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Abstract—This paper presents a source level complexity 
evaluation method using a set of well-established 
measurements. The objective is to gauge the variations of
program complexity being written in different programming 
languages, thereby performance assessment can be reached. 
Experiments show that source code written in compiled 
languages have greater complexity than those in interpreted 
languages. The results could aid in language selection decision 
for software development so as to attain higher quality, lower 
effort, and shorter development time. 
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I. INTRODUCTION

Effective management of development process requires 
quantification, measurement, and modeling. Software 
metrics provide a quantitative basis for the development and 
validation of software development process model. Thus 
productivity and quality can be improved.

As software becomes more complex, the cost inevitably 
increases. Software organizations are trying to find ways to 
reduce it. Research efforts are spent finding the relation of 
software feature and the extent of the problem that would 
lessen the cost burden. One of the reasons for proceeding to 
investigate software complexity and its measurement is 
controlling the expenditure of software development, 
operation, and maintenance over its life time. Unfortunately,
software complexity is an inherent property that cannot be 
straightforwardly identified, described, and measured. Worse 
yet, it is often disregarded in the development planning 
process and incorporated as an after-thought artifact. This is 
particularly apparent during the maintenance phase where 
considerable amount of efforts are expended to modify the 
source code. The overwhelming magnitude of complexity 
poses a challenging problem for researchers to reckon with. 

In early 70’s, software complexity had attracted the 
public attentions. The modularization program style and the 
object-oriented paradigms were both introduced to lower 
such complexity. Meanwhile, a number of useful metrics 
were employed to measure various level of software 
complexity, yet were inadequate to settle this problem. 

This paper aims to providing a straightforward 
measurement for source level complexity of program using a
set of well-established measurements, namely, operators, 
operands, parameters, inputs and outputs, files operations, 
externals functions or libraries, variable declarations, and 

flow graph. We have selected popularly used programming 
languages such as C, C#, Java, Python, PHP, and Perl to 
effectively measure and assess source code complexity. 

The rest of the paper is organized as follows. Section 2 
introduces some related work on source code complexity 
measurements and metrics. The proposed method is 
described in Section 3. Section 4 demonstrates the 
experimental results. Some discussion and final thoughts are 
given in the last section. 

II. RELATED WORK

Many research works on software complexity have been 
carried out in recent years. Several metrics have been defined 
and tested in specific environments. Although remarkable 
successes have been reported in the initial application and 
validation of these metrics, subsequent attempts to test or 
apply the metrics in different situations have yielded 
different results. One problem could stem from failure to 
identify a commonly accepted set of software properties. 
Moreover, there were virtually no theoretical models and 
metrics to support the measurement. Principally, there are 
three types of well-practiced software complexity metrics, 
namely, process metrics, project metrics, and product metrics 
[1]. Some classical and efficient software complexity metrics 
introduced in [2] were popularly applied to measure the 
complexity of software. These metrics were compared in [3] 
and identified which metric was the most suitable one to be 
adopted in the state-of-the-practice development. They are 
McCabe's cyclomatic complexity (CCM) [4], Halstead's 
software science [5] complexity metrics (HCM), and Shao 
and Wangs' cognitive functional size [6]. 

While the extent of research in this field is still relatively 
limited, particularly when compared with research on static 
metrics, the field is growing given the inherent advantages of
dynamic metrics. Tahir, et al. [7] systematically investigated 
the body of research on dynamic software metrics to identify 
issues associated with their selection, design, and 
implementation. Current measures can be used to compute 
complexity, but these methods are not sufficient to express 
complexity variations among programming languages. New 
methods are being searched for predicting complexity since 
high degree of complexity in a module is considered 
inefficient as oppose to low degree of complexity [9]. In 
addition, the measurement helps estimate other quality 
attributes such as testability and maintainability [8].
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III. PROPOSED METHOD

This study aims to measuring the complexity of source 
code written in different programming languages. We 
propose a method using metrics that focus on operators, 
function parameters, file operations, and flowchart. The 
proposed method can be divided into four stages, namely, 
initial metrics statistics, flow graph transformation, data 
quantified analysis, and comparative evaluation.  

The source programs employed were collected from 
different languages and grouped based on their operational 
characteristics. They are 1) Compiled programming 
languages, such as C, C++, C#, Java, and 2) Interpreted 
programming languages, such as Python, JavaScript, PHP, 
and Perl. The reason was that they represented the most 
popular programming languages used in modern software 
application development. 

A. Initial metrics statistics 
For source level complexity evaluation of software, we 

choose essential programming tokens to be evaluated, 
namely, operators, operands, parameters, inputs and outputs, 
file operation, external function references, and variable 
declarations. 

The first step is to count the following tokens: 1) 
operators such as +, -, *, /, %, ->, (), +=, -=, ++, --; 2) 
operands in executable statements; 3) parameters in and out 
of each module or function; 4) inputs and outputs of the 
program; 5) files operations including open, close, read, and 
write; 6) external references including library functions,
external source files, and external user-defined functions; 
and 7) variable declarations in the program. 

B. Flow graph transformation 
This step transforms each program into a flow graph and 

counts the number of nodes and edges of that flow graph. 
Figure 1 shows parts of the flow graph converted from Java 
source code by using Visustin v7 Flow Chart Generator. The 
number of nodes and edges are 31 and 33, respectively. 

Figure 1. Part of a flow graph converted from Java source code 

C. Data quantified analysis 
Based on the results of the first two steps, we compute 

the following statistics: 1) range of the numerical spread, 2) 
normalized data to standardize the results, 3) standard 
deviation of the dispersion from the average, and 4) group 
average and standard deviation. 

1) Range
The range can be obtained from the difference between 

the maximum and minimum values. Table I and II show the 
minimum and maximum values, while Table III shows the 
range of each group. 

2) Normalized data 
All numbers except CCM and HCM are normalized by 

taking each value and divided by the range of that value as 
shown in Table IV. For example,  

LOC of C = 46/59 = 0.78 
OR of Java = 16/16 = 1.00 
EL of C# =  1/5 =0.20 

3) Average and standard deviation 
The average and standard deviation of all the normalized

values are shown in Table V, VI, VII, VIII, denoting by
group and language, respectively. 

D. Comparative evaluation 
The above results are plotted by group and programming 

language to visually compare the resulting measurements. 
Any discernible proportion of the groups and programming 
languages will reflect the level of variations in program 
complexity. Thus, proper development can be planned and 
administered to attain lesser project effort and cost. 

IV. EXPERIMENT

The experiment on source code complexity evaluation by 
the proposed method is elaborated. All source code was 
collected from the Internet. There were 20 programs of 
different sizes written in C, C#, Java, Python, PHP, and Perl. 
The first three were grouped as compiled programming 
language, whereas the remaining three as interpreted 
programming language. The following abbreviations are 
used to denote all metrics being collected: LOC denotes lines 
of code, OR and OD denote the number of operators and 
operands, PR denotes the number of formal arguments, IO
denotes the number of inputs and outputs invoked by each 
function, FE denotes the number of file operations, EL 
denotes the number of external functions, libraries, and files
linked, VE denotes the number of variable declarations, FG 
denotes the sum of nodes and edges derived from program 
flowchart, and CCM and HCM are software complexity 
evaluated by Cyclomatic Complexity and Halstead 
Complexity Metrics. McCabe’s CCM is based on program 
flow graph and is defined as V(G) = e-n+2, where e and n
represent the number of edges and nodes, respectively. On the 
other hand, HCM is defined as D = (n1*N2)/(2*n2), where n1
denotes the number of unique or distinct operators, n2 denotes 
the number of unique or distinct operands, and N2 denotes total 
operands.

The values of LOC varied from 46 to 607, where the 
minimum and maximum sizes of both groups were relatively 
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indifferent. We used Visustin v7 Flow Chart Generator to 
generate flow graph for each program. Table I and Table II
show the maximum and minimum collected from the source 
programs. 

TABLE I.     MINIMUM METRICS COUNT OF EACH LANGUAGE

TABLE II.     MAXIMUM METRICS COUNT OF EACH LANGUAGE 

PL LOC OR OD PR IO FE EL VE FG CCM HCM
C 585 357 262 12 60 15 140 59 497 10 83

C# 436 99 103 26 13 11 39 52 699 10 39
Java 395 390 571 23 27 0 127 46 494 10 263

Python 309 290 328 119 7 12 38 20 279 10 15
PHP 607 411 401 86 179 6 61 61 351 10 160
Perl 471 210 342 54 27 27 51 72 679 10 54

TABLE III.     RANGE OF EACH GROUP 

Group OR OD PR IO FE EL VE FG CCM HCM
Compiled 388 570 26 60 15 139 58 672 9 263
Interpreted 410 400 119 179 27 60 72 651 10 160

TABLE IV.     NORMALIZED MINIMUM OF EACH LANGUAGE 

TABLE V.     AVERAGE OF EACH GROUP 

Group OR OD PR IO FE EL VE FG CCM HCM
Compiled 0.368 0.217 0.186 0.231 0.126 0.064 0.243 0.319 10 47
Interpreted 0.301 0.173 0.179 0.197 0.039 0.066 0.250 0.219 6 16

TABLE VI.     AVERAGE OF EACH LANGUAGE 

TABLE VII. STANDARD DEVIATION OF EACH GROUP 

TABLE VIII. STANDARD DEVIATION OF EACH LANGUAGE 

We omitted the function point (FP) metric from the 
statistics because the interpreted source was relatively small. 
They lacked the principal attributes that made up the FP 
computations such as I/O and external references. This is 
apparent in Table I, II and III, where the spread of these 
parameters is quite noticeable. This finding might not hold in 
larger production code. As a consequence, the resulting 
statistics so obtained from FP metric will not be an accurate 
measure to participate in this study. 

Figure 2. Standard deviation of compiled and interpreted groups 

Figure 2 shows the proportional distribution of both 
groups. Obviously, the compiled language group exhibits 
discernible complexity variations than its interpreted 
counterpart owing to program size. 

Figure 3 shows the proportional dispersion of different 
compiled languages. Notice that Java program exhibits the 
least variation in secondary storage operations, e.g., I/O and 
Files, yet internally is complicated to maneuver as the values 
of HCM exceed other languages by many folds. Meanwhile, 
C and C# are somewhat less sporadic. Such indicators can be 
conducive toward decision on language selection to suit 
specific requirements for application development. 

The interpreted languages, on the other hand, exhibit 
wider dispersion than the compiled ones. Particularly, Perl 
and Python show exceptionally high dispersion of 
complexity in all but two categories, namely, I/O, Files for 
Python, and Parameters, I/O for Perl. These are depicted in 
Figure 4. A noteworthy result is that all languages in the 
same group exhibit alternate high complexity across the 
measuring metrics, thereby no single language is suitable for 
all operational characteristics of the underlying application 
domain. 

PL LOC OR OD PR IO FE EL VE FG CCM HCM
C 46 7 9 0 0 0 1 5 27 2 3

C# 54 2 1 0 0 0 1 1 70 1 0.2
Java 59 16 30 1 0 0 3 2 72 1 24

Python 47 13 9 3 0 0 3 3 30 1 2
PHP 52 1 1 0 0 0 1 3 29 1 0.1
Perl 51 4 4 0 0 0 5 5 28 1 1

PL LO
C OR OD PR IO FE EL VE FG CCM HC

M
C .78 0.44 0.30 0.00 0.00 0.00 0.20 1.00 0.38 10 19

C# .92 0.13 0.03 0.00 0.00 0.00 0.20 0.20 0.97 3 11
Java 1.0 1.00 1.00 0.33 0.00 0.00 0.60 0.40 1.00 8 112

Python .80 0.30 0.30 1.00 0.00 0.00 0.60 0.60 0.42 2 9
PHP .88 0.03 0.03 0.00 0.00 0.00 0.20 0.60 0.40 8 18
Perl .86 0.13 0.13 0.00 0.00 0.00 1.00 1.00 0.39 4 22

PL OR OD PR IO FE EL VE FG CCM HCM
C 0.421 0.171 0.090 0.131 0.254 0.123 0.309 0.289 10 19

C# 0.349 0.100 0.068 0.315 0.039 0.070 0.089 0.369 3 11
Java 0.334 0.380 0.398 0.248 0.084 0.000 0.331 0.299 8 112

Python 0.247 0.230 0.189 0.256 0.002 0.022 0.232 0.213 2 9
PHP 0.323 0.127 0.120 0.213 0.099 0.031 0.265 0.174 8 18
Perl 0.333 0.162 0.229 0.121 0.016 0.144 0.253 0.271 4 22

Group OR OD PR IO FE EL VE FG CCM HCM
Compiled 0.277 0.271 0.260 0.233 0.194 0.203 0.263 0.236 10 60
Interpreted0.232 0.186 0.204 0.198 0.131 0.179 0.203 0.182 8 23

PL OR OD PR IO FE EL VE FG CCM HCM
C 0.374 0.233 0.110 0.158 0.263 0.268 0.277 0.260 9 18

C# 0.214 0.086 0.059 0.273 0.064 0.210 0.080 0.262 10 10
Java 0.201 0.343 0.346 0.213 0.118 0.000 0.299 0.166 10 63

Python 0.139 0.180 0.158 0.252 0.009 0.097 0.165 0.124 8 3
PHP 0.274 0.217 0.222 0.185 0.212 0.060 0.252 0.138 8 34
Perl 0.250 0.138 0.210 0.101 0.033 0.271 0.179 0.246 7 16
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Figure 3. Standard deviation of compiled language: C, C# and Java 

Figure 4. Standard deviation of interpreted language, Python, PHP and Perl 

V. DISCUSSION AND CONCLUSION

With the rapid advancement in software industries, 
software metrics become the basis for software management 
and are crucial to the accomplishment of software 
development. We proposed a straightforward method to 
measure the complexity of source code written in C, C#, 
Java, Python, PHP, and Perl by means of eight metrics, 
namely, operators, operands, parameters, inputs and outputs,
file operations, external functions or libraries, variable 
declarations, and flow graph. Our findings revealed that 
source code written in compiled languages were inherently 
more complex than those of interpreted languages. 

The reason may depend primarily on the nature of 
application to be performed by the target software, as 
interpreted software is likely to be smaller and less involved 
than its compiled counterpart. Despite the significant role 
played by software metrics, studies and researches in this 
field are still immature. As new paradigms and programming 
languages are being invented, in particular, design patterns, 

automated code generation, 5GL, and user computing. 
Unfortunately, these techniques bring about accidental and 
inherent complexities [10] that grow exponentially out of 
control. The effect renders software project management to 
inevitably fall behind technology in terms of productivity 
measurement, cost estimation, project planning, and the likes. 
In addition, there are no adequate international standards to 
warrant the software products being distributed. We envision 
that more work needs to be done to supplement the absence 
of firm theoretical foundation and assurance of methods and 
metrics. Such endeavors will foster the development of 
software applications that could serve the insatiable needs in 
this evolving digital society. 
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