
Integrating Software Tool Communication Within An Environment

Peraphon Sophatsathit and Joseph Urban

Arizona State University

Abstract

The proliferation of software tools has simplified the tasks of
software development. As demands and costs for improving
software quality escalate, more powerful development
supprt environments are required to carry out the tasks.
However, some obstacles have precluded software developers
from attaining those demands and objectives, such as tool
use, training, productivity metrics and measurement, and
maintenance problems. Various CASE tools are employed to
aid in the develo~ertt process. In many cases, these teds are
developed by independent vendors to run on different
platforms. The results of these tool applications are therefore
incompatible.

To ease the burden of tool dkrepancies and incompatibility,
standardized public tool interfaces were proposed to permit
tools developed by different vendors to coexis~ interoperate

surveys some of the predominant I%egrated Project Support
and be able to transport across com uter systems. This paper

Environments (IPSE) to establish a viable architectural
framework and requirements for a Virtual Software
Communication System (VSTC) prototype.

Index Terms: SEE, CAIS, PCfE, VSTC, rapid prototyping,
tool-to-tool communication.

Introduction

Software tool communication is a means for different tools to
share, exchrm e, and manipulate information with minimal
conversion. he objective of tool communication is to
provide a common interface for various software tools
created by different vendors that run on different platforms
to intero rate with one snother smoothly and effectively.

rSullivan 19] defines an integrated environment as:

“At the requirements level, an integrated environment is a
collection of user-level software tools and a collection of
automatically maintained relationships among these tools.
Relationships tie tools into cohesive environments,
freeing users from having to manually integrate the tools.”

Chsrette [7] points out problems with software development:
● tools and methodologies that work well for one project

may not be applicable to others,
● too much time and effort spent on documentation and
● lack of understanding on management part.
Permission to copy without fee all or part of this material is
granted provided that the copiee are not made or distributed for
direct commercial advantage, the ACM ccpyright notice and the
title of tha publication and ite date appear, and notice ie given
that copying is by permission of tha Association for Computing
Machinery. To copy otherwiea, cr to republish, requiree a fee
andlor epecific parmiseion.
01992 ACM 0.89791 .502. X/92/0002 /1070 ...$l .50

He then defiics the definition of a software engineering
environment (SEE) as follows:

“The process, methods, and automation required to
produce a software system.”

This definition encompasses the following SSDCCW
.

.

●

✎

the establishment &d use of sound en@r&ring principles
in order to economically obtain software that is high
quality, reliable, and works efficiently on real machines;
a systematic approach to the developmen~ operation, and
maintenance to accomplish high quality softwae;
a set of support facilities that aid in software development
in a productive and cooperative manner. A special
automated tool se~ known as Computer-Assisted Software
Engineering (CASE), serves in art important role in many
software development projects; and
a standardized methodology and consistent transformation
of software being develop&l throughout its life cycle.

In order to understand the notion of what constitutes tool
commurticatioz a couple of software process fundamentals
are described to establish the requirements and relationship s

zof these processes to SEES and the tools that run under SE s,
namely, Integrated Project Support Environment and
Development Support.

Integrated Project Support Environment (IPSE)

Integrated Project Support Environment (IPSE) was brought
about to hel solve software development problems in

!recognition o the softwwe crises. However, as mentioned
earlier, the growth, and proliferation of tool develo~ent
and usage created wide arrays of project incompatibdities,
data sharing, and tool communication. Charette [7] points
out a number of shortcomings of current software
development ractices:

?● high COStO SOftW5r~
● variation in practice, and
● need for increased productivity.
Another important software crisis that must also be taken into
account is:
● reliability and quality of the software product and

environment.

Efforts to provide some cooperation among different SEES
were initia~ in particular, the Common APSE Interface Set
(CAIS) and the Portable Common Tool Environment (PCTE)
which represent two most prominent systems. The
contribution brought about by these systems is extensive,
such w.
● Openness that offers the ability to incorporate a variety of

new methods, tools, and processes,
● Scope of integration that defines the extent to which the

1070

components are integrated to provide a homogeneous
environment,

● Scope of support that specifies the extent of activities
supported by the environment from requirements to
maintenance, and

● Guidelines for tool interface and communication
standards that provide a framework for tool portability
and integration.

Oddy [15] describes four classes of SEE models based on the
orientation and flow of information, namely,
● Language-centered environments which support a

particular language,
9 Structure-oriented environments which support

kutguage-independent structural manipulation,
● Toolkit environments which provide language-

independent tool support for various development
activities, and

● Method-based environments which provide tools that
support specification and design methods.

In essence, he categorizes the fust two classes as PSE, and the
latter two IPSE, to distinguish the two environments. Efforts
have been made to improve existing IPSES, ranging from
single user, tightly integrated environment settings, such as
Borland’s Turbo family, to multi-user, loosely integrated
environment settings, such as Software Techniques of
Engineering Project (STEP), Precise Interface Control (PIC),
and Microelectronics and Computer Technology
Corporation (MCC). The Development support section
describes some major components and characteristics of the
related work, namely, the CAIS, the PCTE, and the Unix”
operating system. The VSTC section lists a set of
requirements for tool-to-tool communication, as well as some
development details.

Development support

Ideally, common tool communication support should
encompass the following:
c multiple user roles;
● multiple environments;
● multiple languages;
● common and consistent interface operations;
● knowledge-based methodology support (rules describing

the methods / procedures to be applied to software
development);

● extensibility, which implies that
customization of user interface,
customization of database, and
compatibility with existing and new software tools;

● tool integration that offers
consistent user interface (operational and visuaI
consistency), and
tailorable capability which leads to conforrnant user
interface of foreign tools;

● database
- transaction processing,
- Database Management Systems (DBMS),

query language capabilities, and
database access utilities for tool integration; and

● software reuse.

Other issues such as user-friendliness, security and integrity,
management support, methodology, language support, and
documentation, are also essential to usability and overall
performance of the common tool interface system.

Related work

Numerous efforts have been made in the areas of SEES, IPSES,
and the Software Factory Environment for the engineering
process [11] which includes methods, development rules,
standards, and control of data management, engineering
technology, as well as product assurance, to integrate and

standardize software tools, and their corresponding
interfaces. Some of these efforts are CAIS-A, PCI’E+, the
EAST Eureka Project which is based on the PCTE [1],
ECLIPSE [3], Open Software Foundation (OSF), and
Ferranti Computer System Ltd. The following sections
discuss two large-scale IPSES and an earl software
development environmen~ namely, CAIS / ~ and Unix,
respective] y.

The Common APSE Interface Set (CAM)

The inception of the Ada effort, initiated by the U.S.
Departmentof Defense in 1975, has brought about numerous
initiatives in the area of IPSE and SEE. In 1980, a dcatrrtent
produced by Buxton [5], known as the Stoneman repor~
established a framework for a common programming
language environment. Two procurements were started,
namely, the Ada Language System (ALS) by the Army and
the Ada Integrated Environment (AIE) by the Air Force.
Unfortunately, the divergent approaches at the ALS Kernel
Ada Pro ramming Support Environment (KAPSE) and the

bAIE KA SE interfaces created significant discrepancies in
the portability and inter~erability objectives. This resulted
in a team formed by a tn-sewices agreement which defined
more specific r uirements for an Ada Programmirr

7
g support

Environment (A SE) and its associated layered architecture.
This team was known as KAPSE Interface Team (KIT). Added
later was the KAPSE Interface Team t%om Industry and
Academia (KITIA). The KJT / KITfA, under the Ada Joint
program Office (AJPO), developed the CAIS as the baais for
integrated APSES to ad&ess the issues of tool portability and
project databases between different host computers.

The primary objective of the CAM was to establish a set of
standards which support Ada software transportability and
sharing of tools across different APSES. A common set of
interfaces was therefore necessary to facilitate machines and
operating systems independence, and to accomplish tool
interoperability and trans rtability by means of inter-tool
data standards, such as & L-STD-1838A [6], which was one
of the most widely referenced documents during the early
development of the CAIS.

Some basic features of the CAIS are:
● Object Management Facilities which are based on the

Entity -Relationship-Attribute (E-R-A) model that
includes create, delete, copy of objects, relationships
between objects, and their atrnbutes;

● Typing of Objects which makes the structure of database
objects visible to all tools;

■ Flaible View Mechanism which allows different views of
the same object by dtiferent tools to erthance data sharing;

● Transaction Facility which supports atomic execution by
different tools;

● Data Monitoring and Triggering Facilities which
monitors and automatically triggers the execution of a

● ~~~ Management Facilities which offers synchronous
or asynchronous process invocation and control;

● Flext”ble IO Mechanism which allows unified file 10 and
Inter-Process Communication operations; and

● Distributed Implementation Support which facilitates
progrsntrnatic control of various object identifications
and locations in heterogeneous computer networks.

These features can be summarized into the following
categories:
● Node Model,
● Processes,
● Input and Output,
● Transactions, and
● Distribution.

Details of CAIS requirements and implementation can be
found in [6, 14].

1071

ThePortabk Common Tool Environment (PCTE)

L ens [13] describ three factors associated with the subject
o{ ublic tool interface (PTl):
1) he use of SEES and their associated tools end methods,
2) Standardization of ALS, and
3) The impact of the Stonemen Rquiretnents for the APSES

document.

These factors led to the development of early PT’Ia,such as the
Ada Langua e System (ALS), Ada Integrated Environment

t(AIE) in the .S., PortableAda Programming Systi. (PAPS),
Minimal Chill / Ada Programrnirt Su
(MCHAPSE) in Eur

Y
The start olthe ~P’~E*~m-al

of the commission o the European Communities (CEC~ led
by six Eur~an cemputer manufacturers in 1983, initiated a
~:~; entMed “A Besis for a Portable Common Tool

mnent.” Subsequent evolution of the PCTE to
various projects such es PCTE+ end Pact environment are
described in [4, 21].

The PCTE is m infrssrructure through which different tools
can communicate. The PCTE is aimed at providing a PTI
environment which aids in the development, integratiortt
and execution of software tools. The objectives of the PCTE
are:
● Generality which facilitates a wide range of applications

and development methti,
● Flexibility which provides simple, yet powerful, services

to suit user needs;
● Homogeneity which preserves logical consistency between

tools end data, as well as uniform system and user
interaction;

● Portability which maintains system specific
independency and

● Compatibility which supports existing srchhectures and
standards.

The basic mechanisms of the PCTE to carry out the above
objectives are:
● Object Msna emertt System,

t● Processes or xecution Mechanisms,
● Concurrency Mechanisms,
● Communication Mechanisms, and
● Distribution Mechanisms.
These are elucidated in Lyons [13].

Unix

According to .Ritchi~ and ~ompson ~18], Unix is a gerterttl-

w~~~’i~e~~~~~file~% “s-“’ O’=s’
● Compatible fil% device, and inter-process input / output

constructs,
c Asynchronous process creation.
● User-level command language interface,

; ~i?~~$~kbili~.

The infiastrttcture of Unix is built on the kernel snd the
command language interpreter or shell. Tools are
independently developet installe~ invoked and interact
with one another through built-in shell functions, such as
pipe, redirection, filter, or through kernel mechanisms,
namely, inter-process communication, semaphore, and
~fessage-passing. The Unix environment consists primarily

●

✎

●

✎

●

✎

●

shell,
Configuration Management utilities, e.g., make, Source
Code Control Systetm and Rev&Ion Contrul Systernt
editors,
compilers,
libraries,
debuggers, and
utilities.

Flexibility and portability are the stren@s of the Unix
environment in spite of the implementation variations on
different platforms, such as System V, Berkeley Software
Distribution, Santa Cruz Operation Unix, Advanced
Interactive Executive, Uhrix, and Xenix. Applications
written in one platform can be transported to others with
minimal changes. In additiotL many recent efforts have been
canied out in an attempt to standardize and to make the
Unix environment more user-tliendly and integrated, for
instan% Portable

T
rating Systern Interface for Computer

Environments (P SIX), and International Standard
organization (ISO). Moreover, the introduction of Window
Systems, in psrticularrX Windows’”, OPEN LOOKm, md
Microsoft Windows brought about new paradigms and
meanings of PSE / S6E to the Unix environment. The
Application Program Interface, and Oraphicsl User Interface,
are a few predominant examples.

Despite the abundant support facilities and recent
development efforta, the Unix environment is not i&sl for a
SEE in that some featur~ such as fork exec, end signals, may
be hard to implement on other environments, making
software tools diffkult to transport to other platforms. One
of the main limitations that restricts common interface
support to attain a tool communication capability is the file
system. The Unix file system is too primitwe to serve as the
central information reposito that a DBMS cart accomplish.

“?This simplicity makes it dlf lcult to establish en environment
to handle the evolvin ~ requireme nts of IPSE, object-
oriented desi~ and hig -level abstraction paradigms, such
as generalization and specialization, abstract data ~, and
inheritance. Nevertheless, Unix environment m still
regarded as the fust-generation IPSE [9].

Virtual Software Tool Communication (VSTC)

Virtual Software Tool Communication (VSTC) is proposed to
support the aforementioned notion of tool-to-tool
interoperabili~. The most prevalent conventional tool-to-
tool cortunumcation approach is by means of conversion
pro rams written specifically for the host and target
plaforms. No provision has yet been made to co~ w,th
transportability of forei
conversion O.ams. %%%Y2%k%%&llp~::

Gportable O S concept as its kernel and an interface
subsystem tailored to accommodate system-specific
environments. This process is shown in Pi re 1, which

rillustrates the underlying architecture of the V TC reference
model.

Pigure 1. Architecture of the Reference Model

The next three sections describe the characteristics of the
PIOPOSd VSTC system, the development of the reference

1072

architecture and its corresponding requirements
specificatiorh and the implementation of an ad hoc model
with some criteria for the evaluation of the VSTC system,
respectively. The benefits and future research prospects of
the VSTC are summarized in the last section.

Characteristics

To establish a framework for an efficient tool interoperating
interface, the VSTC focuses on the following aspects of
common software tool communication.
1) A heterogeneous database which provides centralized

control of operational information during software
developmenfi and

2) An integrated support environment which is an abstract
environment that provides a standardized interface and a
set of common services to support software tool
cooperation.

The heterogeneous database provides centralized control
and support facilities for operational information during
software development and maintenance. System
specifications, design documents, source code, test data
maintenance plan, docttmentatio~ quality assurance plan, as
well as viewing mechanisms, can be transported and
interoperated on different data objects through a
standardized interface. Thus, this heterogeneous database
offers:
.

,

●

A mechanism for representing data objects which is
analogous to the Object Management System (OMS) of
the PCTE, and the Entity Management System (EMS) of
the CAIS;
A common object library system based upon the notion of
object-oriented design and object management system [2];
Information repository and sharing compatibilities
between different acwlications. tools. methodolorties. and
~ojects, such as so~~e rode, metrics,”test cases, &d object
typing,

The integrated support environment establishes an abstract
environment to provide a set of predefine objects and
operators. These objects, in turn, allow users to create user-
defined composite objects to suit their needs. Moreover, the
environment should provide limited facilities that enable
users to access and interact with the information base. These
facilities are:
● An interface management system that facilitates coverage

of the development process to ensure smooth transition
from one tool to another without undue interference or
overlapping roles. The fundamental concept is based on
programs (modules) cooperating through calls and data
sharing, what functions each module provides, and the
interconnection description of the resource flow between
modules in the system;

9 Tool cooperation which is accomplished by means of a set
of common services that aflow tools to communicate in the
abstract environment. Such services include applications
of user-defiied typing definitions, creation of new types
and establishment of definitions of non-local tools.

Development

The system is defiied to deal with specific software tool
environments as a prototype to demonstrate the theoretical
notion of tool communication. The system is defined to
provide a number of essential components similar to the
aforementioned large-scale systems, namely, the CAIS and
the PCTE. Moreover, a number of rwent research efforts in
the area of object-oriented databases are incorporated into
the system to support the construction and operation of the
OMS.

The following sections describe an architecture of a
Reference Model and a set of basic functional requirements
based on the European Computer Manufacturer Association

(ECMA) Reference Model [10].

The reference architecture

Figure 1 illustrates the reference architecture of the proposed
VSTC system. This model is based on the following
assumptions:
.

.

The”VSTC is a system m dent software system to mn
on standard UNX tools. w us, the VSTC may not run on
any subsets or variationa of Unix o~ating system variants
that are not fully compatible with the standard Unix
operating system;
Interface mechanisms for inter-module connection and
control cart onl be accomplished through static type
checking [17]. fiere is no provision for run-time support
to minimize system overhead and imurove rmformance

●

✎

.

.

●

efficiency; “
.

Primhive objects are predefmed and cannot be altered;
Data Dictionary format is uredefmed and of fixed size for
o tirnal eftici~cy and ex~ution s~,
‘&e working schema only permits one-to-one and one-to-
many relations. Many-to-many relations are not
suppimted;
Nested queries are not su ted by the system, only

‘v -simtde aueries are to be imD ementexk and
Vie~s ;e to be restricted h the obj~t level for efficiency
reasons. Package viewing will not be supported.

System requirements speclflcatlon

The VSTC shall provide support for the following
requirements:
●

.

.

.

.

.
●

relationships between interface and subsystems, such as
level of formalism, connection and control, and
communication interface,
OMS, including object &fmition and typing, composite
objec~ and inheritance [16];
OMS Services, such as data access and retrieval from the
object repository, granularity of change, and library

~~’~~ery and Manipulation Common Service
(DQMCS) [12, 20], such as Data Dictionary and DDL,
working schema query pcessing, and view mechanisms;
Packaging mechanisms and package reuse;
Tool-data import and export capabilities; and
GraphicaI User Interface.

A VSTC OMS model

In order to test the validity of the above requirements and to
undertake some major component risks into account at the
earliest

r
ssible stage, an evolutionary rapid prototype for

the OM was &vised as an experimental system such that it
would:
● demonstrate critical functions of the OMS after a minimsd

amount of effor~
● serve aaa meansto

r
vide an overview, but not necessary

retrresent a real VST system.
● b’ flexible to build, mddify, “enhance or discard if need be,
● support the verification of the stated requirements.

Rapid prototyplng

The process of prototype development for the OMS was
broken down into four stages represented by four different
diagrams, namely, the context diagram, the essential
~r~~~ diagram, the E-R diagram, and the control-jlow

The context diagram contains the processes under
consideration, along with major input and output
transformation processes. The essential function diagram
encompasses major functions performed by the OMS. The E-
R diagram denotes the structural relationships between
various objects manipulated and stored by the OMS. The

1073

control-flow graph depicts a preliminary OMS prototype
module calliig sequence.

Crlterla

To determine the applicability of the prototype as a means to
validate the requirements, an evaluation method was
required to measure the prototype created earlier. Connell
and Shafer [8] outliie a set of crtteria to assess a project plan
for rapid prototyping, namely, approach justi ~cation,
goals, scope [of effort, development too s, user
responsibilities, deliverables, and preliminary schedule.
Partial criteria were adopted to assist the prototype
evaluation process, i.e., approach justification, goals, and
scope of effort.

● Approach justif~ation There area number of advantages
to thk rapid prototyping method. First, it offers a ulck

1overview of the overall requirements of the OMS rom
different perspectives, namely, from the OMS context
standpoin~ from the essential functions standpoin~ from the
control flow standpoint, and from the entity (data)
relationship standpoint. Secort4 essential requirements can
be analyzed and validated incrementally whick in turm lead
to the mtablishment of functional specifications of the OMS.
Third, it provides a cmciae and easy to modify high-level
conceptual model that will eventually evolve into a working
reference model. Finally, details in object attributes,
functionalities of object library, packaging constructs and
techniques can be avoided at such an early stage to
concentrate on more important issues at hand. That is to say,
fine tuning of various design approaches, performance
criteri% and implementation issues can be postponed until
the appropriate stage.

● Goals As mentioned earlier, the objectives of the
development of the prototype were to validate the
requirements of the OMS, and to arrive at the functional
specifications for all major components of the OMS,.
Moreover, com~nent sharing and reuse were identifkl early
from the outline of the prototype. Such identification
enables a derivation of an empirical s stem cotilguratiom

?“which subsequently will lead to an ef lclent system design
and irnpknmntation.

● Scope of effort Some anticipated methodologies, tools,
DBMS schemas, functional considerations, system
component interactions were identifkl during the analysis
of the prototype. Decisions on issues such as component
boundary, inclusion of other related components or
activities, as well as component ccmstmints were visible and
partially established at the outset. Such early unraveling of
constraints and Ihnitations lent themselves to subsequent
derivation of system specifications.

Table 1 summarizes the resulting evaluation of the
requirement proto

Y
using the fiist three criteria suggested

by Cornell and Sh er [8].

Summary and Future Research

The research was an attempt to establish a small-scale,
demonstrable working prototype which can be used as a
laboratory research vehicle for a development environment.
The cxmcepts are baaed on the use of a common repository to
facilitate sharing, exchan ing, and transferring of data by

fstandard and non-standar tools that access and manipulate
these data. The goal is to provide a base system which will
enable users to import and export software tools across
computer systems with rrdnhnal efforts and reconf@tration.
The system will enable the software developer to exploit the
environment aupprt across a wide away of computer systems
based on a standardized interface and conforming
requirements.

The final demonstration feasibility in the form of a

~slwratory support system. The prototype is intended to be a
rototype will be delivered as a software engineering

virtutd layer which will not involve as closel with the
operating systems activities as the CAIS and the &. The
paradigms employed in the proposed system namely, the
abstract environment, the interface mechania~ and the
object-oriented design can also be extended to other areas of
integrated support and development environments or as a
model for future research. For instance, corttl uration

kmanagement supporL transaction managemen~ and terface
Cormiand Lar@age frtterpreter.

3?27
ha access
/ retrieval
from
repository

Granularity
of change

~lbrary
Primitives

bD d
DDLm

Working
Schema

Q=7--

Approach
Justifica.
obtain a
macroscopic
view of the
OMS ftUtC.
on data obj

>-R
relationship
mappings

methods of

obje&s,
and package
formation

quick
overview of
the roles of
DD and DD1

arudyza
achesna
manipulation
techniques

overview of
query
processing
path

a mechamsm
to study
how to
m
multiple
interfaces
for obj.

Goals

methods by
which objecl
info. access
and ret are
carried out

rules to
stipulate
structure ant
content
modification]

orgamze and
manipulate
primitive
objects

b
ldentlf y
info. to be
stored by DI
for OMS
services

~
relationships
construction
and
modification

?)MS query
processing
method

~
snd across
:ontrol,
while
supporting
schema
browsing

-s
E%% 0

f

aceas
control
through
me8sage
manager

through
inheritance
mechanism

only

manipulated
via obj mg~
packages,
User-defined
object types
are formed
baaed on obj
relationahlp
with
primitives

\
interact only
with uery -

%“and O JC-Ct
routines
throuzh DD
front~end

dmctly
managed
by schema
mgr isolate
from other
DQMCS
functions

cmtsult DD
for all data
objects
needed

resmcted
levels of
display and
access of obj
granularity

predetermine
working

Table 1. Prototype Evaluation

1074

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. H. Bennet~ Sojlware Engineering Environments:
Research and Practice. Chichester, New York:
Halsted Press, 1989.
G. S. Blair, J. Malilq J.R. Nicol, and J. Walpole, “A
synthesis of object-oriented and functional Ideas in
the design of a distributed software engineering
environment” Software Engineering Jourml. May
1990, vol. 5, no. 3, pp. 193-204.
F. Bo~ ECLJPSE-An Integrated Project Support
Environment. London, United Kingdom: Peter
Peregrinus L@ 1989.
G. Boudier, F. Gallo, R. MinoL and I. Thomas, “An
Overview of PCTE and MXE+,’* Proceedings of the
ACM SIGSOFT I SIGPLANAojlware Engineering
Symposium on Practical Software Development
~~~<rornents. November 1988, vol. 13, no, 5, pp.

.
J. N. Buxton, STONEMAN: Requirements for Ada
Programming Support Environments. The United
~&a~oSDepartment of Defense, Washington, February

‘~~;duction to CAM,” Common Ada Pro ramming

Support Environment (APSE) Interface &t. MIL-
STD-1838& 30 September 1989.
R. N. Charette, Software Engineering
Environments-conce ts and Technology. New
York, New York: ~tertext Publications, Inc.
(McGraw-Hill Book Compan ), 1986.

?J. L. Comtell and L. Sha er, Structured Rapid

;;i;;?~lnd~t;.~;!ut~;;;;odp~;~hN;;
Je&ey: Prentice-H~l, Inc., 1989:
P. W. Dell. “EarlY ex~rience with an IPSE.” Sot?ware
Engineering Jo~rna/. November 1986, vol. I,-no. 6,
pp. 259-264.
ECMA Tectilcal Committee ~C33 )-ECMA TR / 55,
A Reference Model for Frameworks of Computer-
Assisted Software En ineering Environments.
Europeart Computer ~anufacturers Association
(ECMA), 114 Rue du Rhone - CH - 1204 Geneva
(Switzerland), December 1990.
M. W. Evans, The Sofware Factor A Fourth
Generation SEE. New York: John ~y & Sons,
1989.
B. Hailpem and H. Ossher, “Extending Objects to
Su port Multiple Interfaces and Access Control,”

sIE E Transaction on Software Engineering.
November 1990, vol. 16, no. 11, pp. 1247-1257.
T. G. L. -Lyons, ‘we public tool trtterfacein ~ftware

EYz’30::zT&;:ol??&; 2$7%8
R. Munck P. Obemdorf, E. Ploedereder, and R. Than,
“An Overview of DOD-STD-1838A ( reposed), The
Common APSE Interface Set, i evision A.”
Proceedings of the ACM SIGSOFT I SIGPLAN—
Sof~are Engineering S m~osium on Practical
Software Development k?’nv:ronments. November
1988, vol. 13, no. 5, pp. 235-247.
G. C. Oddy, “Systems and Software Environment or
Factory ?,” Software Engineering Environments:
Research and Practice, K. H. Bennett (Editor).
Chichester, New York Halsted Press, 1989, Chapter3,
pp. 29-44.
M. H. Penedo, E. Ploedereder, and I. Thomas, “Object
Management Issues for Software Engineering
Environments-Workshop Report,” Proceedings of
the ACIU SIGSOFT / SIGPLANAoftware
Engineering S mposium on Practical Software
Development J nvironments. November 1988, vol.
13, no. 5,

%“
226-234.

R. Prieto- Iaz and J. M. Neighbors, Module
Interconnection Lan uages: A Suwey. Department

8of Information and omputer Science, University of

[18]

[19]

[20]

[21]

California Irvine, Irvine, CA 92717. August 1982.
D. M. Ritchie and K. Thompson, “The Unix Time-
Sharing Syst~” Tk Bell System Technical Journal.
July-August 1978, vol. 57, no. 6, part 2,
K. J. Sullivan md D. Notkin, “Reconciling
Environment Integration and Component
independence,” Proceedings of the ACM SIGSOFT t
SIGPLAN Software Engineering S mposium on

iPractical Sof~we Development nvironments.
December 1990, vol. 15, no. 6, pp. 22-33.
M. Tecfjini, I. Thomas, G. Benoliel, and F. Gsllo, “A
Query Service for a Software Engineerin Database

fSystem, ” Proceedings of the ACM S GSOFT /
SIGPLAN40 tware Engineering S mposium on

/ JPractica[ So tware Development nvironments.
December 1990, vol. 15, no, 6. .238 -248.
I. Thomas, “’P(TTEInterfaces:%ppting Tools in
Software Engineering Environments, “’ IEEE
Sojlware. November 1989, pp. 15-23.

1075


