
Adaptive Self-Organizing Map Clustering for
Software Fault Prediction

Atchara Mahaweerawat∗,+, Peraphon Sophatsathit+, Chidchanok Lursinsap+
∗Department of Mathematics, Statistics and Computer Science, Faculty of Science

Ubonratchathani University, Ubonratchathani 34190, Thailand
matchara@sci.ubu.ac.th

+Advanced Virtual and Intelligent Computing Center (AVIC)
Department of Mathematics, Faculty of Science

Chulalongkorn University, Bangkok 10330, Thailand
peraphon.s@chula.ac.th, lchidcha@pioneer.netserv.chula.ac.th

Abstract— This paper presents a new approach for predicting
software faults by means of two-level clustering with unknown
number of clusters. We employed Self-Organizing Map method
and our proposed clustering approach in the first and second
level, respectively, to classify historical and development data
into clusters. Next we applied the Radial-Basis Function Network
to predict software faults occurred in cluster components.In
so doing, we were able to predict software faults reasonably
accurate.

I. I NTRODUCTION

Software reliability is the probability of failure free op-
erations of a computer program executing in a specified
environment for a specified time[1]. Software reliability is
considered a software quality factor that aids in predicting
software quality using standard predictive models. There are
many approaches for predicting software quality, most of
which yield some forms of quality indicators. One popular
indicator is known as software fault. Software fault prediction
utilizes historical and development data to arrive at a conclu-
sive decision whether the software in question is at fault.

Recent researches [2], [3], [4], [5] in neural networks
and statistics proliferate various techniques and algorithms
to enhance the accuracy and efficiency of fault prediction
considerably. This is due to the fact that myriad of data
are collected as a result of software reliability study, some
preprocessing may be required to classify those representing
data in clusters such that more accurate fault patterns can be
extracted from each cluster.

Our definition of a cluster is a group of entities with similar
properties [6]. Thus, a set of points can be grouped into one
or more clusters, depending on the properties of those points.
Usually, the simplest and obvious property is distance among
the points. Therefore, a qualified candidate is determined by
the distance between the point in question and a neighboring
point which must be smaller than the distance to the rest of
the points.

In neural networks, there are techniques for data cluster-
ing such as Self-Organizing Map (SOM) and Radial-Basis
Function Network (RBFN). The SOM technique can be used
as a vehicle for analysis of multidimensional data [7]. It

maps high dimensional data into low dimensional (usually
two-dimensional) space, whereby the structure of the original
data set can be visualized to identify potential clustering.
However, as the number of SOM units grows, it is too time-
consuming to continue with SOM carrying out quantitative
analysis of data sets. The variation among some smaller units
may not be significant enough to warrant their autonomy. As
a consequence, we proposed a new data clustering approach
to overcome SOM grouping for large number of map units.

The RBF technique, on the other hand, is suitable for
interpolation problem which is viewed as a curve fitting
problem in high-dimensional space [8]. The learning process
involved is equivalent to finding a surface in a multidimen-
sional space that provides the best fit to the training data, with
the criteria for ’best fit’ being measured in some statistical
sense. Thus, we employed the SOM technique, incooperation
with the proposed clustering approach, and the RBF technique
to predict software fault for this study.

Based on the aforementioned framework, we constructed a
model in our experiment to predict the number of software
faults ranging from zero to seven inclusive. The experimental
data were preprocessed based on a number of software metrics,
namely, lines of code (LOC), non-commented lines of code
(NCLOC), Halstead program length (N), Halstead volume
(V), McCabe cyclomatic complexity (V (G)), Halstead number
of unique operands (n2), Halstead total number of operands
(N2), Henry&Kafura fan-in (fanin) and fan-out (fanout),
Henry&Kafura information flow (IF), and density of com-
ments (DC). These software metrics can be derived by the
followings:

• McCabe cyclomatic complexity (V(G)) [9]
V (G) = e − n + 2p
where
V (G) = cyclomatic number ofG
e = number of edges
n = number of nodes
p = number of unconnected paths of the graph

• fanin: the fanin of a module M is the number of
local flows that terminates at M, plus the number of data
structures from which information is retrieved by M [10]

• fanout: the fanout of a module M is the number of

local flows that emanates from M, plus the number of
data structures that is updated by M [10]

• The information flow (IF) is measured by the for-
mula [10] IF = (fanin × fanout)

• Halstead’s software science [9] is defined as
Lenght(N)= N1 + N2 = n1log2(n1) + n2log2(n2)
Volumn(V) = Nlog2(n) = Nlog2(n1 + n2)
where
n1 = the number of distinct operators that appear in a
program
n2 = the number of distinct operands that appear in a
program
N1 = the total number of distinct operators occurrences
N2 = the total number of distinct operands occurrences

• Density of comments (DC) [10]
DC = CLOC/LOC
where CLOC is the number of comment lines of program
text.

We classified the data into several groups using the SOM
technique and the proposed approach. These groups of data
were then fed into the models for software fault prediction.
The results were analyzed to find some fundamental factors
that contributed to fault occurrence.

This paper is organized as follows. Section II explains the
concepts and the algorithm of Self Organizing Map. Section III
discusses an approach for data clustering technique after
applying the SOM method. Section IV derives the radial-basis
membership function. Section V describes how to construct
the fault preditive model by employing Radial-Basis Function
Network and the analysis of the result so obtained. Some final
remarks are given in Section VI.

II. SELF ORGANIZING MAP (SOM)

A. Concepts

There are two aspects involved in SOM method, namely,
visualization and abstraction [11]. The first aspect offersa
powerful tool to visualize high-dimensional data by simple
geometric relationships on low-dimensional display. The other
aspect compresses information yet preserving the most impor-
tant topological and metric relationships of the primary data
elements. From the theoretical standpoint, SOM is a neural
network algorithm that maps nonlinear projection characteris-
tics of high-dimensional space of sensory input signals onto
a low-dimension array of neurons [11]. The goal of SOM
method is to detect features from input space by transforming
an incoming signal pattern of arbitrary dimensions to a one-
or two-dimensional discrete map [8].

The SOM network consists of a 2-D matrix of neurons.
Each neuron is identified by its location and weight vector
[7]. The network is based on competitive learning, i.e.,the
output neurons of the network compete among themselves to be
activated or fired, with the result that only one output neuron,
or one neuron per group, is on at any time. All the output
neurons that win the competition are calledwinner-take-all
neurons [8].

B. The SOM Algorithm

The SOM algorithm may be described as a nonlinear,
ordered, and smooth mapping of high-dimensional input data
domain onto elements of a regular, low-dimensional array
[11]. The mapping process can be explained by the SOM
algorithm as follows:

Let

Wi,j ∈ ℜn be the weight vector of the neuron
with coordinate(i, j)

where i = 1, 2, . . . , COL
j = 1, 2, . . . , ROW
COL is the total columns
ROW is the total rows in the map

Xk ∈ ℜn k = 1, 2, . . . , p be the input pattern
where p is total input patterns

Wi0,j0 be the weight vector of the winning
neuron

1) Initialize the weight vectors with small arbitrary values
2) Apply an input pattern to the network
3) Find the winning neuron according to the equation

‖X(t) − Wi0,j0(t)‖

= mini,j ‖X(t) − Wi,j(t)‖
(1)

where t is the iteration number
4) Adjust weight vectors of the winning neuron and the

neighbor neurons

Wi,j(t + 1) =Wi,j(t)+

α(t)N(i, j, i0, j0, t)[X(t) − Wi,j(t)]
(2)

where
α(t) is the learning rate

for iterationt
N(i, j, i0, j0, t) is the neighborhood

function
5) Repeat steps 2-4 until all input patterns are used
6) Repeat steps 2-5 for the number of epochs

Network training is carried out by repeating the above process
for the predefined number of epochs.

III. C LUSTERING OF THESELF ORGANIZING MAP

Conventional SOM technique employs the same predefined
number of weight vectors or neuron units as the number
of clusters to organize group mapping. Nevertheless, if the
number of clusters is not known prior to organizing process
commences, the U-matrix display [12], [7], [13] may yield
blurry boundaries that are difficult to determine the exact num-
ber of clusters. As a consequence, we incorporated the two-
level SOM approach [14] using nearly equi-numbered neuron-
to-data units to algorithmically adjust the data grouping.We
considered a widely adopted optimal clustering definition
which is a partition minimizing the distance among the data

points within the cluster, as well as maximizing the distance
between clusters [14]. The within-cluster and between-clusters
distances can thus be defined in several ways as depicted in
the table I [14] shown below.

TABLE I

CLUSTER DISTANCE SPACING

Within-cluster distance S(Qk) andxj ∈ Ql, k 6= l
Between-clusters distances d(Qk , Ql); xi, xi

′ ∈ Qk,

i 6= i
′

,
Nk is the number of samples

in clusterQk

and ck = 1/NkΣxi∈Qk
xi

Within-cluster distance S(Qk)

average distance Sa =
Σ

i,i
′

∥

∥xi−x
i
′

∥

∥

Nk(Nk−1)

nearest neighbor distance Snn =
Σimin

i
′

{
∥

∥xi−xi
′
∥

∥

}

Nk

centroid distance Sc =
Σi‖xi−ck‖

Nk

Between-cluster distances d(Qk , Ql)

single linkage ds = mini,j {‖xi − xj‖}
complete linkage dco = maxi,j {‖xi − xj‖}

average linkage da =
Σi,j‖xi−xj‖

NkNl

centroid linkage dce = ‖ck − cl‖

We opted for Euclidean norm to define the distance norm‖·‖
due to its popularity with SOM.

Many clustering methods such as k-means and Isodata
method [15] need to know the number of clusters in advance
to properly group input data. Our approach however, does
not require a predefined cluster number. The proposed ap-
proach uses the average distance among member points in the
same cluster and average number of linkages between-cluster
distance to determine the number of clusters required. We
established a pair-wise distance matrix of all weights and data
points for subsequent computations look up. The algorithm for
computing cluster number is as follows:

1) Calculate the distance between each weight unit and
other weight units according to:

d(p,q) = ‖Wp − Wq‖ (3)

where
Wp is weight unitp
Wq is weight unitq
d(p,q) is the distance between weight units

p andq
2) For each weight unit, find another weight unit which has

minimum distance from itself to the weight unit under
consideration. This can be done by looking up the weight
unit which satisfies equation below.

‖Wp − Wpmin‖ = minn
q=1 ‖Wp − Wq‖ (4)

where
Wpmin is the weight unit with minumum
distance from weight unitp to itself
n is the number of all other weight units

3) Define a threshold parameter(dmem). This threshold is
the maximum distance in the pair-wise distance matrix
that is used in cluster member computation [16].

4) Find a very close pair of weight units satisfying this
condition:

IF Wp has minimum distance
from itself toWq

AND Wq has minimum distance
from itself toWp

AND d(p,q) ≤ dmem

THEN (Wp, Wq) is a very close pair
of weight units

The result is a set of clusters, each of which containing
two (at most 3 in case of a tie) points with the smallest
average distance, that could be subsequently merged.

5) Merge two clusters to one. A cluster can be merged to
another cluster if the average distance between members
of both clusters is not greater than the member threshold
value.

IF Σa,b‖Wa−Wb‖
nA×nB

≤ dmem

THEN ClusterA and ClustB can be merged
to one cluster

where
Wa is the weight unit from clusterA
Wb is the weight unit from clusterB
dmem is the member treshold
nA is the total members of clusterA
nB is the total members of clusterB

6) Repeat the above cluster merging step. The above cluster
merging process is repeated to combine any clusters
whose average distances among the members of partici-
pating clusters is not greater than the member threshold
value. The procedure terminates when no more cluster
is eligible.

7) Assign the remaining weight units to all merged clusters.
After the last step, if there are weight units which
cannot be grouped into the clusters, each of which
will be assigned to an arbitrary cluster or grouped as
a new cluster based on the distance from itself to the
weight unit of the existing cluster. The procedures are
as follows:

a) Identify the closest weight unit (Wuc) of an un-
classified weight unit (Wu)

b) Determine whether that closest weight unit of
the unclassified weight unit is a member of any
cluster. If so and the average distance from the
unclassified weight unit and the members of a
cluster is not greater than the member threshold
value (dmem), assign the unclassified weight unit
to this cluster.

IF d(wu,wuc) ≤ dmem

AND Wuc ∈ CA

AND Σa‖Wu−Wa‖
nA

≤ dmem

THEN Wu ∈ CA

where
Wu is an unclassified

weight unit
Wuc is a very close weight unit

of Wu

Wa is the weight unit in
clusterA

d(wu,wuc) is the distance
betweenWu andWuc

CA is clusterA
8) Repeat the unclassified weight unit assignment steps

until all weight units are assigned to cluster or all re-
maining weight units do not satisfy the above conditions.

9) Group the remainder unclassified weight units into a
new cluster. The remaining unclassified weight units
can be combined into the same new cluster if the
average distance among them is not greater than the
member threshold value.

IF d(wu1,wu2) ≤ dmem

THEN Wu1 and Wu2 can be combined
into Cnew

where
Wu1, Wu2 are unclassified

weight units
d(wu1,wu2) is the distance

betweenWu1 andWu2

Cnew is a new cluster
10) Repeat for the remaining unclassified weight unit group-

ing steps until all weight units get assigned to a cluster
or all remaining weight units do not satisfy the above
conditions.

11) Define a new cluster for each unclassified weight unit.
For each unclassified weight unit, assign a new cluster
to it. The number of new clusters generated in this step
will be the same as the number of unclassified weight
units, that is, each new cluster has only one weight unit.

Each resulting clusters will be subject to subsequent RBFN
construction for test runs.

IV. RADIAL -BASIS FUNCTION NETWORK (RBFN)

A. The Interpolation Problem

The radial-basis function networks (RBFN) mention that the
problem of curve-fitting is approximation in high dimensional
spaces. In this case, the learning process is equivalent to
finding an interpolating surface in the multidimensional space
that provides the best fit to the training data, measured by
pre-selected statistical criteria.

The curve-fitting or interpolation problem can be stated as
follows:

Given a set of N different points
{xi ǫ Rm0 |i = 1, 2, ..., N } and a corresponding set of
N real numbers

{

di ǫ R1 |i = 1, 2, ..., N
}

, find a function
F : RN → R1 that satisfies the interpolation condition:

F(xi) = di i = 1, 2, . . . , N (5)

B. Radial-Basis Functions

The radial-basis functions (RBF) technique suggests that the
interpolation functionF should be constructed in the following
form

F(x) =

N
∑

i=1

wiϕ(‖x − xi‖) (6)

where{ϕ(‖x − xi‖) |i = 1, 2, . . . , N } is a set ofN arbitrary
(generally nonlinear) functions; radial-basis functions;
and ‖·‖ is the Euclidean norm. The known data points
{xi ǫ Rm0 |i = 1, 2, ..., N } are defined to be the centers of
the radial-basis functions.

Inserting the interpolation conditions of Equation (5) in Equa-
tion (6), a set of simultaneous linear equations for the coeffi-
cients (weights) of the unknownwi are expanded as follows:











ϕ11 ϕ12 . . . ϕ1N

ϕ21 ϕ22 . . . ϕ2N

...
...

...
ϕN1 ϕN2 . . . ϕNN





















w1

w2

...
wN











=











d1

d2

...
dN











(7)

where

ϕji = ϕ(‖xj − xi‖) (j, i) = 1, 2, . . . , N (8)

Let
d = [d1, d2, . . . , dN]T the desired output vector
w = [w1, w2, . . . , wN]T linear weight vector
N be the size of the training sample
Φ denote an N-by-N matrix with elementϕji

Φ = {ϕji |(j, i) = 1, 2, . . . , N } (9)

This matrix is called theinterpolation matrixand Equation (9)
can be written in compact form

Φw = d (10)

The unknown weights(w) can be obtained by solving the
following linear equation:

w = Φ+d (11)

whereΦ+ is the pseudo-inverse ofΦ : Φ+ = (ΦT Φ)−1ΦT

This research employed the multivariate Gaussian function
calledGreen’s functionwith the following form:

G(x, xi) = exp(−‖x − xi‖2

2σ2
i

) (12)

C. Regularization Networks

The regularization network consists of three layers:

• input layer is composed of input nodes that is equal to
the dimensionm0 of the input vectorx,

• hidden layer is composed of nonlinear units that are
connected directly to all nodes in the input layer,

• output layerconsists of a single linear unit fully con-
nected to the hidden layer.

There is one hidden unit for each data pointxi, i =
1, 2, . . . , N , where N is the size of the training sample. Green’s
function is used as the activation function of individual hidden
units. Therefore the output of theith hidden unit isG(x, xi).
The output of the network is a linearly weighted sum of the
outputs of the hidden units.

The regularization network models the interpolation func-
tion F as a linear superposition (linear weighted sum) of
multivariate Gaussian functions whose size is equal to the
number of the given sample input N:

F (x) =

N
∑

i=1

wiG(x, xi) (13)

or,

F (x) =

N
∑

i=1

wiexp(−‖x − xi‖2

2σ2
i

) (14)

wherewi are the weights.

D. Generalized RBF Networks

In the regularization networks, the number of Green functions
is equal to the number of the training examples. This causes
computationally inefficient in practice, in the sense that it may
require a very large number of basis functions.

In real world practical situations, finding the linear basis
function weights needs to invert a very largeN × N matrix
which is computationally complex. To overcome this problem,
the network complexity needs to be reduced to find a solution
that approximates the solution produced by the regularization
network. LetF ∗(x) be the approximated solution,

F ∗(x) =

m1
∑

i=1

wiϕ(x) (15)

where{ϕ(x |i = 1, 2, . . . , m1)} is a new set of basis functions.
Typically, the number of basis functions is less than the
number of data points (m1 ≤ N), and wi forms a new set
of weights. Then,

ϕi(x) = G(‖x − ti‖), i = 1, 2, . . . , m1 (16)

where the set of centers{ti |i = 1, 2, . . . , m1 } is to be deter-
mined. ThenF ∗(x) can be refined as

F (x) =

m1
∑

i

wiG(x, ti) =

m1
∑

i=1

wiG(‖x − ti‖) (17)

V. THE EXPERIMENT

The experiment was carried out on 118 software modules
that were measured by 11 software metrics and normalized in
the range 0 to 1. The data was separated into two sets, 89
modules for the training set and 29 modules for the test set.
The training set was used to construct the SOM clusters and
the RBF model. The test set was used for subsequent test runs.

We first grouped data in to 57 groups with SOM, clustered
the 57 groups with the proposed clustering approach to 15
clusters. We then applied the RBF model to each cluster
to predict the software faults. A post-mortem analysis was
performed to assess the accuracy of the model.

A. Data Clustering

SOM was applied to the training process covering two
phases for fine grain classification [17]. The first phase was
the ordering phase in which all weight vectors of the map units
were ordered. In the second phase, the values of the weight
vectors were fine-tuned to adjust the SOM structure based on
the following parameters:

• size of the map:11 × 8
• initial neighborhood radius: 10 (ordering phase), 3 (tun-

ing phase)
• initial condition: randomly initiated connections
• type of neighborhood function: Gaussian function
• learning rate: 0.05 (ordering phase), 0.02 (tuning phase)
• termination criterion: 1000 iterations (ordering phase)

10000 iterations (tuning phase)

The resulting SOM grouping consisted of 57 weight units
with their own members. Further investigation revealed that
the remaining 31 weight units were singleton units. As such,
we discarded the remaining 31 weight units and fed the other
57 weight units to the proposed clustering approach with the
member threshold value of 0.7. This yielded 15 data clusters.

B. Cluster Weighted Centering

After data clustering phase, a fault predictive model was
constructed using the RBFN to operate on each cluster. The
GRBFN method is based on the concept that training neural
network is a curve fitting process in high dimensional space
[18]. Two kernel function (the Gaussian function in this
case) parameters that made up the cluster weight used in the
experiment are cluster center and its radius.

Center estimation is a process for determinating proper
number of centers in the clusters and their specific location. In
principle, the number of centers of a cluster is the same as the
number of weight units in that cluster. The SOM algorithm is
used to estimate the location of the centers. For example, for
a cluster having 3 weight units obtained from SOM clustering

along with 15 data points (or software modules), we designate
the weight units as the 3 centers of the cluster. Three new
weight units are then introduced and the SOM process is re-
applied. The resulting cluster formation will have the three
newly introduced weight units as the new centers for the
consider cluster.

The width of the Gaussian function(σ) for each cluster is
defined as follows:

σ =
d√
2M

(18)

where
M is the number of centers.
d is the maximum distance between

the centers.

C. Fault Predictive Models

When the centers and the width of Guassian function are
defined, the fault predictive model can be constructed with the
RBFN for each cluster. The structure of our network consists
of three layers encompassing 11 input nodes in the input layer,
a number of hidden nodes in the hidden layer (which are
determined by the number of centers in the clusters), and 3
output nodes in the output layer. The output value denotes the
number of faults obtained from the experiment, displayed in
binary format. For example, the values ’000’, ’010’, and ’111’
represent zero, two, and seven faults, respectively.

During the experiment, training data was fed to the RBFN
to generate weights between the hidden layer and the output
layer. Test data was then applied to the fault prediction process.
If the prediction yields low accuracy, the clusters must be
reorganized.

To reorganize the formation, the previous process is repeated
with the number of centers incremented by one. This model
restructuring by center-plus-one progression continues until
the predicted accuracy is acquired or the number of centers
reaches the number of training data points of that cluster.

Based on the above procedures, our model yields a 93%
prediction accuracy of test data. Beside the correctness per-
centage, another evaluation criterion called the mean of abso-
lute residual (MAR) [19] is also applied to the model with the
value of 0.17. AR is defined as

AR = |y − ŷ| (19)

where
y is the actual number of faults.
ŷ is the predicted number of faults

D. Result Analysis

During RBF application to each cluster, the covariance
matrix of the data and their corresponding eigen vector and
eigen value were computed to assess any variation deviated
from earlier training results. For multi-dimensional space, the
eigen vectors and eigen values represent the axes of the
ellipsoids and their lengths, respectively. The highest eigen

value for each group of cluster represents the maximum spread
of the corresponding feature.

Therefore, the software metrics corresponding to the highest
eigen value axis will entail the maximum spread of software
metrics.

VI. CONCLUSION

The application of neural networks in predicting software
fault requires enormous amount of data. Analyzing these data
is a major undertaking that must be carried out with the
help of proper models. We proposed a systematic approach
to categorize closely related data using SOM method in
conjunction with proposed clustering approach, and the RBFN
method to accentuate the analysis of software fault prediction
accuracy. With proper fine-tuning, the number of faults for
each component can be determined and applied to subsequent
predictive quality. A notable characteristic of data which
effects the number of clusters is fault scattering pattern.If the
faults of the component under investigation do not correspond
to the software metrics, fault prediction will not be accurate
and meaningful.

We envision several approaches for reliability model im-
provement. First and foremost is metrics selection. It is diffi-
cult to find a proper mix of metrics for the model parameters.
Second, determining meaningful features to extract fault pat-
tern for subsequent analysis is not a straightforward formu-
lation. Third, proper data clustering technique will enhance
not only the efficiency of the training process, but also the
performance of the model predictability precision. Accurate
predictions obtained from such a good reliability model will
be conducive toward higher software process efficiency and
product quality.

REFERENCES

[1] J. D. Musa, A. Iannino, and K. Okumoto,Software Reliability Measure-
ment, Prediction, Application. the United States of America: McGraw-
Hill Book Company, 1987.

[2] C. Anderson, A. V. Mayrhauser, and T. Chen, “Assessing neural net-
works as guides for testing activities,” pp. 155–165, March1996.

[3] W. A. Adnan and M. H. Yaacob, “An integrated neural-fuzzysystem of
software reliability prediction,” pp. 154–158, December 1994.

[4] S. Hong and K. Kim, “Identifying fault prone modules: An empirical
study in telecommunication system,” pp. 179–183, March 1998.

[5] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location
and number of faults in large software systems,”IEEE Transactions on
Software Engineering, vol. 31, no. 4, pp. 340 – 355, 2005.

[6] P. Eklund and L. Kallin, “Fuzzy systems,” Febuary 2000, lecture Notes
prepared for courses at the Department of Computing Scienceat Umeå
University, Sweden.

[7] W. Pedrycz, G. Succi, M. Reformat, P. Musilek, and X. Bai,“Self
organizing maps as a tool for software analysis,” pp. 93–97,May 2001.

[8] S. Haykin, Neural Networks. the United States of America: Prentice
Hall, 1999.

[9] S. H. Kan, Metrics and Models in Software Quality Engineering.
Massachusetts: Addison-Wesley, 1995.

[10] F. Lanubile, “Evaluating predictive models derived from software mea-
sure,” Journal of Systems and Software, vol. 38, no. 1, pp. 225 – 234,
1996.

[11] T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas, “Engineering
applications of the self-organizing map,” pp. 1358–1384, October 1996.

[12] S. Kaski, J. Nikkila, and T. Kohonen, “Methods for interpreting a self-
organizied map in data analysis,” Brussels, Belgium, pp. 185–190, April
1998.

[13] A. Ultsch and H. P. Siemon, “Kohonen’s self organizing feature maps
for exploratory data analysis,” Dordrecht, The Netherlands, pp. 305–308,
1990.

[14] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 586–600,
May 2000.

[15] M. R. Anderberg,Cluster Analysis for Applications. New York:
Academic Press, 1973.

[16] D. Merkl and A. Rauber, “Cluster connections: A visualization technique
to reveal cluster boundaries in self-organizing maps,” May1997.

[17] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, “Self-organizing
map program package,” Helsinki University of Technology, Laboratory
of Computer and Information Science, Rakentajanaukio 2 C, SF-02150
Espoo, Findland, April 1995.

[18] R. Li, G. Lebby, and S. Baghavan, “Performance evaluation of gaussian
radial function network classifiers,” pp. 355–358, April 2002.

[19] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity in
comparative studies of software prediction models,”IEEE Transactions
on Software Engineering, vol. 31, no. 5, pp. 380 – 391, 2005.

