the definition of a software engineering
environment (SEE) as follows:

"The process, methods, and automation required to
produce a software system.”

This definition encompasses the following aspects:

« the establishment and use of sound engineering principles
in order to economically obtain software that is high
quality, reliable, and works efficiently on real machines;

* a systematic approach to the development, operation, and
maintenance to accomplish high quality software;

+ a set of support facilities that aid in software development
in a productive and cooperative manner. A special
automated tool set, known as Computer-Assisted Software
Engineering (CASE), serves in an important role in many
software development projects; and

* a standardized methodology and consistent transformation
of software being developed throughout its life cycle.

In order to understand the notion of what constitutes tool
communication, a couple of software process fundamentals
are described to establish the requirements and relationships
of these processes to SEEs and the tools that run under SEEs,
namely, Integrated Project Support Environment and
Development Support.

Integrated Project Support Environment (IPSE)

Integrated Project Support Environment (IPSE) was brought

about to help solve software development problems in

recognition of the software crises. However, as mentioned

earlier, the growth, and proliferation of tool development

and usage created wide arrays of project incompatibilities,

data sharing, and tool communication. Charette [7] points

out a number of shortcomings of current software

development practices:

* high cost of software,

* variation in practice, and

« need for increased productivity.

Another important software crisis that must also be taken into

account is:

* reliability and quality of the software product and
environment.

Efforts to provide some cooperation among different SEEs
were initiated, in particular, the Common APSE Interface Set
(CAIS) and the Portable Common Tool Environment (PCTE)
which represent two most prominent systems. The
contribution brought about by these systems is extensive,
such as:

+ Openness that offers the ability to incorporate a variety of

new methods, tools, and processes,

» Scope of integration that defines the extent to which the

components are integrated to provide a homogeneous
environment,

« Scope of support that specifies the extent of activities
supported by the environment from requirements to
maintenance, and

» Guidelines for tool interface and communication
standards that provide a framework for tool portability
and integration.

Oddy [15] describes four classes of SEE models based on the

orientation and flow of information, namely,

* Language-centered environments which support a
particular language,

o Structure-oriented environments which support
language-independent structural manipulation,

« Toolkit environments which provide language-
independent tool support for various development
activities, and

+ Method-based environments which provide tools that
support specification and design methods.

In essence, he categorizes the first two classes as PSE, and the
latter two IPSE, to distinguish the two environments. Efforts
have been made to improve existing IPSEs, ranging from
single user, tightly integrated environment settings, such as
Borland's Turbo family, to multi-user, loosely integrated
environment settings, such as Software Techniques of
Engineering Project (STEP), Precise Interface Control (PIC),
and Microelectronics and Computer Technology
Corporation (MCC). The Development support section
describes some major components and characteristics of the

related work, namely, the CAIS, the PCTE, and the Unix®
operating system. The VSTC section lists a set of
requirements for tool-to-tool communication, as well as some
development details.

Development support

Ideally, common tool communication support should
encompass the following:
+ multiple user roles;
multiple environments;
multiple languages;
common and consistent interface operations;
knowledge-based methodology support (rules describing
the methods / procedures to be applied to software
development);
+ extensibility, which implies that

- customization of user interface,

- customization of database, and

- compatibility with existing and new software tools;
« tool integration that offers

- consistent user interface (operational and visual

consistency), and
- tailorable capability which leads to conformant user
interface of foreign tools;

» database

- transaction processing,

- Database Management Systems (DBMS),

- query language capabilities, and

- database access utilities for tool integration; and
» software reuse.

Other issues such as user-friendliness, security and integrity,
management support, methodology, language support, and
documentation, are also essential to usability and overall
performance of the common tool interface system.

Related work

Numerous efforts have been made in the areas of SEEs, IPSEs,
and the Software Factory Environment for the engineering
process [11] which includes methods, development rules,
standards, and control of data management, engineering
technology, as well as product assurance, to integrate and

standardize software tools, and their corresponding
interfaces. Some of these efforts are CAIS-A, PCTE+, the
EAST Eureka Project which is based on the PCTE [1),
ECLIPSE [3), Open Software Foundation (OSF), and
Ferranti Computer System Lid. The following sections
discuss two large-scale IPSEs and an early software
development environment, namely, CAIS / and Unix,
respectively.

The Common APSE Interface Set (CAIS)

The inception of the Ada effort, initiated by the U.S.
Department of Defense in 1975, has brought about numerous
initiatives in the area of IPSE and SEE. In 1980, a document
produced by Buxton [5], known as the Stoneman report,
established a framework for a common programming
language environment. Two procurements were started,
namely, the Ada Language System (ALS) by the Army and
the Ada Integrated Environment (AIE) by the Air Force.
Unfortunately, the divergent approaches at the ALS Kernel
Ada Programming Support Environment (KAPSE) and the
AIE KAPSE interfaces created significant discrepancies in
the portability and interoperability objectives. This resulted
in a team formed by a tri-services agreement which defined
more specific requirements for an Ada Programming Support
Environment (APSE) and its associated layered architecture.
This team was known as KAPSE Interface Team (KIT). Added
later was the KAPSE Interface Team from Industry and
Academia (KITIA). The KIT / KITIA, under the Ada Joint
Program Office (AJPO), developed the CAIS as the basis for
integrated APSEs to address the issues of tool portability and
project databases between different host computers.

The primary objective of the CAIS was to establish a set of
standards which support Ada software transportability and
sharing of tools across different APSEs. A common set of
interfaces was therefore necessary to facilitate machines and
operating systems independence, and to accomplish tool
interoperability and transportability by means of inter-tool
data standards, such as MIL-STD-1838A [6], which was one
of the most widely referenced documents during the early
development of the CAIS.

Some basic features of the CAIS are:

« Object Management Facilities which are based on the
Entity-Relationship-Attribute (E-R-A) model that
includes create, delete, copy of objects, relationships
between objects, and their attributes;

» Typing of Objects which makes the structure of database
objects visible to all tools;

» Flexible View Mechanism which allows different views of
the same object by different tools to enhance data sharing;

« Transaction Facility which supports atomic execution by
different tools;

» Data Monitoring and Triggering Facilities which
monitors and automatically triggers the execution of a

Ccess;

¢ Process Managemernt Facilities which offers synchronous
or asynchronous process invocation and control;

o Flexible 10 Mechanism which allows unified file IO and
Inter-Process Communication operations; and

» Distributed Implementation Support which facilitates
programmatic control of various object identifications
and locations in heterogeneous computer networks.

These features can be summarized into the following
categories:

* Node Model,

» Processes,

« Input and Output,

« Transactions, and

« Distribution.

Details of CAIS requirements and implementation can be
found in [6, 14).

1071

The Portable Common Tool Environment (PCTE)

Lyons [13] describes three factors associated with the subject

(] Ell'll?lic tool interface (PTI):

1) The use of SEEs and their associated tools and methods,

2) Standardization of ALS, and

3) The impact of the Stoneman Requirements for the APSE's
document.

These factors led to the development of early PTIs, such as the
Ada Langunage System (ALS), Ada Integrated Environment
(AIE) in the U.S., Portable Ada Programming System (PAPS),
Minimal Chill / Ada Prognmminf Support Environment
(MCHAPSE) in Europe. The start of the ESPRIT programme
of the Commission of the E Communities (CEC), led
by six European computer manufacturers in 1983, initiated a

roject entitled "A Basis for a Portable Common Tool
Environment." Subsequent evolution of the PCTE to
various projects such as PCTE+ and Pact environment are
described in {4, 21].

The PCTE is an infrastructure through which different tools
can communicate. The PCTE is aimed at providing a PTI
environment which aids in the development, integration,
and execution of software tools. The objectives of the PCTE
are;

« Generality which facilitates a wide range of applications
and development methods;

» Flexibility which provides simple, yet powerful, services
to suit user needs;

» Homogeneity which preserves logical consistency between
tools and data, as well as uniform system and user
interaction;

e Portability which maintains system specific
independence; and

+ Compatibility which supports existing architectures and
standards.

The basic mechanisms of the PCTE to carry out the above
objectives are:

+ Object Management System,

Processes or Execution Mechanisms,

Concurrency Mechanisms,

Communication Mechanisms, and

Distribution Mechanisms.

These are elucidated in Lyons [13].

Unix

According to Ritchie and Thompson [18], Unix is a general-
se, multiuser, interactive operating system that offers:

* A mountable hierarchical file system,

» Compatible file, device, and inter-process input / output
constructs,

+ Asynchronous process creation,

o User-level command language interface,

. i{stem utilities, and

 High degree of portability.

The infrastructure of Unix is built on the kernel and the
command language interpreter or shell. Tools are
independently developed, installed, invoked and interact
with one another through built-in shell functions, such as
pipe, redirection, filter, or through kernel mechanisms,
namely, inter-process communication, semaphore, and
message-passing. The Unix environment consists primarily
of:

» shell,

» Configuration Management utilities, e.g., make, Source
Code Control System, and Revision Contro] System,
editors,

compilers,

libraries,

debuggers, and

utilities.

1072

Flexibility and portability are the strengths of the Unix
environment in spite of the implementation variations on
different platforms, such as System V, Berkeley Software
Distribution, Santa Cruz Operation Unix, Advanced
Interactive Executive, Ultrix, and Xenix. Applications
written in one platform can be transported to others with
minimal changes. In addition, many recent efforts have been
carried out in an attempt to standardize and to make the
Unix environment more user-friendly and integrated, for
instance, Portable rating System Interface for Computer
Environments (POSIX), and International Standard
Organization (ISO). Moreover, the introduction of Window
Systems, in particular, X Windows ~, OPEN LOOK™, and
Microsoft Windows , brought about new paradigms and
meanings of PSE / SDE to the Unix environment. The
Application Program Interface, and Grephical User Interface,
are & few predominant examples.

Despite the abundant support facilities and recent
development efforts, the Unix environment is not ideal for a
SEE in that some features, such as fork, exec, and signals, may
be hard to implement on other environments, making
software tools difficult to transport to other platforms. One
of the main limitations that restricts common interface
support to attain a tool communication capability is the file
system. The Unix file system is too primitive to serve as the
central information repository that a DBMS can accomplish.
This simplicity makes it difficult to establish an environment
to handle the evolving requirements of IPSE, object-
oriented design, and high-level abstraction paradigms, such
as generalization and specialization, abstract data , and
inheritance. Nevertheless, Unix environment 1s still
regarded as the first-generation JPSE [9].

Virtual Software Tool Communication (VSTC)

Virtual Software Tool Communication (VSTC) is proposed to
support the aforementioned notion of tool-to-tool
interoperability. The most prevalent conventional tool-to-
tool communication approach is by means of conversion
programs written specifically for the host and target
platfiorms. No provision has yet been made to cope with
transportability of foreigx software without the use o ial
conversion programs. VSTC, on the other hand, employs a
portable OMS concept as its kernel and an interface
subsystem tailored to accommodate system-specific
environments. This process is shown in Figure 1, which
illu‘sitrlates the underlying architecture of the VSTC reference
model.

Tool B Tod A
e/ o \avrld
‘ Oﬂm—. .4

4 'y

Oraphical User Intaefac{ GUT

VSTC

[ToterbceSubeystems |

| oMs)|

Figure 1. Architecture of the Reference Model

The next three sections describe the characteristics of the
proposed VSTC system, the development of the reference

architecture snd its corresponding requirements
specification, and the implementation of an ad hoc model
with some criteria for the evaluation of the VSTC system,
respectively. The benefits and future research prospects of
the VSTC are summarized in the last section.

Characteristics

To establish a framework for an efficient tool interoperating
interface, the VSTC focuses on the following aspects of
common software tool communication:

1) A heterogeneous database which provides centralized
control of operational information during software
development; and

2) An integrated support environment which is an abstract
environment that provides a standardized interface and a
set of common services to support software tool
cooperation.

The heterogeneous database provides centralized control
and support facilities for operational information during
software development and maintenance. System
specifications, design documents, source code, test data,
maintenance plan, documentation, quality assurance plan, as
well as viewing mechanisms, can be transported and

interoperated on different data objects through a

standardized interface. Thus, this heterogeneous database

offers:

» A mechanism for representing data objects which is
analogous to the Object Management System (OMS) of
the PCTE, and the Entity Management System (EMS) of
the CAIS;

* A common object library system based upon the notion of
object-oriented design and object management system [2];

» Information repository and sharing compatibilities
between different applications, tools, methodologies, and
projects, such as source code, metrics, test cases, and object

typing.

The integrated support environment establishes an abstract
environment to provide a set of predefined objects and
operators. These objects, in turn, allow users to create user-
defined composite objects to suit their needs. Moreover, the
environment should provide limited facilities that enable
users to access and interact with the information base. These
facilities are:

* An interface management system that facilitates coverage
of the development process to ensure smooth transition
from one tool to another without undue interference or
overlapping roles. The fundamental concept is based on
programs (modules) cooperating through calls and data
sharing, what functions each module provides, and the
interconnection description of the resource flow between
modules in the system;

» Tool cooperation which is accomplished by means of a set
of common services that allow tools to communicate in the
abstract environment. Such services include applications
of user-defined typing definitions, creation of new types
and establishment of definitions of non-local tools.

Development

The system is defined to deal with specific software tool
environments as a prototype to demonstrate the theoretical
notion of tool communication. The system is defined to
provide a number of essential components similar to the
aforementioned large-scale systems, namely, the CAIS and
the PCTE. Moreover, a number of recent research efforts in
the area of object-oriented databases are incorporated into
8;.4 system to support the construction and operation of the
S.

The following sections describe an architecture of a
Reference Model and a set of basic functional requirements
based on the European Computer Manufacturer Association

(ECMA) Reference Model [10].
The reference architecture

Figure 1 illustrates the reference architecture of the proposed
VSTC system. This model is based on the following
assumptions:

+ The VSTC is a system in dent software system to run
on standard Unix tools. us, the VSTC may not run on
any subsets or variations of Unix operating system variants
that are not fully compatible with the standard Unix
operating system;

« Interface mechanisms for inter-module connection and
control can only be accomplished through static type
checking [17]. There is no provision for run-time support
to minimize system overhead and improve performance
efficiency;

+ Primitive objects are predefined and cannot be altered;

+ Data Dictionary format is predefined and of fixed size for
optimal efficiency and execution speed;

¢ The working schema only permits one-to-one and one-to-
many relations. Many-to-many relations are not
supported;

« Nested queries are not su ted by the system, only
simple queries are to be implemented; and

+ Views are to be restricted to the object level for efficiency
reasons. Package viewing will not be supported.

System requirements specification

The VSTC shall provide support for the following

requirements:

« Relationships between interface and subsystems, such as
level of formalism, connection and control, and
communication interface;

« OMS, including object definition and typing, composite
object, and inheritance [16];

+ OMS Services, such as data access and retrieval from the
object repository, granularity of change, and library

imitives;

e Data Query and Manipulation Common Service
(DQMCS) [12, 20], such as Data Dictionary and DDL,
working schema, query processing, and view mechanisms;

« Packaging mechanisms and package reuse;

« Tool-data import and export capabilities; and

« Graphical User Interface.

A VSTC OMS model

In order 1o test the validity of the above requirements and to

undertake some major component risks into account at the

earliest possible stage, an evolutionary rapid prototype for

the OMS was devised as an experimental system such that it

would:

» demonstrate critical functions of the OMS after a minimal
amount of effort,

« serve as a means to provide an overview, but not necessary
represent a real VSTC system,

« be flexible to build, modify, enhance or discard if need be,

» support the verification of the stated requirements.

Rapid prototyping

The process of prototype development for the OMS was
broken down into four stages represented by four different
diagrams, namely, the context diagram, the essential
functions diagram, the E-R diagram, and the control-flow
graph.

The context diagram contains the processes under
consideration, along with major input and output
transformation processes. The essential function diagram
encompasses major functions performed by the OMS. The E-
R diagram denotes the structural relationships between
various objects manipulated and stored by the OMS. The

1073

control-flow graph depicts a preliminary OMS prototype
module calling sequence.

Criteria

To determine the applicability of the prototype as a means to
validate the requirements, an evaluation method was
required to measure the proto created earlier. Connell
and Shafer (8] outline a set of criteria to assess a project plan
for rapid prototyping, namely, approach jusui'ﬁcation.
goals, scope of effort, development tools, user
responsibilities, deliverables, and preliminary schedule.
Partial criteria were adopted to assist the prototype
evaluation process, i.e., approach justification, goals, and
scope of effort.

* Approach justification There are a number of advantages
to this rapid prototyping method. First, it offers a quick
overview of the overall requirements of the OMS from
different perspectives, namely, from the OMS context
standpoint, from the essential functions standpoint, from the
control flow standpoint, and from the entity (data)
relationship standpoint. Second, essential requirements can
be analyzed and validated incrementally which, in turn, lead
to the establishment of functional specifications of the OMS.
Third, it provides a concise and easy to modify high-level
conceptual model that will eventually evolve into a working
reference model. Finally, details in object attributes,
functionalities of object library, packaging constructs and
techniques can be avoided at such an early stage to
concentrate on more important issues at hand. That is to say,
fine wning of various design approaches, performance
criteria, and implementation issues can be postponed until
the appropriate stage.

¢ Goals As mentioned earlier, the objectives of the
development of the prototype were to validate the
requirements of the OMS, and to arrive at the functional
specifications for all major components of the OMS,.
Moreover, component sharing and reuse were identified early
from the outline of the prototype. Such identification
enables a derivation of an empirical system configuration,
which subsequently will lead to an efficient system design
and implementation.

» Scope of effort Some anticipated methodologies, tools,
DBMS schemas, functional considerations, system
component interactions were identified during the analysis
of the prototype. Decisions on issues such as component
boundary, inclusion of other related components or
activities, as well as component constraints were visible and
partially established at the outset. Such early unravelling of
constraints and limitations lent themselves to subsequent
derivation of system specifications.

Table 1 summarizes the resulting evaluation of the
requirement proto using the first three criteria suggested
by Connell and Shafer [8].

Summary and Future Research

The research was an attempt to establish a small-scale,
demonstrable working prototype which can be used as a
laboratory research vehicle for a development environment.
The concepts are based on the use of a common repository to
facilitate sharing, exchanging, and transferring of data by
standard and non-standard tools that access and manipulate
these data. The goal is to provide a base system which will
enable users to import and export software tools across
computer systems with minimal efforts and reconfiguration.
The system will enable the software developer to exploit the
environment support across a wide array of computer systems
based on a standardized interface and conforming
requirements.

The final demonstration feasibility in the form of a
Frototype will be delivered as a software engineering
aboratory support system. The prototype is intended to be a
virtual layer which will not involve as closely with the
operating systems activities as the CAIS and the . The
paradigms employed in the proposed system, namely, the
abstract environment, the interface mechanism, and the
object-oriented design can also be extended to other areas of
integrated support and development environments or as a
model for future research. For instance, configuration

management support, transaction management, and Interface
Command Language Interpreter.
[OMS teq/ | Approach Goals Scope of
criteria Justifica. Effort
Data access | obtain a methods by | access
{ retrieval macroscopic | which object | control
from view of the | info.access | through
repository OMS func. | and ret are message
on data obj | carried out | manager
Cranularity | E-R_ rules to accomplish
of change relationship | stipulate through
mappings structure and | inheritance
content mechanism
modification
brary methods of | organize and | only
Primitives composite manipulate
objects, primitive manipulated
and package | objects via obj mgr;
formation packages,
user-defined
object types
are formed
based on obj
relationship
with
primitives
DD and quick identify interact only
DDL overview of | info. to be with query
the roles of | stored by DD} and object
DD and DDL] for OMS routines
services through DD
front-end
Working analyze schema and | directly
Schema schema L relationships | managed
manipulation] construction] by schema
techniques | and mgr isolate
modification | from other
DQMCS
functions
Query overview of | OMS query | consult
query processing for all data
processing method objects
path needed
View a mechanism | info. hiding | restricted
to study and access levels of
how to control, display and
l. A while access of obj
multiple supportin ranulari
interfaces sc}?epma 8 gy g
for obj. browsing predetermineg
working
schemas

Table 1. Prototype Evaluation

1074

References

(1]

(2

(31

(4]

(5]

(6]

(7]

(8]

9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

K. H. Bennett, Software Engineering Environments:
Research and Practice. Chichester, New York:
Halsted Press, 1989.

G. S. Blair, J. Malik, J.R. Nicol, and J. Walpole, "A
synthesis of object-oriented and functional ideas in
the design of a distributed software engineering
environment,” Software Engineering Journal. May
1990, vol. 5, no. 3, pp. 193-204.

F. Bott, ECLIPSE-An Integrated Project Support
Environment. London, United Kingdom: Peter
Peregrinus Ltd, 1989.

G. Boudier, F. Gallo, R. Minot, and I. Thomas, "An
Overview of PCTE and PCTE+," Proceedings of the
ACM SIGSOFT | SIGPLAN—Software Engineering
Symposium on Practical Software Development
Environments. November 1988, vol. 13, no. §, pp.
248-257.

J. N. Buxton, STONEMAN: Requirements for Ada
Programming Support Environments. The United
?;astgs Department of Defense, Washington, February
"Introduction to CAIS,” Common Ada Programming

Support Environment (APSE) Interface Set. MIL-
STD-1838A, 30 September 1989.
R. N. Charette, Software Engineering

Environments—Concepts and Technology. New
York, New York: Intertext Publications, Inc.
{(McGraw-Hill Book Company), 1986.

J. L. Connell and L. Shafer, Structured Rapid
Prototyping—An Evolutionary Approach to
Software lgevelopmem. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1989.

P. W. Dell, "Early experience with an IPSE,” Software
Engineering Journal. November 1986, vol. 1, no. 6,
pp. 259-264.

ECMA Technical Committee (TC33)—ECMA TR/ 55,
A Reference Model for Frameworks of Computer-
Assisted Software Engineering Environments.
European Computer Manufacturers Association
(ECMA), 114 Rue du Rhone - CH - 1204 Geneva
(Switzerland), December 1990.

M. W. Evans, The Software Factor
Geg;ration SEE. New York: John
1989.

B. Hailpern and H. Ossher, "Extending Objects to
Support Multiple Interfaces and Access Control,”
EEE Transaction on Software Engineering.
November 1990, vol. 16, no. 11, pp. 1247-1257.

T. G. L. Lyons, "The public tool interface in software
engineering environments,” Software Engineering
Journal. November 1986, vol. 1, no. 6, pp. 254-258.
R. Munck, P. Oberndorf, E. Ploedereder, and R. Thal),
"An Overview of DOD-STD-1838A (proposed), The
Common APSE Interface Set, ﬁevision A"
Proceedings of the ACM SIGSOFT t SIGPLAN—
Software Engineering Symposium on Practical
Software Development Environments. November
1988, vol. 13, no. 5, pp. 235-247.

G. C. Oddy, "Systems and Software Environment or
Factory?,” Software Engineering Environments:
Research and Practice, K. H. Bennett (Editor).
Chichester, New York: Halsted Press, 1989, Chapter 3,
Pp. 29-4.

M. H. Penedo, E. Ploedereder, and I. Thomas, "Object
Management Issues for Software Engineering
Environments—Workshop Report,” Proceedings of
the ACM SIGSOFT | SIGPLAN—Software
Engineering Symposium on Practical Software
Development Environments. November 1988, vol.
13, no. S, pp. 226-234.

R. Prieto-Diaz and J. M. Neighbors, Module
Interconnection Languages: A Survey. Department
of Information and Computer Science, University of

A Fourth
iley & Sons,

1075

(18]

(19]

(20]

[21]

California Irvine, Irvine, CA 92717. August 1982.
D. M. Riichie and K. Thompson, "The Unix Time-
Sharing System," The Bell System Technical Journal.
July-August 1978, vol. 57, no. 6, part 2

K. J. Sullivan and D. Notkin, "Reconciling
Environment Integration and Component
Independence,” Proceedings of the ACM SIGSOFT
SIGPLAN Software Engineering Symposium on
Practical Software Development gnviranmems.
December 1990, vol. 15, no. 6, pp. 22-33.

M. Tedjini, I. Thomas, G. Benoliel, and F. Gallo, "A
Query Service for & Software Engineering Database
System,” Proceedings of the ACM SIGSOFT /
SIGPLAN—Software Engineering Symposium on
Practical Software Development Environments.
December 1990, vol. 15, no. 6, pg 238-248.

1. Thomas, "PCTE Interfaces: Supporting Tools in
Software Engineering Environments,”" [EEE
Software. November 1989, pp. 15-23.

