
2014 International Conference on Computer, Network Security and Communication Engineering (CNSCE 2014)
ISBN: 978-1-60595-167-6

Reducing Energy Consumption in C Programs by Variable Reallocation

Krisada Samrittiyanusorn and Peraphon Sophatsathit

Advanced Virtual and Intelligent Computing (AVIC) Center

Department of Mathematics and Computer Science, Faculty of Science

Chulalongkorn University, Bangkok, 10330, Thailand

krisada.sa@student.chula.ac.th

Keywords: Energy consumption, Variable reallocation, Instruction level, Memory access protection.

Abstract. Energy consumption around the world increases exponentially. One of the causes to blame

is electronic devices such as personal computers, embedded devices, and smartphones. To reckon

with reducing energy consumption involves efficient hardware and software. This research focuses on

the software part, in particular, how to write a program that is energy efficient. The proposed

technique is based primarily on local variable reallocation in C programs to exploit the advantages of

shared memory and register variable. We analyze the amount of energy consumed at instruction level.

Our findings reveal that shared memory is the best choice at the price of memory access protection.

The benefits are fewer redundant allocations and memory accesses, thereby less energy will be

consumed.

Introduction

Nowadays, energy consumption is one the most concerned issue world-wide. Various electronic

devices such as personal computers, smartphones, and embedded devices are the major culprits of

high energy sources. Computer programs will play a central role in all relating applications. What

follows is the enormity of energy consumed by these devices. There are many ways to reduce the

energy consumption on computers attributed by hardware and software. Studies have shown that

software is a principal factor on energy consumption in computer systems [1]. Unfortunately, some

programmers may only concern about running time or resource utilization of the program and ignore

about energy perspective.

A typical computer program in execution stores, retrieves, and processes variables such as local

variables, shared memories, and register variables. Heavy use of these variables wastes considerable

energy. One remedy is reorganization of the original code to properly allocate variables and

parameters, thereby balancing the distribution of energy consumption. This research will address such

a compelling issue to demonstrate how the problem can be alleviated.

The organization of this paper is as follows. Section 2 discusses related researches on saving energy

consumption of computers. Section 3 describes the proposed approach to appropriate suitable

variables for energy saving. In Section 4, a small research tool was built for the experimental purpose

to identify the energy consumption at instruction level. Section 5 discusses comparative results

obtained from the experiment. Some final thoughts on the trade-off and future work are also given.

Related Work

Saving energy on electronic devices has been the focus of today’s green technology. Many research

endeavors have been carried out which can be classified into 2 types, namely, hardware and software.

Various techniques have been attempted to cope with such problems. A simple, effective, and popular

technique is turning off power in wireless card when it is not used [4]. From software standpoint,

properly managed of memory allocation and access will help reduce the amount of energy

consumption [7]. At a finer grained level, Grochowki and Annavaram [3] analyzed energy per

instruction (EPI) based on Intel processor. Tools for instruction power analysis [5] or energy aware

that help developers determine the energy consumed by their programs under development [6] are

also available. All these techniques will be further explored in the next section.

Proposed Approach

In C programming language, a local stack is used to store local variables and parameters when a

function is called. Access to the variables goes through push/pop operations. Energy consumption

occurs during the stack process. This usage is further worsening in repeated calls, whereby power

drains are inevitable. The excessive energy consumption of stack use can be reduced by code

modification to reallocate these local variables to shared memories and register variables, wherever

deemed appropriate. In so doing, repetitive accesses to data will lessen stack process considerably,

thereby energy consumption is reduced. By the same token, moving local variables to register

variables will also accomplish similar energy savings since data access can be done faster and register

variables expend less access effort than stacks.

To explore the operating characteristic of parameter and variable allocation at instruction level, a C

program is first compiled into assembly code. Each machine instruction is examined to determine the

number of clock cycles used [1], depending on types of instruction. For instance, PUSH takes one

clock cycle but consumes 3 latency cycles. Measurement is performed in reciprocal throughput (RT)

and latency. RT is the average number of core clock cycles per instruction for a series of independent

instructions of the same kind in the same thread [1]. Latency of an instruction is the delay that the

instruction generates in a dependency chain. The total clock cycles of every instruction used by the

entire program can then be converted to energy consumption [3], which is measured as energy per

instruction (EPI). The unit of energy from the average EPI is expressed in nano Joule.

In this study, we will compare the amount of energy consumed by an original local variable

allocation with that of shared memory and register variable by arranging the same program code in

three respective forms, namely, local, shared memory (global), and register variables. Fig. 1 illustrates

such an arrangement.

Fig. 1. A comparative energy consumed by local variable, shared memory and register variable.

Two scenarios will be investigated, namely, (1) local variable vs. shared memory or LS, and (2)

local variable vs. register variable or LR. A collection of C programs are set up to assist in the

analysis. The following case studies will be carried out to exercise both scenarios:

1. Function calls. It is the simplest exercise on parameter allocation, access, and retrieval.

Normally, a programmer will use local variables declared in the main function. These variables will

subsequently be passed to other functions in the form of parameters. For the first scenario, program

modification is done by moving local variables to shared memories, thereby no parameter passing is

needed. For the second scenario, the register keyword is simply added to proper local variables.

2. Repeated function calls. The objective is to find code segments that exhibit high energy

consumption in a program and behavior of the associated variables/parameters. As such, program

improvement can be directed to the right code segments where heavy energy consumptions will be

reduced. As a consequence, this case intentionally contrives repeated calls to function for this

particular purpose.

3. Function calls to function. This case is intended to investigate the cascading effect of energy

consumption consumed by parameter allocation and reference. The complication of such operations,

i.e., stack, shared memory, and register variable, at the instruction level are systematically measured

and compared.

C programing register var C programing Local var C programing Shared memory

Assembly Code Assembly Code Assembly Code

Energy Consumption Energy Consumption Energy Consumption

4. Nested repeated function calls to function. This case culminates all of the above complications to

demonstrate as close to actual operation as possible.

Tab.1 illustrates a straightforward comparison of the case studies under both scenarios.
Tab. 1. Example of pseudocode in repeated function calls.

Local variable Shared memory Register variable

main() {

var A

for n times

 function(A)

end for

}

function(para A)

var A

main

for n times

 function()

end for

}

function()

main() {

register var A

for n times

 function(A)

end for

}

function(para A)

Experimental and Results

We built a tool called KP program to help analyze the test programs. The tool first read an input C

program submitted by the user under the above two scenarios. It located local variables and prompted

the user to reallocate or alter them to shared memories or register variables. A lookup table was

created by the tool to hold all the data selected by the user for shared variable reallocation or register

variable alteration. The tool then compiled both original and modified C programs to produce

assembly instructions for determining clock cycles and EPI equivalent. The operating environment

was hosted by a laptop computer with Intel Core 2 Duo @ 2.00GHz 65 nm, 3 GB RAM running

Windows 7. The tool was coded in C# using Microsoft Visual Studio. All test programs were

compiled with MinGW which was a ported GNU compiler collection (GCC).

Code analyses are shown in Fig. 2-3. Fig. 2 depicts KP tool running the original program for

repeated function calls (case 2). All variables are locally declared. Fig. 3 shows the reallocation from

local variables to shared memories. The numbers of instructions to be executed is less than the

original version. Alteration of local variables to register variables is straightforward.

 Fig. 2. KP tool running case 2 –local variable . Fig. 3. KP tool running case 2 scenario 1 –shared memory.

The rationale behind each case study was to determine the amount of energy consumed by program

instructions under different functions. We began with simple function calls (case 1). The tool

analyzed and compared clock cycles used, and the energy consumed by each scenario. For example,

the original C program contained 30 instructions that utilized 27.31 clock cycles and 300.41 nJ of

energy. Under the first scenario (LS), the number of instructions, clock cycles, and energy consumed

were 21, 18.98, and 208.78, respectively. Similarly, statistics of the second scenario (LR) came out to

be 35, 28.63, and 314.93, respectively. Obviously, shared memories exhibited a sizable savings

(-30.50%), while register variables showed a slightly higher consumption (+4.60%) than that of the

local variables. The story was different for repeated function calls (case 2), where shared memories

continued to saving energy consumption (-35.60%), and register variables gained on the original local

variables (-11.90%). As programs became more complicated, savings on energy consumed were even

more noticeable. The function calls to function (case 3) exhibited such benefits. Shared memory

savings went from -30.50% to -31.00%, while the numbers on register variable were down from

+4.60% to +2.90%. For nested repeated function calls to function (case 4), the numbers were even

more interesting. Shared memories showed -34.10%, while register variables were -7.00%. Tab. 2 and

3 summarize all the statistics taking only RT factor into account, while Tab. 4 incorporates additional

latency factor. Fig. 4 shows the total clock cycles used in all 4 cases. A similar pattern is obtained by

total number of instructions as shown in Fig. 5.

Tab.2. (RT) Instruction clock cycles and number of instructions.

Case

Instruction Clock Cycle Number of Instruction

Local Register
Shared

Memory
Local Register

Shared

Memory

1 27.31 28.63 18.98 30 35 21

2 112.27 98.91 72.27 124 116 84

3 42.97 44.28 29.64 46 52 32

4 190.57 177.16 125.57 204 206 139

Tab. 3. (RT) Energy consumption by allocation scheme

(nano Joule).

Tab. 4. (RT+Latency) Energy consumption by

allocation scheme (nano Joule).

C
as

e

L
o

ca
l

R
eg

is
te

r

S
h
ar

ed

m
em

o
ry

S
h
ar

ed

M
em

o
ry

 V
S

L
o

ca
l

R
eg

is
te

r
V

S

L
o

ca
l

S
h
ar

ed

M
em

o
ry

 V
S

R
eg

is
te

r

L
o

ca
l

R
eg

is
te

r

S
h
ar

ed

m
em

o
ry

S
h
ar

ed

M
em

o
ry

 V
S

L
o

ca
l

R
eg

is
te

r
V

S

L
o

ca
l

S
h
ar

ed

M
em

o
ry

 V
S

R
eg

is
te

r

1 300.41 314.93 208.78 -30.5

0

+4.60 -33.7

0

 839.41 809.93 538.78 -35.8

1
-3.51

-33.4

7

2 1234.9

7

1088.01 794.97 -35.6

0

-11.9

0

-26.9

3

 3654.9

7

2375.0

1

1564.9

7

-57.1

8

-35.0

2

-34.1

2

3 472.67 487.08 326.04 -31.0

0

+2.90 -33.0

6

 1352.6

7

1279.0

8

854.04 -36.8

6
-5.44

-33.2

3

4 2096.2

7

487.08 1381.2

7

-34.1

0

-7.00 -29.1

2

 6199.2

7

5446.7

6

3801.2

7

-38.6

8

-12.1

4

-30.2

1

Fig. 4. Total number of clock cycles (Y-axis) for all cases

(X-axis).

 Fig.5. Total number of instructions (Y-axis) for all cases

(X-axis).

Discussion

The results obtained from our KP tool did not come as a surprise, as they were well-established

programming facts. Our findings merely reinstated local, register, and shared memory variable

scoping principles. From our findings, shared memory reduced energy consumption by approximately

30% in simple function calls, and 35% in nested function calls. Register variable, on the other hand,

was effective only when repetitive accesses were called for. It was however not as efficient as shared

memory. Energy consumption comparison between shard memory and register variable reveals that

the former saves approximately 33% and 25% in simple function calls and nested function calls,

respectively.

An interesting finding that is not stated in many literatures is the total energy consumption of

different variable scoping. We found that local variables consumed the most energy. From the

instruction level, it was apparent that stack process took considerable clock cycles which resulted in

high latency and energy consumption. Fig. 6 illustrates the results obtained in Tab. 3, while Fig. 7

shows the results from Tab. 4. The shortfall of shared memory is due to memory access protection as

it violates information hiding principle in Software Engineering. The side effect of shared access is

what programmers should heed and practice with care.

Fig. 6. Comparison of energy consumption (Y) for all

cases (X).

Fig. 7. Comparison of energy consumption (Y) for all

cases (X).

Conclusion and Future Work

We investigated energy consumption used by local variable, register variable, and shared memory in

C programs. Experiments were conducted in 2 scenarios by means of a KP tool. We found that shared

memory significantly saved the most energy consumption over local and register variables. Under

repetitive accesses, register variable provided considerable reduction of energy consumption.

However, the outcomes were not any surprised. The gains from shared memory could possibly be

offset by violation penalty of “good” software engineering practice, e.g., side effects, information

hiding, portability, etc. The issue at hand is whether software engineering or energy consumption is

crucial to producing theoretically sound or environmentally conscious products.

The KP tool greatly helps identify code fragment to reduce the energy consumption from

programming point of view. However, it is currently limited to basic analysis. We plan to improve our

tool to be able to analyze complicated C programs in wider research aspects.

References

[1] Kostas Zotos, Andreas Litke, Er Chatzigeorgiou, Spyros Nikolaidis, George Stephanides,

“Energy complexity of software in embedded systems”. ACIT - Automation, Control, and

Applications 2005.

[2] Agner Fog, Instruction Tables Lists of Instruction Latencies, Throughputs and Micro Operation

Breakdowns for Intel, AMD and VIA CPUs, Copenhagen University College of Engineering.

[3] E. Grochowski and M. Annavaram, Energy per instruction trends in Intel microprocessors,

Technical rezport, Microarchitecture Research Lab, Intel Corporation, Santa Clara, CA, Mar 2006.

[4] S. Eugene, B. Paramvir and Michael J. Sinclair, “Wake on wireless: an event driven energy

saving strategy for battery operated devices”, in MobiCom '02 Proceedings of the 8th annual

international conference on Mobile computing and networking, 2002, pages 160-171.

[5] Vivek Tiwari, Sharad Malik, Andrew Wolfe and Mike Tien-Chien Lee, “Instruction Level Power

Analysis and Optimization of Software”, Journal of VLSI Signal Processing Systems, 1996, pages

223-238.

[6] H. Timo, E. Christopher, K. Rüdiger and Wolfgang Schröder-Preikschat, “SEEP: exploiting

symbolic execution for energy-aware programming”, in HotPower '11 Proceedings of the 4th

Workshop on Power-Aware Computing and Systems, No. 4, 2011.

[7] Mike Tien-Chien Lee and Lee Vivek TiwariA, “Memory allocation technique for low-energy

embedded DSP software”, IEEE Symposium on Low Power Electronics, San Diego, CA, Oct 1995.

	Main Menu
	Author Index
	How to Use this CD-ROM
	Search
	Print

	Table of Contents
	SESSION 1: APPLIED COMPUTER SCIENCE AND TECHNOLOGY
	An Improved Differential Evolution Algorithm for Solving Unconstrained Optimization Problems
	A Self-Adaptive Model of Multi-Source Information Services for Cloud ITS
	An Improved Differential Evolution Algorithm for Solving Constrained Optimization Problems
	A Malware Threat Decision Model Based on Dynamic Multi-Source Data Acquisition
	A New Windows Malware and Rootkit Identifying and Detecting Software Based on System Routine Redirecting
	Research of the Grain Situation Monitoring System Based on Embedded Linux
	Design and Implementation of a NoC Simulator for Multiple Topologies Exploration
	A Sub-Block Matrix Transpose Algorithm Based DDR2 SDRAM
	Research on Pornographic Audio Detection Algorithm Using MFCC Features and Vector Quantization
	An Improved Wavelet Edge-Sensitive Image Enhancement Algorithm
	Security of Remote Working on Cloud Computing Platform
	Ship Detection from Big Wave Regions in Optical Remote Sensing Image
	Threshold-Adaptive Cooperative Spectrum Sensing Algorithm Based on RMT
	An Improved Demand-Driven Pointer Alias Analysis Algorithm
	Design and Research of Reflective Memory Network Node Card
	The Research of Cross-Domain Access Control Based on Attribute Mapping
	The Design and Implementation of Corps Geospatial Data Sharing of Safety-Certified
	A New Hybrid Full-Duplex/Half-Duplex MAC Protocol in VANETs
	Studies of the Software Test Processes Based on GUI
	Based on Bitmap Implementation Functions of WebGIS
	The Platform Migration of EAST Vacuum Control System
	Data Dependence Constraints on SIMD Extensions
	Particle Swarm Optimization Algorithm for Sound Source Tracking in a Reverberant Environment
	Research of Finding Dynamic Test Configuration Model and Data Model Based on TTCN-3 Test System
	The Design for High Speed LVDS Transceiver on FPGA
	VLSI Implementation of Fast Integer-Pixel Motion Estimation Algorithm Based on H.264
	A Color Image Encryption Algorithm Based on Generalized Synchronization Theorem and the Fractional Fourier Transform
	Design and Implementation of a Reduced Floating-Point Reconfigurable Computing Unit
	Hardware and Software Codesign Speech Recognition System Based on ZYNQ7000
	An Agent-Based Cloud Streaming Service Platform
	Single Image and Video Dehazing Using an Improved Dark Channel Prior
	Green Unicast Path Protection Mechanism in Multi-Granularity Transport Networks
	On Approximating Constructions of Restricted Shortest Paths in Digraphs
	Performance Evaluation Algorithm Based on AC2R Model
	Review on Identifying Faces of Polyhedron Wire-Frame Models
	The Action Based Access Control Mechanism of Digital Productions Trading Data Management Platform
	Shot-Segmentation-Based Video Watermarking Algorithm Using Motion Vector
	Explore Server Virtualization Technology Use in the Construction of Campus Informatization
	Study on the Change Detection from High Resolution Remote-Sensing Image
	Research and Design of Wireless Medical Monitoring System Based on Zigbee
	Protocol Intrusion Detection Architecture
	Generating Signature for Application Inference Using Trie Data Structure
	Digital System Design of Electro-Thermal Acupuncture Treatment Instrument
	Simple Multiple-Attribute Rating Technique for OptimalDecision-Making Model on Selecting Best Spiker of World Grand Prix
	Research on the Evaluation of University Homepage Website Usability Based on Eye Tracking Technology
	Study on Population Comprehensive Information Sharing Platform
	Water Quality Index Prediction Using Falsity Input and Duo Output Neural Networks
	Online Surgery Scheduling with Tight Due Dates

	SESSION 2: NETWORK SECURITY AND COMMUNICATION ENGINEERING
	Design of Knapsack Cryptosystems Using Fibonacci Numbers
	Combining SVM with Orthogonal Centroid Feature Selection for Spam Filtering
	Cryptanalysis of Some Publicly-Verifiable Mix-Nets
	The Prisoner's Dilemma in Access Control
	A Method to Figure Out New Attacks on Remote Authentication Schemes
	Network-Coding-Based Reliable Broadcasting Retransmission Scheme in Wireless Communications
	Performance Evaluation of a New Secured Coded DS/FFH/TH Multi-User Communication System Under Rayleigh Fading Channel
	The Role of Logistic Equation in the Network Communication System
	Detecting Sybil Attacks in Mobile Wireless Sensor Networks Based on ID Frequency
	A Trust-Based Recommendation Model Constructed from Improved Page Rank Algorithm in a P2P Social Network
	Research on Oversea Telecommunication Venders' Quality Comprehensive Evaluation Method Based on BP-Neural Network
	Network Malicious Action Hazard Assessment Based on Game Model and Grey Clustering
	A POMDPs-Based Target Tracking in Sensor Networks
	Study on Electric Power Communication Network Malfunction Diagnosis Method Based on Semantic Rules
	A Secure and Efficient Privacy-Preserving Matchmaking for Mobile Social Networking
	Stability-Based On-Demand Multipath Routing in MANET
	The Next Generation Internet Controllable Multicast System Based on Switch
	How Are We Familiar: Modeling Relation Strength in Mobile Social Network
	Distributed Beamforming in MISO SWIPT System with Total Power Constraint
	SL-Cloak: PIR Technology Based Stochastic Location Cloaking Method
	One-Dimensional Model for Practical Two-Dimensional Insulated Elliptic Pipe
	Unsupervised Traffic Classification Using Affinity-Propagation-Based Clustering Method
	The Implementation of a NoC Router Compatible with Packet Switching and Circuit Switching
	A Secure and Efficient RFID Authentication Protocol
	A Comparison of United States and China Social Networks: Take Facebook vs. Renren Users for Instance
	Research of Fasteners State Detection System Based on Strain Gauge Arranged on the Rubber Pad Under Rail
	Research on Knowledge Model for Grid Security Incident Based on Ontology
	Analysis of Highway Landscape Design Based on Traffic Safety
	A Study on Characteristics of the Papers on International Bauhaus Research in Recent 50 Years—Based on the Database of Web of Science
	Influence of Human Memory on Metapopulation Epidemic Dynamics
	Geochemistry and Petrogenesis of Cenozoic Basaltic Rocks in the Southern-Central Part of Ta-Lu Fault Zone, China

	SESSION 3: E-COMMERCE AND INFORMATION ENGINEERING
	Organizational Structures Evolution of Firm Internationalization—A Case Study of Huawei Technologies Co., Ltd.
	Impact on Inflation of China's Foreign Exchange Reserves, Exchange Rate Movements—Based on the Analysis of the International Balance of Payments Perspective
	The Influence of Property Right Structure and Market Structure on Banking Performance
	A Research on Optimization of the Income Distribution Mechanism—Taking the Cooperation Strategy Between Mobile Software Markets and Software Developers for Example
	The Geometrical Analysis of Cooperation Revenue on Cournot Game
	An Infra-Marginal Analysis on Existence Condition of Partial Labor Division Structure in E-Commerce Market
	The Influencing Factor Analysis on the Network Marketing Model of Green Foods Which Based on Logistic Regression Analysis
	Empirical Study on the Revenue of Financial Products in City Commercial Banks
	Empirical Research on China's Financial Conditions Index Based on VAR Model
	The Third Industry Development Prediction in Hunan Province Based on GM(1,1) Model Revised by Residual Error
	Empirical Research on Herd Behavior in China's Rebar Futures Market
	Research on Financing Decision in Steel Industry Under Heterogeneous Beliefs Perspective
	International Stock Market Interdependence: Evidence from Four Asian Tiger Countries
	Factors Affecting China's Bond Issuance Size: An Empirical Study
	Empirical Research of Compound Arbitrage on CSI300 ETF Combination and Stock Index Futures
	Executive Change and Enterprise Technology Innovation: The Moderating Effect of Ownership, Industry and Executives' Age
	Study on the Problem of Bullwhip Effect in Supply Chain
	Study on Measuring Degree of Information Synergy in Steel Closed-Loop Supply Chain
	Research on Modern Enterprise Performance Evaluation of Knowledge Workers
	Reconstruction of the Stochastic Volatility Based on the Black-Scholes Option Pricing Model
	Research on Human Capital Evaluation of Technological Leading Talents of Innovation Team
	Target Costing and Activity-Based Cost of Supply Chain Costing Study
	Research on Adverse Selection of Automobile Insurance Market
	The Present and Future of Information Systems Outsourcing in Africa
	Analysis on Chinese Campus Recruitment Based on Bayesian Equilibrium Model
	Thinkings of University Library Information Service Research—Based on Web Users' Behavior Research
	Bibliometric Analysis of Journal of U University
	A Research Capacity Evaluation Model Based on the Evaluation of Academic Papers
	A Secure and Efficient Handover Procedure Between WiFi and WiMAX Network
	A Simulation Assessment of the NLMS and Linear-Approximated NAMSER Algorithms for Channel Equalization
	A Routing Protocol Based on Social-Relation for Delay Tolerant Networks
	A Numerical Simulation on the Characteristic Responses of the Optical Sensor to the Contamination
	Heuristics for the Regenerator Location Problem
	Timing Synchronization Algorithm in Uplink of Satellite OFDMA System
	Effects of Feedbacks in Language Information Process
	Establishing the Factor Models of Distributed Innovation Network
	Design and Development of Disaster Information Analyzing System Using Agile Method
	The Grouping Combination Generating Algorithm
	The Design of a Mobile Multimedia Question and Answer System Based on Android
	Formulating Scheduling Problem for a Manufacturing Production System
	Document Analysis on the Research of Computer Science Based on CSCD
	Study on the Construction of Emergency Logistics Control System
	P2P Network Structure Graph Finding for P2P Botnet Detection
	An Improved Passive Location Algorithm Based on Iterated Kalman
	A New Algorithm for Generating Large Itemsets Based on Discernible Vector
	Reducing Energy Consumption in C Programs by Variable Reallocation
	Supply Chain Perspective Port and Dry Port Linkage
	Boodle: A Virtual Booth Management System Based on Moodle
	Head First DO-178C Versus DO-178B
	A Research on the Construction of Comprehensive Evaluation System for University Teachers' Performance in the Central Region of China
	Online 3D Household Products Display System Design and Development
	Digital Terrain Elevation Map Smoothing Based on Wavelet Transformation
	Analysis and Simulation of Shunt Capacitive RF MEMS Switch
	Dynamic Construction of the Multiplicatively Weighted Voronoi Diagram

