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Abstract. Energy consumption around the world increases exponentially. One of the causes to blame 

is electronic devices such as personal computers, embedded devices, and smartphones. To reckon 

with reducing energy consumption involves efficient hardware and software. This research focuses on 

the software part, in particular, how to write a program that is energy efficient. The proposed 

technique is based primarily on local variable reallocation in C programs to exploit the advantages of 

shared memory and register variable. We analyze the amount of energy consumed at instruction level. 

Our findings reveal that shared memory is the best choice at the price of memory access protection. 

The benefits are fewer redundant allocations and memory accesses, thereby less energy will be 

consumed. 

Introduction 

Nowadays, energy consumption is one the most concerned issue world-wide. Various electronic 

devices such as personal computers, smartphones, and embedded devices are the major culprits of 

high energy sources. Computer programs will play a central role in all relating applications. What 

follows is the enormity of energy consumed by these devices. There are many ways to reduce the 

energy consumption on computers attributed by hardware and software. Studies have shown that 

software is a principal factor on energy consumption in computer systems [1]. Unfortunately, some 

programmers may only concern about running time or resource utilization of the program and ignore 

about energy perspective. 

A typical computer program in execution stores, retrieves, and processes variables such as local 

variables, shared memories, and register variables. Heavy use of these variables wastes considerable 

energy. One remedy is reorganization of the original code to properly allocate variables and 

parameters, thereby balancing the distribution of energy consumption. This research will address such 

a compelling issue to demonstrate how the problem can be alleviated. 

The organization of this paper is as follows. Section 2 discusses related researches on saving energy 

consumption of computers. Section 3 describes the proposed approach to appropriate suitable 

variables for energy saving. In Section 4, a small research tool was built for the experimental purpose 

to identify the energy consumption at instruction level. Section 5 discusses comparative results 

obtained from the experiment. Some final thoughts on the trade-off and future work are also given. 

Related Work 

Saving energy on electronic devices has been the focus of today’s green technology. Many research 

endeavors have been carried out which can be classified into 2 types, namely, hardware and software. 

Various techniques have been attempted to cope with such problems. A simple, effective, and popular 

technique is turning off power in wireless card when it is not used [4]. From software standpoint, 

properly managed of memory allocation and access will help reduce the amount of energy 

consumption [7]. At a finer grained level, Grochowki and Annavaram [3] analyzed energy per 



 

instruction (EPI) based on Intel processor. Tools for instruction power analysis [5] or energy aware 

that help developers determine the energy consumed by their programs under development [6] are 

also available. All these techniques will be further explored in the next section. 

Proposed Approach 

In C programming language, a local stack is used to store local variables and parameters when a 

function is called. Access to the variables goes through push/pop operations. Energy consumption 

occurs during the stack process. This usage is further worsening in repeated calls, whereby power 

drains are inevitable. The excessive energy consumption of stack use can be reduced by code 

modification to reallocate these local variables to shared memories and register variables, wherever 

deemed appropriate. In so doing, repetitive accesses to data will lessen stack process considerably, 

thereby energy consumption is reduced. By the same token, moving local variables to register 

variables will also accomplish similar energy savings since data access can be done faster and register 

variables expend less access effort than stacks. 

To explore the operating characteristic of parameter and variable allocation at instruction level, a C 

program is first compiled into assembly code. Each machine instruction is examined to determine the 

number of clock cycles used [1], depending on types of instruction. For instance, PUSH takes one 

clock cycle but consumes 3 latency cycles. Measurement is performed in reciprocal throughput (RT) 

and latency. RT is the average number of core clock cycles per instruction for a series of independent 

instructions of the same kind in the same thread [1]. Latency of an instruction is the delay that the 

instruction generates in a dependency chain. The total clock cycles of every instruction used by the 

entire program can then be converted to energy consumption [3], which is measured as energy per 

instruction (EPI). The unit of energy from the average EPI is expressed in nano Joule. 

In this study, we will compare the amount of energy consumed by an original local variable 

allocation with that of shared memory and register variable by arranging the same program code in 

three respective forms, namely, local, shared memory (global), and register variables. Fig. 1 illustrates 

such an arrangement. 

 

 

 

        
 

Fig. 1. A comparative energy consumed by local variable, shared memory and register variable. 

Two scenarios will be investigated, namely, (1) local variable vs. shared memory or LS, and (2) 

local variable vs. register variable or LR. A collection of C programs are set up to assist in the 

analysis. The following case studies will be carried out to exercise both scenarios: 

1. Function calls. It is the simplest exercise on parameter allocation, access, and retrieval. 

Normally, a programmer will use local variables declared in the main function. These variables will 

subsequently be passed to other functions in the form of parameters. For the first scenario, program 

modification is done by moving local variables to shared memories, thereby no parameter passing is 

needed. For the second scenario, the register keyword is simply added to proper local variables. 

2. Repeated function calls. The objective is to find code segments that exhibit high energy 

consumption in a program and behavior of the associated variables/parameters. As such, program 

improvement can be directed to the right code segments where heavy energy consumptions will be 

reduced. As a consequence, this case intentionally contrives repeated calls to function for this 

particular purpose. 

3. Function calls to function. This case is intended to investigate the cascading effect of energy 

consumption consumed by parameter allocation and reference. The complication of such operations, 

i.e., stack, shared memory, and register variable, at the instruction level are systematically measured 

and compared. 

C programing register var C programing Local var C programing Shared memory 

Assembly Code Assembly Code Assembly Code 

Energy Consumption Energy Consumption Energy Consumption 



4. Nested repeated function calls to function. This case culminates all of the above complications to 

demonstrate as close to actual operation as possible. 

Tab.1 illustrates a straightforward comparison of the case studies under both scenarios. 
Tab. 1. Example of pseudocode in repeated function calls. 

Local variable Shared memory Register variable 

main() { 

var A 

for  n times 

     function(A) 

end for 

} 

function(para A) 

var A 

main  

for  n times 

     function() 

end for 

} 

function() 

main() { 

register var A 

for  n times 

     function(A) 

end for 

} 

function(para A) 

Experimental and Results 

We built a tool called KP program to help analyze the test programs. The tool first read an input C 

program submitted by the user under the above two scenarios. It located local variables and prompted 

the user to reallocate or alter them to shared memories or register variables. A lookup table was 

created by the tool to hold all the data selected by the user for shared variable reallocation or register 

variable alteration. The tool then compiled both original and modified C programs to produce 

assembly instructions for determining clock cycles and EPI equivalent. The operating environment 

was hosted by a laptop computer with Intel Core 2 Duo @ 2.00GHz 65 nm, 3 GB RAM running 

Windows 7. The tool was coded in C# using Microsoft Visual Studio. All test programs were 

compiled with MinGW which was a ported GNU compiler collection (GCC). 

Code analyses are shown in Fig. 2-3. Fig. 2 depicts KP tool running the original program for 

repeated function calls (case 2). All variables are locally declared. Fig. 3 shows the reallocation from 

local variables to shared memories. The numbers of instructions to be executed is less than the 

original version. Alteration of local variables to register variables is straightforward. 
 

                             
          Fig. 2. KP tool running case 2 –local variable .                         Fig. 3. KP tool running case 2 scenario 1 –shared memory. 

 

The rationale behind each case study was to determine the amount of energy consumed by program 

instructions under different functions. We began with simple function calls (case 1). The tool 

analyzed and compared clock cycles used, and the energy consumed by each scenario. For example, 

the original C program contained 30 instructions that utilized 27.31 clock cycles and 300.41 nJ of 

energy. Under the first scenario (LS), the number of instructions, clock cycles, and energy consumed 

were 21, 18.98, and 208.78, respectively. Similarly, statistics of the second scenario (LR) came out to 

be 35, 28.63, and 314.93, respectively. Obviously, shared memories exhibited a sizable savings 

(-30.50%), while register variables showed a slightly higher consumption (+4.60%) than that of the 

local variables. The story was different for repeated function calls (case 2), where shared memories 

continued to saving energy consumption (-35.60%), and register variables gained on the original local 

variables (-11.90%). As programs became more complicated, savings on energy consumed were even 



 

more noticeable. The function calls to function (case 3) exhibited such benefits. Shared memory 

savings went from -30.50% to -31.00%, while the numbers on register variable were down from 

+4.60% to +2.90%. For nested repeated function calls to function (case 4), the numbers were even 

more interesting. Shared memories showed -34.10%, while register variables were -7.00%. Tab. 2 and 

3 summarize all the statistics taking only RT factor into account, while Tab. 4 incorporates additional 

latency factor. Fig. 4 shows the total clock cycles used in all 4 cases. A similar pattern is obtained by 

total number of instructions as shown in Fig. 5. 

 
Tab.2. (RT) Instruction clock cycles and number of instructions. 

Case 

Instruction Clock Cycle Number of Instruction 

Local Register 
Shared 

Memory 
Local Register 

Shared 

Memory 

1 27.31 28.63 18.98 30 35 21 

2 112.27 98.91 72.27 124 116 84 

3 42.97 44.28 29.64 46 52 32 

4 190.57 177.16 125.57 204 206 139 

 

Tab. 3. (RT) Energy consumption by allocation scheme 

(nano Joule). 

  

Tab. 4. (RT+Latency) Energy consumption by 

allocation scheme (nano Joule). 
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Fig. 4. Total number of clock cycles (Y-axis) for all cases 

(X-axis).   

  Fig.5. Total number of instructions (Y-axis) for all cases 

(X-axis). 

Discussion 

The results obtained from our KP tool did not come as a surprise, as they were well-established 

programming facts. Our findings merely reinstated local, register, and shared memory variable 

scoping principles. From our findings, shared memory reduced energy consumption by approximately 

30% in simple function calls, and 35% in nested function calls. Register variable, on the other hand, 

was effective only when repetitive accesses were called for. It was however not as efficient as shared 

memory. Energy consumption comparison between shard memory and register variable reveals that 

the former saves approximately 33% and 25% in simple function calls and nested function calls, 

respectively. 

An interesting finding that is not stated in many literatures is the total energy consumption of 

different variable scoping. We found that local variables consumed the most energy. From the 



instruction level, it was apparent that stack process took considerable clock cycles which resulted in 

high latency and energy consumption. Fig. 6 illustrates the results obtained in Tab. 3, while Fig. 7 

shows the results from Tab. 4. The shortfall of shared memory is due to memory access protection as 

it violates information hiding principle in Software Engineering. The side effect of shared access is 

what programmers should heed and practice with care. 

 
 

                  
Fig. 6. Comparison of energy consumption (Y) for all 

cases (X). 

Fig. 7. Comparison of energy consumption (Y) for all 

cases (X). 

Conclusion and Future Work 

We investigated energy consumption used by local variable, register variable, and shared memory in 

C programs. Experiments were conducted in 2 scenarios by means of a KP tool. We found that shared 

memory significantly saved the most energy consumption over local and register variables. Under 

repetitive accesses, register variable provided considerable reduction of energy consumption. 

However, the outcomes were not any surprised. The gains from shared memory could possibly be 

offset by violation penalty of “good” software engineering practice, e.g., side effects, information 

hiding, portability, etc. The issue at hand is whether software engineering or energy consumption is 

crucial to producing theoretically sound or environmentally conscious products. 

The KP tool greatly helps identify code fragment to reduce the energy consumption from 

programming point of view. However, it is currently limited to basic analysis. We plan to improve our 

tool to be able to analyze complicated C programs in wider research aspects. 
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