
An Empirical Study of Source Level Complexity
Liu Xiao and Peraphon Sophatsathit

Advanced Virtual and Intelligent Computing (AVIC) Center
Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
liuxiaolxy@163.com, peraphon.s@chula.ac.th

Abstract—This paper presents a source level complexity
evaluation method using a set of well-established
measurements. The objective is to gauge the variations of
program complexity being written in different programming
languages, thereby performance assessment can be reached.
Experiments show that source code written in compiled
languages have greater complexity than those in interpreted
languages. The results could aid in language selection decision
for software development so as to attain higher quality, lower
effort, and shorter development time.

Keywords-software metrics; source code complexity;
compiled language; interpreted language.

I. INTRODUCTION

Effective management of development process requires
quantification, measurement, and modeling. Software
metrics provide a quantitative basis for the development and
validation of software development process model. Thus
productivity and quality can be improved.

As software becomes more complex, the cost inevitably
increases. Software organizations are trying to find ways to
reduce it. Research efforts are spent finding the relation of
software feature and the extent of the problem that would
lessen the cost burden. One of the reasons for proceeding to
investigate software complexity and its measurement is
controlling the expenditure of software development,
operation, and maintenance over its life time. Unfortunately,
software complexity is an inherent property that cannot be
straightforwardly identified, described, and measured. Worse
yet, it is often disregarded in the development planning
process and incorporated as an after-thought artifact. This is
particularly apparent during the maintenance phase where
considerable amount of efforts are expended to modify the
source code. The overwhelming magnitude of complexity
poses a challenging problem for researchers to reckon with.

In early 70’s, software complexity had attracted the
public attentions. The modularization program style and the
object-oriented paradigms were both introduced to lower
such complexity. Meanwhile, a number of useful metrics
were employed to measure various level of software
complexity, yet were inadequate to settle this problem.

This paper aims to providing a straightforward
measurement for source level complexity of program using a
set of well-established measurements, namely, operators,
operands, parameters, inputs and outputs, files operations,
externals functions or libraries, variable declarations, and

flow graph. We have selected popularly used programming
languages such as C, C#, Java, Python, PHP, and Perl to
effectively measure and assess source code complexity.

The rest of the paper is organized as follows. Section 2
introduces some related work on source code complexity
measurements and metrics. The proposed method is
described in Section 3. Section 4 demonstrates the
experimental results. Some discussion and final thoughts are
given in the last section.

II. RELATED WORK

Many research works on software complexity have been
carried out in recent years. Several metrics have been defined
and tested in specific environments. Although remarkable
successes have been reported in the initial application and
validation of these metrics, subsequent attempts to test or
apply the metrics in different situations have yielded
different results. One problem could stem from failure to
identify a commonly accepted set of software properties.
Moreover, there were virtually no theoretical models and
metrics to support the measurement. Principally, there are
three types of well-practiced software complexity metrics,
namely, process metrics, project metrics, and product metrics
[1]. Some classical and efficient software complexity metrics
introduced in [2] were popularly applied to measure the
complexity of software. These metrics were compared in [3]
and identified which metric was the most suitable one to be
adopted in the state-of-the-practice development. They are
McCabe's cyclomatic complexity (CCM) [4], Halstead's
software science [5] complexity metrics (HCM), and Shao
and Wangs' cognitive functional size [6].

While the extent of research in this field is still relatively
limited, particularly when compared with research on static
metrics, the field is growing given the inherent advantages of
dynamic metrics. Tahir, et al. [7] systematically investigated
the body of research on dynamic software metrics to identify
issues associated with their selection, design, and
implementation. Current measures can be used to compute
complexity, but these methods are not sufficient to express
complexity variations among programming languages. New
methods are being searched for predicting complexity since
high degree of complexity in a module is considered
inefficient as oppose to low degree of complexity [9]. In
addition, the measurement helps estimate other quality
attributes such as testability and maintainability [8].

2013 Fifth International Conference on Multimedia Information Networking and Security

978-1-4799-2107-2/13 $31.00 © 2013 IEEE

DOI 10.1109/MINES.2013.108

472

III. PROPOSED METHOD

This study aims to measuring the complexity of source
code written in different programming languages. We
propose a method using metrics that focus on operators,
function parameters, file operations, and flowchart. The
proposed method can be divided into four stages, namely,
initial metrics statistics, flow graph transformation, data
quantified analysis, and comparative evaluation.

The source programs employed were collected from
different languages and grouped based on their operational
characteristics. They are 1) Compiled programming
languages, such as C, C++, C#, Java, and 2) Interpreted
programming languages, such as Python, JavaScript, PHP,
and Perl. The reason was that they represented the most
popular programming languages used in modern software
application development.

A. Initial metrics statistics
For source level complexity evaluation of software, we

choose essential programming tokens to be evaluated,
namely, operators, operands, parameters, inputs and outputs,
file operation, external function references, and variable
declarations.

The first step is to count the following tokens: 1)
operators such as +, -, *, /, %, ->, (), +=, -=, ++, --; 2)
operands in executable statements; 3) parameters in and out
of each module or function; 4) inputs and outputs of the
program; 5) files operations including open, close, read, and
write; 6) external references including library functions,
external source files, and external user-defined functions;
and 7) variable declarations in the program.

B. Flow graph transformation
This step transforms each program into a flow graph and

counts the number of nodes and edges of that flow graph.
Figure 1 shows parts of the flow graph converted from Java
source code by using Visustin v7 Flow Chart Generator. The
number of nodes and edges are 31 and 33, respectively.

Figure 1. Part of a flow graph converted from Java source code

C. Data quantified analysis
Based on the results of the first two steps, we compute

the following statistics: 1) range of the numerical spread, 2)
normalized data to standardize the results, 3) standard
deviation of the dispersion from the average, and 4) group
average and standard deviation.

1) Range
The range can be obtained from the difference between

the maximum and minimum values. Table I and II show the
minimum and maximum values, while Table III shows the
range of each group.

2) Normalized data
All numbers except CCM and HCM are normalized by

taking each value and divided by the range of that value as
shown in Table IV. For example,

LOC of C = 46/59 = 0.78
OR of Java = 16/16 = 1.00
EL of C# = 1/5 =0.20

3) Average and standard deviation
The average and standard deviation of all the normalized

values are shown in Table V, VI, VII, VIII, denoting by
group and language, respectively.

D. Comparative evaluation
The above results are plotted by group and programming

language to visually compare the resulting measurements.
Any discernible proportion of the groups and programming
languages will reflect the level of variations in program
complexity. Thus, proper development can be planned and
administered to attain lesser project effort and cost.

IV. EXPERIMENT

The experiment on source code complexity evaluation by
the proposed method is elaborated. All source code was
collected from the Internet. There were 20 programs of
different sizes written in C, C#, Java, Python, PHP, and Perl.
The first three were grouped as compiled programming
language, whereas the remaining three as interpreted
programming language. The following abbreviations are
used to denote all metrics being collected: LOC denotes lines
of code, OR and OD denote the number of operators and
operands, PR denotes the number of formal arguments, IO
denotes the number of inputs and outputs invoked by each
function, FE denotes the number of file operations, EL
denotes the number of external functions, libraries, and files
linked, VE denotes the number of variable declarations, FG
denotes the sum of nodes and edges derived from program
flowchart, and CCM and HCM are software complexity
evaluated by Cyclomatic Complexity and Halstead
Complexity Metrics. McCabe’s CCM is based on program
flow graph and is defined as V(G) = e-n+2, where e and n
represent the number of edges and nodes, respectively. On the
other hand, HCM is defined as D = (n1*N2)/(2*n2), where n1
denotes the number of unique or distinct operators, n2 denotes
the number of unique or distinct operands, and N2 denotes total
operands.

The values of LOC varied from 46 to 607, where the
minimum and maximum sizes of both groups were relatively

473

indifferent. We used Visustin v7 Flow Chart Generator to
generate flow graph for each program. Table I and Table II
show the maximum and minimum collected from the source
programs.

TABLE I. MINIMUM METRICS COUNT OF EACH LANGUAGE

TABLE II. MAXIMUM METRICS COUNT OF EACH LANGUAGE

PL LOC OR OD PR IO FE EL VE FG CCM HCM
C 585 357 262 12 60 15 140 59 497 10 83

C# 436 99 103 26 13 11 39 52 699 10 39
Java 395 390 571 23 27 0 127 46 494 10 263

Python 309 290 328 119 7 12 38 20 279 10 15
PHP 607 411 401 86 179 6 61 61 351 10 160
Perl 471 210 342 54 27 27 51 72 679 10 54

TABLE III. RANGE OF EACH GROUP

Group OR OD PR IO FE EL VE FG CCM HCM
Compiled 388 570 26 60 15 139 58 672 9 263
Interpreted 410 400 119 179 27 60 72 651 10 160

TABLE IV. NORMALIZED MINIMUM OF EACH LANGUAGE

TABLE V. AVERAGE OF EACH GROUP

Group OR OD PR IO FE EL VE FG CCM HCM
Compiled 0.368 0.217 0.186 0.231 0.126 0.064 0.243 0.319 10 47
Interpreted 0.301 0.173 0.179 0.197 0.039 0.066 0.250 0.219 6 16

TABLE VI. AVERAGE OF EACH LANGUAGE

TABLE VII. STANDARD DEVIATION OF EACH GROUP

TABLE VIII. STANDARD DEVIATION OF EACH LANGUAGE

We omitted the function point (FP) metric from the
statistics because the interpreted source was relatively small.
They lacked the principal attributes that made up the FP
computations such as I/O and external references. This is
apparent in Table I, II and III, where the spread of these
parameters is quite noticeable. This finding might not hold in
larger production code. As a consequence, the resulting
statistics so obtained from FP metric will not be an accurate
measure to participate in this study.

Figure 2. Standard deviation of compiled and interpreted groups

Figure 2 shows the proportional distribution of both
groups. Obviously, the compiled language group exhibits
discernible complexity variations than its interpreted
counterpart owing to program size.

Figure 3 shows the proportional dispersion of different
compiled languages. Notice that Java program exhibits the
least variation in secondary storage operations, e.g., I/O and
Files, yet internally is complicated to maneuver as the values
of HCM exceed other languages by many folds. Meanwhile,
C and C# are somewhat less sporadic. Such indicators can be
conducive toward decision on language selection to suit
specific requirements for application development.

The interpreted languages, on the other hand, exhibit
wider dispersion than the compiled ones. Particularly, Perl
and Python show exceptionally high dispersion of
complexity in all but two categories, namely, I/O, Files for
Python, and Parameters, I/O for Perl. These are depicted in
Figure 4. A noteworthy result is that all languages in the
same group exhibit alternate high complexity across the
measuring metrics, thereby no single language is suitable for
all operational characteristics of the underlying application
domain.

PL LOC OR OD PR IO FE EL VE FG CCM HCM
C 46 7 9 0 0 0 1 5 27 2 3

C# 54 2 1 0 0 0 1 1 70 1 0.2
Java 59 16 30 1 0 0 3 2 72 1 24

Python 47 13 9 3 0 0 3 3 30 1 2
PHP 52 1 1 0 0 0 1 3 29 1 0.1
Perl 51 4 4 0 0 0 5 5 28 1 1

PL LO
C OR OD PR IO FE EL VE FG CCM HC

M
C .78 0.44 0.30 0.00 0.00 0.00 0.20 1.00 0.38 10 19

C# .92 0.13 0.03 0.00 0.00 0.00 0.20 0.20 0.97 3 11
Java 1.0 1.00 1.00 0.33 0.00 0.00 0.60 0.40 1.00 8 112

Python .80 0.30 0.30 1.00 0.00 0.00 0.60 0.60 0.42 2 9
PHP .88 0.03 0.03 0.00 0.00 0.00 0.20 0.60 0.40 8 18
Perl .86 0.13 0.13 0.00 0.00 0.00 1.00 1.00 0.39 4 22

PL OR OD PR IO FE EL VE FG CCM HCM
C 0.421 0.171 0.090 0.131 0.254 0.123 0.309 0.289 10 19

C# 0.349 0.100 0.068 0.315 0.039 0.070 0.089 0.369 3 11
Java 0.334 0.380 0.398 0.248 0.084 0.000 0.331 0.299 8 112

Python 0.247 0.230 0.189 0.256 0.002 0.022 0.232 0.213 2 9
PHP 0.323 0.127 0.120 0.213 0.099 0.031 0.265 0.174 8 18
Perl 0.333 0.162 0.229 0.121 0.016 0.144 0.253 0.271 4 22

Group OR OD PR IO FE EL VE FG CCM HCM
Compiled 0.277 0.271 0.260 0.233 0.194 0.203 0.263 0.236 10 60
Interpreted0.232 0.186 0.204 0.198 0.131 0.179 0.203 0.182 8 23

PL OR OD PR IO FE EL VE FG CCM HCM
C 0.374 0.233 0.110 0.158 0.263 0.268 0.277 0.260 9 18

C# 0.214 0.086 0.059 0.273 0.064 0.210 0.080 0.262 10 10
Java 0.201 0.343 0.346 0.213 0.118 0.000 0.299 0.166 10 63

Python 0.139 0.180 0.158 0.252 0.009 0.097 0.165 0.124 8 3
PHP 0.274 0.217 0.222 0.185 0.212 0.060 0.252 0.138 8 34
Perl 0.250 0.138 0.210 0.101 0.033 0.271 0.179 0.246 7 16

474

Figure 3. Standard deviation of compiled language: C, C# and Java

Figure 4. Standard deviation of interpreted language, Python, PHP and Perl

V. DISCUSSION AND CONCLUSION

With the rapid advancement in software industries,
software metrics become the basis for software management
and are crucial to the accomplishment of software
development. We proposed a straightforward method to
measure the complexity of source code written in C, C#,
Java, Python, PHP, and Perl by means of eight metrics,
namely, operators, operands, parameters, inputs and outputs,
file operations, external functions or libraries, variable
declarations, and flow graph. Our findings revealed that
source code written in compiled languages were inherently
more complex than those of interpreted languages.

The reason may depend primarily on the nature of
application to be performed by the target software, as
interpreted software is likely to be smaller and less involved
than its compiled counterpart. Despite the significant role
played by software metrics, studies and researches in this
field are still immature. As new paradigms and programming
languages are being invented, in particular, design patterns,

automated code generation, 5GL, and user computing.
Unfortunately, these techniques bring about accidental and
inherent complexities [10] that grow exponentially out of
control. The effect renders software project management to
inevitably fall behind technology in terms of productivity
measurement, cost estimation, project planning, and the likes.
In addition, there are no adequate international standards to
warrant the software products being distributed. We envision
that more work needs to be done to supplement the absence
of firm theoretical foundation and assurance of methods and
metrics. Such endeavors will foster the development of
software applications that could serve the insatiable needs in
this evolving digital society.

REFERENCES

[1] T. Honglei, S. Wei, and Z Yanan. “The Research on Software Metrics
and Software Complexity Metrics,” Proc. IEEE International Forum
on Computer Science-Technology and Application (IFCSTA'09),
IEEE Press, Jan. 2009, pp. 131-136, doi:10.1109/IFCSTA.2009.39.

[2] S. Yu and S. Zhou. “A Survey on Metric of Software Complexity,”
Proc. IEEE International Conference on Information Management
and Engineering (ICIME 2010), IEEE Press, Mar. 2010, pp. 352-356,
doi:10.1109/ICIME.2010.5477581.

[3] D. I. De Silva, N. Kodagoda, and H. Perera. “Applicability of Three
Complexity Metrics,” Proc. IEEE International Conference on
Advances in ICT for Emerging Regions (ICTer 2012), IEEE Press,
Dec. 2012, pp. 82-88, doi:10.1109/ICTer.2012.6421409.

[4] T. J. McCabe. “A Complexity Measure,” IEEE Transactions on
Software Engineering, vol. 2, Dec. 1976, pp. 308-320,
doi:10.1109/TSE.1976.233837.

[5] M. H. Halstead. “Elements of Software Science,” Elsevier Science
Inc., New York, NY, 1977.

[6] Y. Wang and J. Shao. “Measurement of the Cognitive Functional
Complexity of Software,” Proc. IEEE International Conference on
Cognitive Informatics (ICCI 2003), IEEE Press, Aug. 2003. Pp. 67-74,
doi:10.1109/COGINF.2003.1225955.

[7] A. Tahir, S. G. MacDonell. “A Systematic Mapping Study on
Dynamic Metrics and Software Quality,” Proc. IEEE International
Conference on Software Maintenance (ICSM 2012), IEEE Press, Sept.
2012, pp. 326-335, doi:10.1109/ICSM.2012.6405289.

[8] S. Sabharwal, R. Sibal, and P. Kaur. “Software Complexity: A Fuzzy
Logic Approach,” Proc. IEEE International Conference on
Communication, Information & Computing Technology (ICCICT
2012), IEEE Press, Oct. 2012, pp. 1-6,
doi:10.1109/ICCICT.2012.6398233.

[9] M. K. Debbarma, S. Debbarma, N. Debbarma, K. Chakma, and A.
Jamatia. "A Review and Analysis of Software Complexity Metrics in
Structural Testing," International Journal of Computer and
Communication Engineering, vol. 2, Mar. 2013, pp. 129-133.

[10] Frederick P. Brooks, “No Silver Bullet”, Computer, April 1987, pp.
10-19.

475

