
Fault Prediction in Object-Oriented Software Using
Neural Network Techniques

Atchara Mahaweerawat∗†, Peraphon Sophatsathit∗, Chidchanok Lursinsap∗ and Petr Musilek‡

∗Advanced Virtual and Intelligent Computing Center (AVIC)
Department of Mathematics, Faculty of Science

Chulalongkorn University, Bangkok 10330, Thailand
atchara.m@student.chula.ac.th, peraphon.s@chula.ac.th, lchidcha@chula.ac.th

† Department of Mathematics, Statistics, and Computer Science, Faculty of Science
Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

‡Facility for Advanced Computational Intelligence and Applications (FACIA)
Department of Electrical and Computer Engineering, Faculty of Engineering
University of Alberta W2-030 ECERF, Edmonton, Alberta T6G 2V4, Canada

Petr.Musilek@ualberta.ca

Abstract— To remain competitive in the dynamic world of
software development, organizations must optimize the usage of
their limited resources to deliver quality products on time and
within budget. This requires prevention of fault introduction and
quick discovery and repair of residual faults.

In this paper a new approach for predicting and classification
of faults in object-oriented software systems is introduced. In
particular, faults due to the use of inheritance and polymorphism
are considered as they account for significant portion of faults
in object-oriented systems.

The proposed fault prediction model is based on supervised
learning using Multilayer Perceptron Neural Network. The re-
sults of fault prediction are analyzed in terms of classification
correctness and some other standard criteria.

Based on the results of classification, faulty classes are further
analyzed and classified according to the particular type of fault.
The classification model is based on clustering using Radial-Basis
Function Neural Network. It is concluded, that the proposed
model provides high accuracy in discrimination between faulty
and fault-free classes.

Keywords: Software fault, Predictive model, Neural network,
Radial-Basis Function, Back-Propagation Learning.

I. INTRODUCTION

Software reliability can be defined as the probability of
failure-free operation of a computer program executing in a
specified environment for a specified time [1]. It is often
considered a software quality factor that can aid in predict-
ing the overall quality of a software system using standard
predictive models. Predictive models of software faults use
historical and current development data to make predictions
about faultiness of software subsystems/modules. Although
software faults have been widely studied in both procedural
and object-oriented programs, there are still many aspects
of faults that remain unclear. This is true especially for
object-oriented software systems, in which inheritance and
polymorphism can cause a number of anomalies and fault
types [2]. Unfortunately, existing techniques used to predict

faults in procedural software are not generally applicable in
object-oriented systems.

Some recent studies [3], [4], [5], [6], [7], [8], [9] report
the use of object-oriented metrics to predict fault-proneness
and number of faults by applying various statistical methods
and neural network techniques. However, they generally stop
at the problem of fault prediction without attempt to further
characterize the faults likely present in the system. In this
paper, a new method of fault prediction is introduced along
with a method for classification of fault type. For the reasons
mentioned earlier, faults due to inheritance and polymorphism
are of special interest in this work.

The problem of predicting whether a software class is faulty
is viewed as a binary classification problem in which the class
is represented as a data point with coordinates described by
object-oriented metrics and other parameters. The prediction
of fault type in a faulty software class is then considered as
a clustering problem in which each fault type is represented
by a cluster prototype [10]. To solve the two problems, use
of neural network techniques [11] is proposed. In particular,
the classification problem is addressed using a Multilayer
Perceptron (MLP) while the solution to clustering problem
is based on Radial-Basis Function Network (RBFN).

The paper is organized as follows. Section II provides
background information on the problem area including fault
taxonomy, software metrics and neural network methods used
in this study. Section III describes the data used in the
experimental part of this work along with a new method for
data preprocessing. Construction of the new fault prediction
models and their result are presented in Section IV. The result
obtained from the models are further discussed in Section V.
Finally, main conclusion and directions of future work are
given in Section VI.

TABLE I

FAULT AND ANOMALIES DUE TO INHERITANCE AND POLYMORPHISM

Acronym Fault/Anomaly
SDA State Definition Anomaly

(possible post-condition violation)
SDIH State Definition Inconsistency

(due to state variable hiding)
SDI State Definition Incorrectly

(possible post-condition violation)
IISD Indirect Inconsistent State Definition
SVA State Visibility Anomaly

II. BACKGROUND

A. Fault Categories and Software Metrics

Inheritance and polymorphism provide many benefits in
creativity, efficiency and reuse but they can cause a number
of anomalies and faults [2]. This study focuses on five fault
types incurred by the use of polymorphism shown in Table I.

An indicative measurement of faults that provides quantita-
tive description of certain characteristics of software products
and process is code metrics. In this study, a set of object-
oriented metrics [3] has been considered. These metrics are
extracted from source code using the software tool Under-
standing C++ [12].

A number of parametric measurements are introduced as
faulty causes, namely, number of appearances of syntactic
fault pattern [13], syntactic and structural measures. These
measures are categorized with the above fault types shown in
Table II. Details of each metric can be found in [12], [14].

B. Neural Networks

This study employs two neural network techniques as the
underlying mechanisms for fault prediction, namely, Multi-
layer Perceptron (MLP) and Radial-Basis Function Networks
(RBFN). The former helps cluster input data into appropriate
fault categories, whereas the latter computes, via curve-fitting
approximation, fault type so obtained. Procedural details of
both techniques can be found in [11].

III. DATA DESCRIPTION AND PREPROCESSING

The experiments have been carried out using 3,000 C++
classes from different sources: complete applications, individ-
ual algorithms, sample programs and various other sources on
the Internet. The classes were written by different developers.
The size of the classes varies between 100 and 500 lines of
code. Such composition of experimental data provides a good
mixture necessary for obtaining general predictive models.

Of all the 3,000 classes, half of them will be representative
of faulty samples and the other half fault-free samples. The
faulty samples were divided into 5 groups of 300 classes,
having each fault type code listed in Table I inserted according
to syntactic patterns in [13]. All faulty and fault-free samples
are measured with 60 software metrics and fault parameters
given in Table II and [12].

The data are nomalized to 0 and 1, and randomly grouped
into three sets, namely, A, B, and C. Each group is divided

TABLE II

FAULT/ANOMALY TYPES INDITIFIED BY SYNTACTIC PATTERNS AND

PARAMETERS

Pattern/ Fault Type
Parameter SDA SDIH SDI IISD SVA
ECE X
ECI X X
ECR X
EDIV X X X
RCE X X X
RCI X X X
RCR X X
RCOM X X
RDIV X X X
RDUV X
NMI X X X X
NME X X X X
NMR X X X X X
DepIV X
DiffOvrrI X
DiffDef X
NDTRAM X X
NDVRAM X X
NDTRM X X
NDVRM X X
OVrrMet X X
NTIMet X X
NVIMet X X
NTOVrrMet X X
NVOVrrMet X X
IdenVar X
ImRef X
IPriV X
RIpriV X

TABLE III

TRAINING AND TEST DATA SETS

Fault A B C
Category training test training test training test
Fault-free 400 100 273 75 284 87
SDA 80 20 116 14 91 21
SDIH 80 20 102 27 112 19
SDI 80 20 123 20 89 26
IISD 80 20 95 33 98 22
SVA 80 20 91 31 126 25
Total 800 200 800 200 800 200

into an 800-class training set and a 200-class test set. Table III
shows the number of software classes in each fault type in each
set.

A. Data Preprocessing

All 60 software metrics and fault parameters were applied to
the experimental data. However, not all software metrics and
fault parameters contributed to faultiness of software classes.
Therefore, it was necessary to select only the relevant metrics
and fault parameters in order to filter out the irrelevant ones.
An algorithm to select the relevant attributes is proposed. The
algorithm is based on the relative difference between values
of each metric applied to faulty and fault-free classes in the
training set. In the following discussion, both software metrics

and fault parameters are simply referred to as metrics.

1) Set initial weight of each metric to accentuate its impor-
tance.

W
(t)
i = 0 (1)

where

W
(t)
i is the weight value of metric i

i = {1, 2, . . . , m}
m is the number of metrics
t is the iteration number

2) Establish a pair of fault-free and faulty classes from the
training set.

X = {x1, x2, . . . , xm} , Y = {y1, y2, . . . , ym} (2)

where
X is a faulty class consists of m metrics
Y is a fault-free class consists of m metrics

For example, set up half the data in the training set to
be fault-free class (C1) and the remaining half as faulty
class (C2), arranging them correspondingly as depicted
in Figure 1 and Figure 2.

Fig. 1. A pair of fault-free and faulty classes

3) Calculate the relative difference of values of each metric
pair from step 2.

Di =
|xi − yi|
(xi + yi)

× 100 (3)

where
Di is the relative difference of values of metric i

of their respective classes
xi is the value of metric i of the faulty class
yi is the value of metric i of the fault-free class

This will prevent metrics intermix among their corre-
sponding applicable domain.

Fig. 2. Metric comparison between a fault-free class and a faulty class

4) Adjust the weight value of each metric

IF Di ≥ β

THEN W
(t)
i = W

(t−1)
i + 1

ELSE W
(t)
i = W

(t−1)
i − 1

(4)

where β = 50 is a threshold value
5) Repeat step 2 through step 4 until all fault-free classes

match with all faulty classes of the training set.
6) Consider the weight value of each metric, replacing

negative values with zero

IF Wi < 0

THEN Wi = 0
(5)

7) Normalize all weight values

Wi =
Wi − min

max − min
(6)

where max and min are the maximum and minimum
weight values, respectively.

8) Select the metrics with weight values above the selected
threshold.

After applying the selection algorithm with threshold value
0.5, 34 relevant metrics were obtained from set A, B and
C. Notice that the selected metrics from set A are the same
as those from set C, while the set of selected metrics from
set B is different. The metrics are shown in Table IV as the
measures for fault prediction model construction discussed in
Section IV.

IV. FAULT PREDICTION MODELS

A. Faultiness prediction

To predict the faulty class, a predictive model has been con-
structed using MLP with back-propagation learning algorithm.

TABLE IV

THE FILTERED METRICS AND WEIGHT VALUES FROM DIFFERENT DATA SETS

No. A B C
Metric Weight Metric Weight Metric Weight

1 CBO 0.6629 CBO 0.7118 CBO 0.6764
2 NOC 0.9620 NOC 0.9532 NOC 0.9580
3 CountDeclInstance 0.6143 CountDeclInstance 0.9922 CountDeclInstance 0.5161

VariablePrivate VariablePrivate VariablePrivate
4 CountDeclInstance 0.9824 CountDeclInstance 0.9648 CountDeclInstance 0.9862

VariableProtected VariableProtected VariableProtected
5 CountDeclInstance 0.9760 CountDeclInstance 0.9948 CountDeclInstance 0.9762

VariablePublic VariablePublic VariablePublic
6 CountDecl 0.9739 CountDecl 0.6400 CountDecl 0.9978

MethodPrivate MethodPrivate MethodPrivate
7 NOD 0.9746 CountDecl 0.9760 NOD 0.9764

MethodProtected
8 IndBase 0.8882 IndBase 0.8940 IndBase 0.8847
9 ECE 0.9988 ECE 0.9983 ECE 0.9976
10 ECI 0.9307 ECI 0.9010 ECI 0.9112
11 ECR 0.9964 ECR 0.9977 ECR 0.9957
12 EDIV 0.9104 EDIV 0.9182 EDIV 0.9307
13 RCE 0.8670 RCE 0.9080 RCE 0.9101
14 RCI 0.8314 RCI 0.8618 RCI 0.8364
15 RCR 0.9905 RCR 0.9940 RCR 0.9950
16 RCOM 0.8847 RCOM 0.8746 RCOM 0.8672
17 RDIV 0.8801 RDIV 0.8414 RDIV 0.8466
18 RUIV 0.6753 RUIV 0.5996 RUIV 0.5758
19 NDTRAM 0.5405 NDTRAM 0.5369 NDTRAM 0.5772
20 NDVRAM 0.6199 NDVRAM 0.5935 NDVRAM 0.6151
21 NDTRM 0.8002 NDTRM 0.7711 NDTRM 0.7753
22 NDVRM 0.8318 NDVRM 0.7991 NDVRM 0.8137
23 ImRef 0.9993 ImRef 0.9999 ImRef 0.9999
24 IdenVar 0.9517 IdenVar 0.9568 IdenVar 0.9601
25 DiffDef 1.0000 DiffDef 1.0000 DiffDef 1.0000
26 DiffOvrrI 0.9969 DiffOvrrI 0.9988 DiffOvrrI 0.9996
27 OVrrMet 0.9861 OVrrMet 0.9912 OVrrMet 0.9814
28 NTIMet 0.9847 NTIMet 0.9898 NTIMet 0.9788
29 NVIMet 0.9878 NVIMet 0.9907 NVIMet 0.9806
30 NTOVrrMet 0.9847 NTOVrrMet 0.9898 NTOVrrMet 0.9788
31 NVOVrrMet 0.9886 NVOVrrMet 0.9916 NVOVrrMet 0.9822
32 DepIV 0.9994 DepIV 0.9993 DepIV 0.9989
33 IPriV 0.9670 IPriV 0.9474 IPriV 0.9652
34 RIpriV 1.0000 RIpriV 1.0000 RIpriV 0.9999

Three MLP models were constructed to represent the three
data set in Table III. The MLP model A, B, and C are trained
with their corresponding data set and filtered metrics listed in
Table IV. The objective of the models is to correctly classify
the data points into fault-free and faulty groups shown in
Figure 3.

The output value expected from the output node of each
model is zero for the fault-free class and one for the faulty
class. The learning rate of 0.35 with the help of the sigmoid
function in weight adjustment to yield the correct output value.

Fig. 3. Faultiness Classification

After the training process is completed, the model is re-
applied to classify the test data. The output values so obtained
ranging between 0 and 1 which are indecisive for data clas-
sification. Setting an acceptance ratio at 0.55, a data point is
classified as a faulty class if the output of MLP is greater
than this value. Otherwise, it is a fault-free class. Since the
structure of model A, B, and C are similar, each model can be
cross applied to other train and test data accoring to selected
metrics as inputs of each model. The results of correctness
percentage from all models are given in Table V.

From Table V, model A yields the highest correctness
percentage when applying other data set. Model B yields
the highest correctness percentage only from it’s own test
data, while model C yields the lowest correctness percentage
from all test data. Based on the results of model A and B,
it is reasonable to combine the selected metrics from both
models to construct a new faultiness prediction model, having
35 combined metrics as listed in Table VI. Since model A
yields the best result when appling with other data sets, data
set A is used to build the new faultiness prediction model,
encompassing 35 input nodes in input layer, 15 hidden nodes
in hidden layer, and 1 output node in output layer as shown
in Figure 4. All input values are normalized to [0, 1].

The new faultiness preidiction model with combined metrics
was trained and tested with test set A, data set B, and data set
C, yielding the results in Table VII. These results were further
evaluated by a few selected criteria [15] as follows:

• Type 1 error (T1): This error occurs when a faulty class
is classified as fault-free; T1 = 5.32%

• Type 2 error (T2): This error occurs when a fault-free

TABLE V

RESULT FROM FAULTINESS PREDICTION MODELS

Test set Model
A B C

A 92.50% 92.70% 91.80%
B 94.40% 92.50% 91.60%
C 89.90% 91.40% 91.01%

TABLE VI

THE COMBINED FILTERED METRICS

No. Metric
1 CBO
2 NOC
3 CountDeclInstanceVariablePrivate
4 CountDeclInstanceVariableProtected
5 CountDeclInstanceVariablePublic
6 CountDeclMethodPrivate
7 CountDeclMethodProtected
8 NOD
9 IndBase
10 ECE
11 ECI
12 ECR
13 EDIV
14 RCE
15 RCI
16 RCR
17 RCOM
18 RDIV
19 RUIV
20 NDTRAM
21 NDVRAM
22 NDTRM
23 NDVRM
24 ImRef
25 IdenVar
26 DiffDef
27 DiffOvrrI
28 OVrrMet
29 NTIMet
30 NVIMet
31 NTOVrrMet
32 NVOVrrMet
33 DepIV
34 IPriV
35 RIpriV

TABLE VII

RESULT FROM THE FAULTINESS PREDICTION MODEL WITH COMBINED

METRICS

Test set Correctness percentage
A 94.00%
B 92.80%
C 92.10%

Fig. 4. Structure of Faultiness Prediction Model with combined metrics

TABLE VIII

METRIC GROUP

Range of total Metric Group
weight values
6 ≤ tw < 6.5 M1
6.5 ≤ tw < 7 M2
7 ≤ tw < 7.5 M3
7.5 ≤ tw M4

class is classified as faulty; T2 = 2.09%
• Quality achieved (C): If all faulty classes are properly

classified, defects will be removed by extra verification;
C = 91.53%

• Inspection (I): Inspection measures the overall verifica-
tion cost by considering the percentage of classes that
should be verified; I = 59.55%

• Waste Inspection (WI): Waste inspection is the per-
centage of classes that do not contain faults but are
verified because they have been classified incorrectly; WI
= 3.51%

The total weight value of each input node indicates how
important a particular input node is for faultiness prediction.
All metrics are then distributed to 4 groups based on the range
of weight values as shown in Table VIII and Table IX. The
metrics group M1 has the least effect while the metrics group
M4 has the greatest effect on faultiness prediction.

B. Fault Type Identification

Fault type identification model is based on RBFN technique
as mentioned earlier. The objective of the model is to cluster
faulty classes into groups based on fault type as shown in the
example of three fault types in Figure 5. The model consists of
35 input nodes in the input layer, a number of hidden nodes in
the hidden layer (this number is determined during the training
process), and 5 output nodes in the output layer that form
an output vector. The output vector denotes the type of fault

TABLE IX

DISTRIBUTION OF METRIC GROUPING BASED ON TOTAL WEIGHT VALUE

BETWEEN INPUT LAYER AND HIDDEN LAYER

Input node Metric Metric Group
M1 M2 M3 M4

1 CBO X
2 NOC X
3 CountDeclInstance X

VariablePrivate
4 CountDeclInstance X

VariableProtected
5 CountDeclInstance X

VariablePublic
6 CountDecl X

MethodPrivate
7 CountDecl X

MethodProtected
8 NOD X
9 IndBase X
10 ECE X
11 ECI X
12 ECR X
13 EDIV X
14 RCE X
15 RCI X
16 RCR X
17 RCOM X
18 RDIV X
19 RUIV X
20 NDTRAM X
21 NDVRAM X
22 NDTRM X
23 NDVRM X
24 ImRef X
25 IdenVar X
26 DiffDef X
27 DiffOvrrI X
28 OVrrMet X
29 NTIMet X
30 NVIMet X
31 NTOVrrMet X
32 NVOVrrMet X
33 DepIV X
34 IPriV X
35 RIpriV X

in binary format as ’10000’, ’01000’, ’00100’, ’00010’, and
’00001’, representing SDIH, IISD, SVA, SDA, and SDI faults,
respectively.

During the experiment, training data were used to generate
the weights between the hidden layer and the output layer.
If the network yields low accuracy, the number of hidden
node will be incremented by one. This restructuring by node-
plus-one progression continues until the desired accuracy is
acquired or the number of hidden nodes reaches the number
of training data points. At which point, reorganization must
be done by repeating the attribute selection algorithm and
proceed along the same steps described. The implication of
this reorganization is that some, or all, selected metrics do
not contribute to the faulty behavior of software components,
whereby prediction accuracy will fall short of the acceptable
range.

Based on the above procedures, the proposed model yields

Fig. 5. Fault Type Clustering

TABLE X

RESULT FROM THE FAULT TYPE PREDICTIVE MODEL

Fault Predicted Fault Type
Category SDA SDIH SDI IISD SVA
SDA 193 9 44 7 9
SDIH 5 264 6 2 3
SDI 36 10 222 7 3
IISD 10 3 9 239 7
SVA 5 2 2 4 280

an 90.05% prediction accuracy on test data from set A, all
data from data set B and C. The results shown in Table X
relate the actual number of each type of fault and the results
of classification.

From the model’s structure, the weights assigned to the
hidden layer and the output layer of the structure of fault type
model. The weight value of each hidden node designates which
output node should have effect on. The maximum weight value
obtained from all hidden nodes that exert on a given output
node indicates the dominance of the hidden node.

To explore which metrics dominate the fault type of a given
hidden node that represents all 35 metrics, an algorithm is
proposed as follows:

1) Choose a fault type to find a set of representative
metrics, for example, SDIH fault.

2) Find the hidden nodes that effect the fault type from the
results. There are 2 hidden nodes in this case.

3) Identify the set of classes from the training data where
the selected fault is originated. There are 80 classes from
the training data that contain SDIH fault.

4) Calculate the difference between each metric of a train-
ing class and the same metric of a hidden node (note that
each class has 35 metrics, so does each hidden node).

Vi = |ci − hi| (7)

where
Vi is the difference of values of metric i

of the class and the hidden node
ci is the value of metric i of the class
hi is the value of metric i of the hidden node

5) Repeat step 4 for the selected fault type until all classes
and hidden nodes are considered.

6) For each fault type, caculate the total difference of each
metric value from Step 5.

TotVi =
m∑

j=1

n∑

k=1

V
(j,k)
i (8)

where
TotVi is the total difference of value of metric i

of all classes and hidden nodes

V
(j,k)
i is the difference of value of metric i

of training class k and hidden node j
m is the number of hidden nodes for the

selected fault type
n is the number of training classes for the

selected fault type
7) Nomalize all total difference values

TotVi =
TotVi − min

max − min
(9)

where max and min are the maximum and minimum
total difference values, respectively.

8) repeat Steps 1-7 above until all fault types are consid-
ered.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

0.2

0.4

0.6

0.8

1
IISD

Metric

T
o

ta
l
d

if
fe

r
e

n
c
e

 v
a

lu
e

Fig. 6. The total difference of value of each metric between hidden nodes
and training classes with IISD fault

Figure 6 and Figure 7 show the effects of IISD and SDA
metrics have on particular fault types. The zero total difference
value means that the corresponding metrics of that training
class and hidden node are the same and thus has no effect
on the fault type. On the other hand, if the total difference
metric between the training classes and the hidden nodes is
high, the metric will likely contribute to the fault prediction
of the software.

V. DISCUSSION

The proposed software metric attribute selection algorithm
proved to be effective in determining the significance of each
metric and characterization of software faultiness. Based on
the two predictive models, the proposed approach is able to
predict faultiness of a class with more than 90% accuracy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

0.2

0.4

0.6

0.8

1
SDA

Metric

T
o

ta
l
d

if
fe

r
e

n
c
e

 v
a

lu
e

Fig. 7. The total difference of value of each metric between hidden nodes
and training classes with SDA fault

According to the evaluation criteria, the faulty classes can
be detected in 91.53% of test cases, the inspection cost for
verification is 59.55%, and the waste cost is 3.51%. Only
2.09% of faulty classes were undetected.

In addition, faulty type prediction yields an 90.05% of test
cases. Closer examination reveals that some misclassification
accured in all fault types are shown in Table X. The reason
being is that there are overlapping parameters amoung fault
types. Such inherent correlation induces erroneous classifca-
tion obtained from the proposed neural network techniques.
We envision that some forms of fine grained metric prepro-
cessing should be carried out to alleviate the aforementioned
caveats.

VI. CONCLUSION

The application of neural networks in predicting software
faults requires enormous amounts of data. Analyzing the data
is a major undertaking that must be carried out with the help of
proper models. This study proposes an algorithm for metrics
selection and a systematic approach to categorize closely
related data using neural networks. MLP neural network with
back-propagation learning algorithm has been used to identify
faulty classes, while RBF neural network to categorize the
faults according to several defined fault types.

Some approaches have been explored to improve the pre-
dictive model. The first possibility is to add more parameters,
however it is very difficult to find a proper set of parameters
that can represent characteristic of each fault type. Second,
proper data classification technique would enhance not only
the efficiency of the training process, but also the performance
of the predictive model in terms of precision. Accurate pre-
dictions obtained from such a good reliability model would
lead to higher efficiency of software process and quality of
resulting software products.

ACKNOWLEDGMENTS

This research is financially supported by The Office of
Higher Education Commission, Ministry of Education, Thai-
land.

REFERENCES

[1] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability Measure-
ment, Prediction, Application. the United States of America: McGraw-
Hill Book Company, 1987.

[2] J. Offutt and R. Alexander, “A fault model for subtype inheritance and
polymorphism,” in 12th International Symposium on Software Reliability
Engineering, November 2001, pp. 84 – 95.

[3] M. M. T. Thwin and T.-S. Quah, “Application of neural network for
predicting software development faults using object-oriented design
metrics,” in Proceedings of the 9th International Conference on Neural
Information Processing, November 2002, pp. 2312 – 2316.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “Prediction of fault-proneness
at early phase in object-oriented development,” in Proceedings of the
Second IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, May 1999, pp. 253 – 258.

[5] L. Emam, J. Wüst, and J. W. Daly, “The prediction of faulty classes
using object-oriented design metrics,” Journal of Systems and Software,
vol. 56, pp. 63 – 75, 2001.

[6] L. Briand, J. Wüst, and J. W. Daly, “Exploring the relationships between
design measures and software quality in object-oriented systems,” Jour-
nal of Systems and Software, vol. 51, pp. 245 – 273, 2000.

[7] L. C. Briand, J. Wüst, and J. W. Daly, “Assessing the applicability of
fault-proneness models across object-oriented software projects,” IEEE
Transactions on Software Engineering, vol. 28, no. 7, pp. 706 – 720,
2002.

[8] D. Glasberg and K. E. Emam, “Validating object-oriented design metrics
on a commercial java application,” Technical Report NRC/ERB-1080,
September 2000.

[9] Y. Mao, H. A. Sahraoui, and H. Lounis, “Reusability hypothesis verifi-
cation using machine learning techniques: a case study,” in Proceedings
of the 13th IEEE International Conference on Automated Software
Engineering, October 1998, pp. 84 – 93.

[10] P. Eklund and L. Kallin, “Fuzzy systems,” Febuary 2000, lecture Notes
prepared for courses at the Department of Computing Science at Umeå
University, Sweden.

[11] S. Haykin, Neural Networks. the United States of America: Prentice
Hall, 1999.

[12] “Understand for C++Scientific Toolworks, Inc., St. George, Utah,
http://www.scitools.com.”

[13] R. T. Alexander, J. Offutt, and J. M. Bieman, “Syntactic fault patterns
in oo programs,” in Eight International Conference on Engineering of
Complex Computer Software, December 2002, pp. 193 – 202.

[14] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476 – 493, 1994.

[15] F. Lanubile, “Evaluating predictive models derived from software mea-
sure,” Journal of Systems and Software, vol. 38, no. 1, pp. 225 – 234,
1996.

