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Abstract— This paper presents a new approach for predicting maps high dimensional data into low dimensional (usually
software faults by means of two-level clustering with unknan  two-dimensional) space, whereby the structure of the waigi
number of clusters. We employed Self-Organizing Map method 415 set can be visualized to identify potential clustering

and our proposed clustering approach in the first and second . . .
level, respectively, to classify historical and developmrm¢ data However, as the number of SOM units grows, it is too time-

into clusters. Next we applied the Radial-Basis Function Nevork ~ consuming to continue with SOM carrying out quantitative
to predict software faults occurred in cluster components.In  analysis of data sets. The variation among some smalles unit

so doing, we were able to predict software faults reasonably may not be significant enough to warrant their autonomy. As
accurate. a consequence, we proposed a new data clustering approach
to overcome SOM grouping for large number of map units.
The RBF technique, on the other hand, is suitable for
interpolation problem which is viewed as a curve fitting
Software reliability is the probability of failure free op-problem in high-dimensional space [8]. The learning preces
erations of a computer program executing in a specifiéavolved is equivalent to finding a surface in a multidimen-
environment for a specified time[1l]. Software reliability i sional space that provides the best fit to the training dath, w
considered a software quality factor that aids in predigtirthe criteria for 'best fit' being measured in some statistica
software quality using standard predictive models. Theee asense. Thus, we employed the SOM technique, incooperation
many approaches for predicting software quality, most efith the proposed clustering approach, and the RBF teckniqu
which yield some forms of quality indicators. One populato predict software fault for this study.
indicator is known as software fault. Software fault préidic Based on the aforementioned framework, we constructed a
utilizes historical and development data to arrive at a kenc model in our experiment to predict the number of software
sive decision whether the software in question is at fault. faults ranging from zero to seven inclusive. The experimlent
Recent researches [2], [3], [4], [5] in neural networkdata were preprocessed based on a number of software metrics
and statistics proliferate various techniques and algmst namely, lines of code/{OC), non-commented lines of code
to enhance the accuracy and efficiency of fault predictiqd CLOC), Halstead program lengthV(), Halstead volume
considerably. This is due to the fact that myriad of datd”), McCabe cyclomatic complexity{(()), Halstead number
are collected as a result of software reliability study, somof unique operandsng), Halstead total number of operands
preprocessing may be required to classify those repregent{N2), Henry&Kafura fan-in fan;,) and fan-out fan,.:),
data in clusters such that more accurate fault patterns eanHenry&Kafura information flow {F'), and density of com-
extracted from each cluster. ments (OC). These software metrics can be derived by the
Our definition of a cluster is a group of entities with similafollowings:
properties [6]. Thus, a set of points can be grouped into ones McCabe cyclomatic complexity (V(G)) [9]
or more clusters, depending on the properties of thosegoint V(G)=e—n+2p
Usually, the simplest and obvious property is distance gmon  where
the points. Therefore, a qualified candidate is determined b V(G) = cyclomatic number of~
the distance between the point in question and a neighboring e = number of edges
point which must be smaller than the distance to the rest of n = number of nodes
the points. p = number of unconnected paths of the graph
In neural networks, there are techniques for data cluster- fan;,: the fan;, of a module M is the number of
ing such as Self-Organizing Map (SOM) and Radial-Basis local flows that terminates at M, plus the number of data
Function Network (RBFN). The SOM technique can be used structures from which information is retrieved by M [10]
as a vehicle for analysis of multidimensional data [7]. It ¢ fang: the fan,,; of a module M is the number of
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local flows that emanates from M, plus the number d. The SOM Algorithm

data structures that is updated by M [10] The SOM algorithm may be described as a nonlinear,
« The information flow (IF) is measured by the forygered, and smooth mapping of high-dimensional input data
mula [10] 1F = (fanin X fanou) _ domain onto elements of a regular, low-dimensional array
« Halstead'’s software science [9] is defined as [11]. The mapping process can be explained by the SOM

Lenght(N)= N1 + Ny = nilogs(n1) + naloga(nz) algorithm as follows:

Volumn(V) = Nlogz(n) = Nloga(ni + n2)

where Let

ny; = the number of distinct operators that appear in a

program W;; € R* be the weight vector of the neuron
ne = the number of distinct operands that appear in a with coordinate(, j)

program where 1=1,2,...,COL

N; = the total number of distinct operators occurrences j=1,2,...,ROW

N> = the total number of distinct operands occurrences COL is the total columns

ROW is the total rows in the map
« Density of comments (DC) [10]

DC =CLOC/LOC Xre®R” k=1,2,...,pbe the input pattern
where CLOC is the number of comment lines of program where p is total input patterns
text.
We classified the data into several groups using the SOM Wio.jo be the weight vector of the winning
technique and the proposed approach. These groups of data neuron

were then fed into the models for software fault prediction. 1) Initialize the weight vectors with small arbitrary vasue
The results were analyzed to find some fundamental factors?) Apply an input pattern to the network

that contributed to fault occurrence. 3) Find the winning neuron according to the equation
This paper is organized as follows. Section Il explains the X (t) = Wi io )]l

concepts and the algorithm of Self Organizing Map. Sectibn | 070 (1)

discusses an approach for data clustering technique after = min, ; | X () — Wi ;(t)]|

applying the SOM method. Section IV derives the radial$asi

membership function. Section V describes how to construct ~ where t is the iteration number

the fault preditive model by employing Radial-Basis Fumati ~ 4) Adjust weight vectors of the winning neuron and the
Network and the analysis of the result so obtained. Some final neighbor neurons

remarks are given in Section VI. Wi (t+1) =W (6)+

)
Il. SELF ORGANIZING MAP (SOM) a(t)N (4, j, 0, Jo, ) [ X (t) — Wi ;(¢)]

A. Concepts where
a(t) is the learning rate

There are two aspects involved in SOM method, namely, for iterationt

visualization and abstraction [11]. The first aspect offers N(i,j,io, jo.t) is the neighborhood
powerful tool to visualize high-dimensional data by simple 72 70: 00 function

geometric relationships on low-dimensional display. Theeo 5) Repeat steps 2-4 until all input patterns are used
aspect compresses information yet preserving the mostrimpo 6) Repeat steps 2-5 for the number of epochs

tant topological and metric relationships of the primaryadaN twork training is carried out by repeating the above psece
elements. From the theoretical standpoint, SOM is a neuFa?

network algorithm that maps nonlinear projection charéste Or the predefined number of epochs.
tics of high-dimensional space of sensory input signal® ont
a low-dimension array of neurons [11]. The goal of SOM !ll. CLUSTERING OF THESELF ORGANIZING MAP
method is to detect features from input space by transf@min Conventional SOM technique employs the same predefined
an incoming signal pattern of arbitrary dimensions to a onaumber of weight vectors or neuron units as the number
or two-dimensional discrete map [8]. of clusters to organize group mapping. Nevertheless, if the
The SOM network consists of a 2-D matrix of neuronsiumber of clusters is not known prior to organizing process
Each neuron is identified by its location and weight vect@mommences, the U-matrix display [12], [7], [13] may yield
[7]. The network is based on competitive learning, ithg blurry boundaries that are difficult to determine the exarhn
output neurons of the network compete among themselves tdbe of clusters. As a consequence, we incorporated the two-
activated or fired, with the result that only one output neyro level SOM approach [14] using nearly equi-numbered neuron-
Or one neuron per group, is on at any timall the output to-data units to algorithmically adjust the data groupivg
neurons that win the competition are callathner-take-all considered a widely adopted optimal clustering definition
neurons [8]. which is a partition minimizing the distance among the data



points within the cluster, as well as maximizing the dis&anc
between clusters [14]. The within-cluster and betweestels

3) Define a threshold parametgt,,..,). This threshold is
the maximum distance in the pair-wise distance matrix

distances can thus be defined in several ways as depicted in that is used in cluster member computation [16].

the table | [14] shown below.
TABLE |

CLUSTER DISTANCE SPACING

Within-cluster distance S(Qr) andz; € Qi k #1
Between-clusters distances d(Qx, Q1); x4,z € Qk,

i,
Ny is the number of samples
in clusterQy,
and cx = 1/NpSe,eq, i
Within-cluster distance S(Qr)
. X Ti—w
average distance So = — lsz (Ve =T
. i X,min {ﬂzifzi/ }
nearest neighbor distance Sy, = : -
centroid distance Se = %}:Ck”
Between-cluster distances d(Qg, Q)

single linkage
complete linkage

ds = min; ; {|z; — )}
deo = mazy ; {||zi — 251}

Bijllwi—aj]

average linkage de =

= NN,
centroid linkage dee = e — alll

We opted for Euclidean norm to define the distance n{n
due to its popularity with SOM.

Many clustering methods such as k-means and Isodata
method [15] need to know the number of clusters in advance
to properly group input data. Our approach however, doesG)
not require a predefined cluster number. The proposed ap-
proach uses the average distance among member points in the
same cluster and average number of linkages between+cluste
distance to determine the number of clusters required. We

established a pair-wise distance matrix of all weights aatc d
points for subsequent computations look up. The algorittim f
computing cluster number is as follows:

1) Calculate the distance between each weight unit and

other weight units according to:

dip.q) = Wy = Wall 3)
where
Wp is weight unitp
W, is weight unitg
dip,q 18 the distance between weight units

pandqg

2) For each weight unit, find another weight unit which has

minimum distance from itself to the weight unit under

consideration. This can be done by looking up the weight

unit which satisfies equation below.
[Wp = Wominll = minlle Wy — Wl

where

(4)

Wpmin is the weight unit with minumum
distance from weight unip to itself
n is the number of all other weight units

4) Find a very close pair of weight units satisfying this

condition: o .
IF W, has minimum distance

from itself toWV,

AND W, has minimum distance
from itself toW,

AND  d(,.q) < dmem

THEN (W,,W,) is a very close pair

of weight units
The result is a set of clusters, each of which containing

two (at most 3 in case of a tie) points with the smallest
average distance, that could be subsequently merged.
Merge two clusters to one. A cluster can be merged to
another cluster if the average distance between members
of both clusters is not greater than the member threshold

value.
IF

5)

Zap[Wa =Wl <d

NAXNE mem

THEN Cluster A and ClustB can be merged
to one cluster

where
W, is the weight unit from clusted
Wy is the weight unit from clusteB
dmem IS the member treshold
nA is the total members of clustet

is the total members of clusté?
Repeat the above cluster merging step. The above cluster

merging process is repeated to combine any clusters
whose average distances among the members of partici-
pating clusters is not greater than the member threshold
value. The procedure terminates when no more cluster
is eligible.

Assign the remaining weight units to all merged clusters.
After the last step, if there are weight units which
cannot be grouped into the clusters, each of which
will be assigned to an arbitrary cluster or grouped as
a new cluster based on the distance from itself to the
weight unit of the existing cluster. The procedures are
as follows:

7

a) ldentify the closest weight unifi’(,.) of an un-
classified weight unitl{’,,)

Determine whether that closest weight unit of
the unclassified weight unit is a member of any
cluster. If so and the average distance from the
unclassified weight unit and the members of a
cluster is not greater than the member threshold
value (d,,em ), assign the unclassified weight unit
to this cluster.

b)



IF A(w, wie) < dmem The curve-fitting or interpolation problem can be stated as

follows:
AND Wy € Ca Given a set of N different points
{z;e R™|i=1,2,..,,N} and a corresponding set of
AND mwnuif:wau < dmem N real numbers{d; e R'|i=1,2,...,N}, find a function

F: RN — R! that satisfies the interpolation condition:
THEN W, € Cy

where .
W, is an unclassified Flo) = di i=1,2,....N (%)
weight unit
We is a very close weight unit B. Radial-Basis Functions
of W, The radial-basis functions (RBF) technique suggests timt t
Wa is the weight unit in interpolation functior should be constructed in the following
cluster A form

d(w,w..) IS the distance
betweenV,, and W,

N
Ca 's clusterA F@) = Y wiglle - ) (6)
8) Repeat the unclassified weight unit assignment steps i1

until all weight units are assigned to cluster or all "Civhere {o(|z — ;) |i = 1,2 N} is a set of N arbitrary
. . . . " 7 B Rt I
maining weight units do not satisfy the above condition enerally nonlinear) functions; radial-basis functions

9) Group the remainder unclassified weight units into d || is the Euclidean norm. The known data points

new l():luster. Jhedre_zmamlr?g unclassified \INe'ght _fumt x; € R™ i =1,2,...,N} are defined to be the centers of
can be combined into the same new cluster if theo - qioihasis functions.
average distance among them is not greater than the

member threshold value. Inserting the interpolation conditions of Equation (5) iqua-

IF d <d tion (6), a set of simultaneous linear equations for the feoef
(wulawu2) — ¥mem . .
cients (weights) of the unknowm; are expanded as follows:

THEN W, and W,2 can be combined

into Cnew ©11 ©Y12 .. QPIN w1 d1
P21 P22 ... Pan wa dy
where . . = : (7)
W1, Wye  are unclassified )
weight units YN1 N2 .- PNN Wy dn
d(w,,,w.e) IS the distance where
betweeniV,; and W, .
C’n.ew iS a nhew Cﬁjster uz QOJ’L = (p(“IJ - I’LH) (.]7 7’) = 17 27 st N (8)
10) Repeat for the remaining unclassified weight unit groupet .
ing steps until all weight units get assigned to a cluster d = [d1,da, ..., dn]" the desired output vector
or all remaining weight units do not satisfy the above w = [wi,wa,... ,wy]” linear weight vector
conditions. N be the size of the training sample
11) Define a new cluster for each unclassified weight unit. ®  denote an N-by-N matrix with element;;

For each unclassified weight unit, assign a new cluster
to it. The number of new clusters generated in this step ® = {gulGi)=12...,N} 9)
will be the same as the number of unclassified weightis matrix is called thénterpolation matrixand Equation (9)
units, that is, each new cluster has only one weight unifap pe written in compact form

Each resulting clusters will be subject to subsequent RBFN

construction for test runs.
dw = d (10)

IV. RADIAL -BAsIS FUNCTION NETWORK (RBFN) The unknown weights{) can be obtained by solving the
) following linear equation:

A. The Interpolation Problem
The radial-basis function networks (RBFN) mention that the w = ®d (11)
problem of curve-fitting is approximation in high dimensibn
spaces. In this case, the learning process is equivalentwioere®™ is the pseudo-inverse @ : &+ = (&7 )17
finding an interpolating surface in the multidimensionadep
that provides the best fit to the training data, measured Bhis research employed the multivariate Gaussian function
pre-selected statistical criteria. called Green’s functiorwith the following form:



where the set of centefg; |i = 1,2,...,m, } is to be deter-

o — ;]| mined. Thenf™*(z) can be refined as

2
207

G(z,xz;) = exp(— ) (12)

Flz) =Y wG(x,t;) = Y wG(||lz—t]) (17)
[ =1

C. Regularization Networks
The regularization network consists of three layers:

« input layeris composed of input nodes that is equal to V. THE EXPERIMENT
the dimensionn, of the input vectorr, The experiment was carried out on 118 software modules
« hidden layeris composed of nonlinear units that arehat were measured by 11 software metrics and normalized in
connected directly to all nodes in the input layer, the range O to 1. The data was separated into two sets, 89
« output layerconsists of a single linear unit fully con-modules for the training set and 29 modules for the test set.
nected to the hidden layer. The training set was used to construct the SOM clusters and
There is one hidden unit for each data point ¢ = the RBF model. The test set was used for subsequent test runs.

1,2,..., N, where N is the size of the training sample. Green's We first grouped data in to 57 groups with SOM, clustered
function is used as the activation function of individualden the 57 groups with the proposed clustering approach to 15
units. Therefore the output of th&" hidden unit isG(z, ;). clusters. We then applied the RBF model to each cluster
The output of the network is a linearly weighted sum of tht predict the software faults. A post-mortem analysis was
outputs of the hidden units. performed to assess the accuracy of the model.

The regularization network models the interpolation func-
tion F' as a linear superposition (linear weighted sum) % Data Clustering

multivariate Gaussian functions whose size is equal to the i o )
number of the given sample input N: SOM was applied to the training process covering two

phases for fine grain classification [17]. The first phase was
N the ordering phase in which all weight vectors of the mapsunit
were ordered. In the second phase, the values of the weight
F(x) = G, x; 13 . .
(z) ;w (z,2:) (13) vectors were fine-tuned to adjust the SOM structure based on
a the following parameters:

« size of the mapill x 8
N | ”2 « initial neighborhood radius: 10 (ordering phase), 3 (tun-
_ , _T T ing phase)
Flz) ;wlexp( 207 ) (14) « initial condition: randomly initiated connections
« type of neighborhood function: Gaussian function
« learning rate: 0.05 (ordering phase), 0.02 (tuning phase)
« termination criterion: 1000 iterations (ordering phase)
10000 iterations (tuning phase)

D. Generalized RBF Networks The resulting SOM grouping consisted of 57 weight units
In the regularization networks, the number of Green fumstiowith their own members. Further investigation revealed tha
is equal to the number of the training examples. This caus@® remaining 31 weight units were singleton units. As such,
computationally inefficient in practice, in the sense thatay we discarded the remaining 31 weight units and fed the other
require a very large number of basis functions. 57 weight units to the proposed clustering approach with the
In real world practical situations, finding the linear basimember threshold value of 0.7. This yielded 15 data clusters
function weights needs to invert a very larje x N matrix
which is computationally complex. To overcome this prob,lerr|1:S
the network complexity needs to be reduced to find a solution

that approximates the solution produced by the regulasizat After data clustering phase, a fault predictive model was
network. LetF*(z) be the approximated solution, constructed using the RBFN to operate on each cluster. The

GRBFN method is based on the concept that training neural
ma network is a curve fitting process in high dimensional space
F*(x) :Zwigp(z) (15) [18]. Two kernel function (the Gaussian function in this
i—1 case) parameters that made up the cluster weight used in the

where{p(z|i = 1,2,...,m1) } is a new set of basis functions &XPeriment are cluster center and its radius.

Typically, the number of basis functions is less than the Center estimation is a process for determinating proper
number ,of data pointsnf; < N), andw; forms a new set number of centers in the clusters and their specific location
of weights. Then t=" ! principle, the number of centers of a cluster is the sameas th

number of weight units in that cluster. The SOM algorithm is
used to estimate the location of the centers. For example, fo
vi(z) =G(|lz—t]), i=1,2,....,m (16) a cluster having 3 weight units obtained from SOM clustering

or,

wherew; are the weights.

Cluster Weighted Centering



along with 15 data points (or software modules), we desgnatalue for each group of cluster represents the maximum dprea
the weight units as the 3 centers of the cluster. Three neivthe corresponding feature.
weight units are then introduced and the SOM process is re-Therefore, the software metrics corresponding to the Isighe
applied. The resulting cluster formation will have the threeigen value axis will entail the maximum spread of software
newly introduced weight units as the new centers for thaetrics.
consider cluster.

The width of the Gaussian functigi) for each cluster is VI, CONCLUSION
defined as follows:

The application of neural networks in predicting software

d fault requires enormous amount of data. Analyzing thesa dat
= 7t (18) is a major undertaking that must be carried out with the
help of proper models. We proposed a systematic approach
where to categorize closely related data using SOM method in
M is the number of centers. conjunction with proposed clustering approach, and the \RBF
d is the maximum distance between method to accentuate the analysis of software fault priedict
the centers. accuracy. With proper fine-tuning, the number of faults for
each component can be determined and applied to subsequent
C. Fault Predictive Models predictive quality. A notable characteristic of data which

gects the number of clusters is fault scattering pattérne

defined, the fault predictive model can be constructed vhigh t aults of the component under investigation do not corragpo

RBFN for each cluster. The structure of our network consis&% (tjhe soft_vvafrel metrics, fault prediction will not be acdara
of three layers encompassing 11 input nodes in the input,lay%n meaningtut. L )
We envision several approaches for reliability model im-

a number of hidden nodes in the hidden layer (which are Fi df X . lecti It f6-di
determined by the number of centers in the clusters), andvement. First and foremost is metrics selection. It f-di

output nodes in the output layer. The output value denotes It to find a proper mix of metrics for the model parameters.

number of faults obtained from the experiment, displayed econd, determining meam_ng_ful features to extract faaili p
binary format. For example, the values '000’, '010’, and111 tern for subsequent analysis is not a straightforward fermu

represent zero, two, and seven faults, respectively. lation. Third, proper data clustering technique will entwan

During the experiment, training data was fed to the RBERC! only the efficiency of the training process, but also the

to generate weights between the hidden layer and the Outgﬁ{formance of the model predictability precision. Actara

layer. Test data was then applied to the fault predictiocgss. redictions_obtained frqm such a good reliability r_npdell wil
If the prediction yields low accuracy, the clusters must e conducive toward higher software process efficiency and

reorganized. product quality.
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