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Abstract— This research proposes an algorithmic cache 

arrangement scheme to efficiently utilize existing hardware 

that are currently plagued with memory wall problem. The 

proposed scheme exploits straightforwardness of First-in, 

First-out (FIFO) scheduling algorithm and in situ placement 

technique. FIFO allows the proposed scheme a fair caching of 

processes. In situ replacement economically utilizes spaces by 

replacing the expired process with a new process in the same 

memory space without flushing. This combination helps reduce 

operating overheads, which in turn lower power consumption. 

The benefits of their simplicity and hardware implementable 

will accelerate operational speed that eventually closes the gap 

between processing speed and memory access/retrieval speed, 

thereby lessens the memory wall problem. 

Keywords-Algorithmic arrangement; Cache; FIFO; 

Simulation. 

I.  INTRODUCTION 

Computers have been extensively used in many facets of 
life for decades. Early in their lifetime, the numbers of 
applications were limited and used by specialists. The 
enormity of computer size was perhaps their trademark. As 
technology progresses, their dimensions change drastically, 
ranging from small embedded devices, handheld gadgets to 
cabinet size supercomputers. Regardless of sizes, they do 
share one similarity system architecture. Most systems still 
contain 4 main components, namely, input, processing, 
memory, and output units. 

This research focuses on two components, i.e., processor 
and memory. These two components are evolved at different 
paces. The processing unit is pushing 50 percent per year, 
while the memory unit is merely crawling at 7 percent[1]–[4]. 
Such progress discrepancies widen their mutual computation 
capabilities that eventually lead to the infamous memory 
wall problem. This problem will cause performance 
bottleneck which can diminish system throughput 
considerably. 

A system is said to be superior if these bottlenecks are 
either reduced or eradicated. However, in practice 
bottlenecks cannot be totally obliterated. A number of 
researches have addressed these issues by either using more 
advanced hardware, reducing data that pass through system’s 
critical modules, or introducing efficient algorithms. 
Unfortunately, these attempts possess a couple of technical 
viewpoints. First, using hardware to improve or fix the 
bottleneck problems with advanced hardware is definitely 
not a long-lasting solution. Second, by introducing simple 
and straightforward memory replacement algorithms that can 
virtually operate on existing hardware, the operating 
overhead that incurred by all memory related software 
systems can be procedurally reduced. Hence, the memory 
wall problem is, to an extent, alleviated. 

The proposed approach will exploit this latter viewpoint 
by re-arranging memory structure to permit fast access, 
simple organization, and low operating overhead. These 
goals will assume the following conditions that have adverse 
effects on existing memory management scheme: 

 Increasing number of core counts. 

 Rising CPU clock speed. 

 Increasing cache size. 

 Increasing number of cache blocks. 
A proposed algorithm will rearrange system caching 

order using the simplest First-In First-out (FIFO) allocation 
scheme. New execution contents are then loaded in situ. In 
so doing, no cache manager is needed to add on any 
overhead. This will make it distinguishable from existing 
approaches. Details on how the proposed approach is laid out 
and operated will be described in the sections that follow. 

This paper is organized as follows. Section 2 summarizes 
some related works that are essential to the construction of 
the proposed approach. Section 3 describes the work being 
performed in detail. Section 4 explains the simulation 
process and evaluation of the proposed scheme in 
comparison with existing cache systems. Discussion on 
further technical aspects is given in Section 5. Future 
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potential of the proposal scheme and enhancement are given 
in the last section. 

II. RELATED WORKS 

While design and implementation of processing units 
advance for decades, memory units are gradually improving. 
Flash storage was introduced to speed up storage and 
retrieval operations. Unfortunately, memory management 
process was still incapable of exploiting faster hardware 
capability. Wu and Kuo [5] addressed this issue by 
introducing 2 types of translation layer to memory 
management system, i.e., Flash translation layer (FTL) and 
NAND Flash translation layer (NFTL). These translation 
layers have unique characteristics. FTL uses page-level 
address translation mechanism, which takes shorter time to 
translate addresses, less space, and has considerably low 
garbage collection overhead. On the other hand, NFTL 
adopts block-level address translation mechanism which has 
low memory requirement to operate. By combining these 
two mechanisms, we can exploit and dynamically switch 
between 2 translation mechanisms to maximize performance 
and optimize space utilization. 

Parallel file systems (PFS) have become a choice to 
minimize performance throttling due to I/O bottlenecks in 
computer systems. However, traditional storage drives and 
small requests were still able to lessen the overall system 
performance problems. He, Wang, and Sun [6] introduced a 
Selective and Layout-Aware Cache system that exploited 
small set of solid-state drives (SSD). The most 
distinguishable characteristic of SSD is minimal latency, 
small power consumption, and high bandwidth. Nevertheless, 
the operating costs of SSD are relatively high. Proper 
algorithms need to be introduced to limit the number of flash 
storage usage. At any rate, when systems are less crowded, 
every process will be assigned to high performance cache to 
maximize system performance. 

There are two levels of memory hierarchy for memory 
page management. The first level or cache is the closet to 
CPU having smaller storage capacity to fit inside CPU for 
fast access time. The second layer or main memory is farther 
from CPU having larger capacity but takes considerably 
longer access time. Chrobak and Noga [7] proposed a page 
fault removal algorithm to minimize operating time, cost, 
and maximize system performance. To achieve these goals, 
only valid data (under processing) are allowed in cache and 
invalid data (obsolete) are eliminated. Eviction decisions are 
made without knowledge of future memory request. Since all 
data transfers must be performed as fast as possible to keep 
pace with the CPU speed, the simplest and most efficient 
method is used. Typical SSD caches employ Least Recently 
Used (LRU) algorithm. However, one crucial consideration 
is page fault handling. FIFO removes the longest resident 
page, whereas LRU removes the longest unused page. 
Without reiterating their pros and cons, in particular, 
starvation which was taken care of by TTL, we opted for 
FIFO algorithm due to its simplicity, virtually required no 
overhead as it was directly hardware implementable [8], 
which is in contrast to the study by Chrobak and Noga [7]. 
The concerns on how much resources have been utilized to 

weigh the costing tradeoffs are handled at the operating 
system level. 

Gomaa, Messier, and Davies [9] employed cache 
consistency mechanism to ensure cache validity in system. 
They utilized two variants of weak consistency, typical 
Time-to-Live (TTL-T) and Time-to-Live immediate ejection 
(TTL-IE). The TTL employment system requires less overall 
bandwidth than conventional cache system by renewing 
valid cache blocks and evicting invalid cache blocks 
according to variation of TTLs. However, the performance 
of the proposed system heavily depends on the data expiry 
rate. 

Berger, Henningsen, Ciucu, and Schmitt [10] also 
utilized Time-to-Live (TTL) policy to increase hit/miss ratio 
in cache system. Utilization was determined by having 
multiple decay rates. For a hit page, it will be renewed with 
extra TTL. While less popular pages, their TTL will be 
reduced to accelerate decay rate. The introduction of TTL 
variation was able to increase the hit ratio from 0.64 to 0.77. 

III. PROPOSED METHOD 

This section explains how the simulation is organized in 
this experiment, covering memory structure, prior problems, 
their root causes, and possible improvement. Chosen choices, 
design rationale, and system architecture will be thoroughly 
described in this section. 

Currently, consumer grade computer system contains 3 
main components, namely, cache, main memory, and 
auxiliary memory. According to Rixner’s work, these 
memory systems were pushing 7 percent of performance 
[11]. Consequently, structural adjustments have been made, 
namely, increasing number of cache blocks, widening 
bandwidth capability, and expanding storage capacity. 

These advancements have yet outperformed the 
processing performance owing to their performance gap over 
the years. Advanced hardware will not lessen the bottleneck 
problem, thereby the root cause still persists. 

A. System Architecture 

A proposed a new algorithmic cache structure 
arrangement aims to minimize the operating overhead, yet be 
able to yield a comparable result to existing systems. 
Implementation details are described in 3 parts, i.e., system 
architecture, input generator, and executor. 

The proposed system architecture consists of 3 main 
components, namely, process distributor, memory pool, and 
result accumulator, as shown in Figure. 1. 

 

 

Figure 1. System architecture. 

The above scheme is set up in a black-box configuration 
to offer maximal transparency to system implementor by 
making the following assumptions: 

1. The process distributor represents some operating 
system modules that handle process management. 
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Common working modules are scheduler, dispatcher, 
etc. 

2. The memory pool is the focus of this research that 
will be explained subsequently. 

3. The result accumulator represents additional 
modules or functionalities run by the operating 
system. 

 Assumptions 1) and 3) are not part of this research 
responsibility. We design 2) as a plug-in module that can be 
installed on any compatible hardware configurations. This 
pool will utilize as much the underlying hardware 
capabilities as possible, e.g., FTL and NFTL, to minimize re-
inventing the wheel. Yet the emphasis lies on TTL-FIFO in 
situ caching algorithm. This implementation follows Intel

®
 

cache structure. In current CPU setting, there are 3 layers, 
namely, L1, L2 and L3. The closer cache to processing cores, 
the smaller the size and faster transfer speed. Each 
processing core is assigned its own set of cache blocks, 
except L3 which is a common shared cache among cores as 
shown in Figure. 2. 

Process distributor manages incoming tasks by splitting 
each task into processes and distributing them over available 
cache blocks. The process distributor breaks a sizable task 
into smaller processes that fit the L3 cache. If L3 is full, the 
process distributor will hold the newly split processes until 
space is available. 

Process allocation will be carried out based on individual 
process arrival time. As processes arrive in L3, allocation 
order commences using FIFO scheduling algorithm. All 
processes waiting in L3 will subsequently be moved up to L2 
and L1 and get executed by the CPU. 

When the CPU needs to read, it looks for the desired 
page through cache one level at a time. If the desired page is 
in L1, data will be marks as a hit. Otherwise, it is a miss. A 
miss triggers a search in the next level, or L2, and so on. If 
the page is not in cache, the main memory will be searched 
next until the page is found. Otherwise, an operating system 
page fault is triggered to initiate subsequent disk I/O read-in. 
 

 
Figure 2. Intel® Coffee lake cache organization. 

There are two types of process ranking, namely, global 
and local. Global ranking system signifies the process class, 
which is primarily system processes. Local ranking, on the 
other hand, denotes common user processes. A numerical 
value ranges from 0 to 255 is set up to represent process 
ranking, where lower value process has higher ranking to be 
allocated first in the memory pool. 

When a system process arrives in memory pool, there are 
3 situations to be determined: 

1. Memory pool is free. 

2. Memory pool is fully occupied by user processes. 
3. Memory pool is fully occupied by system processes. 
If the memory pool is free, the system will simply push 

the first process in FIFO queue to next available memory slot. 
If the memory pool is fully utilized and a high system 
process arrives, some user processes must be removed. 
Removing process from working area is done by removing 
the latest arrival process since it unlikely uses any resources. 
Finally, if the system processes fully occupy the memory 
pool, the system will halt from being overloaded. 

The last component is result accumulator. This 
component simply collects and reassembles the resulting 
data on the next available space. This data gathering process 
serves as a verification for completion status to be notified 
the operating system. 

The proposed architecture is designed, for all practical 
purposes, to be independent of the underlying hardware, as 
long as the cache arrangement is compatible. 

B. Implementation 

When a process is dispatched by the process distributor 
to the memory pool, the memory pool assigns a global 
ranking value and stores it in L3. Eventually, all the 
processes will be promoted to L1 for immediate execution. 
This is depicted in Figure. 3(a). Notice that user processes 
are ranked above 128 (in gray). When a process completes 
its execution, it is dispatched to the result accumulator to be 
handed over to the operating systems. However, some 
processes have not yet completed the execution and their 
time-slice (TTL) is not expired. They will be automatically 
renewed their L1 residency duration, wherein the processing 
status will remain active (or 1), as depicted in Figure. 3(b). 
This matrix is used by the execution loader to replace L1 in 
situ at the 0-mask positions and leave the 1-mask positions 
unreplaced. This procedure repeats forever to keep L1, L2, 
and L3 occupied for feeding the processor unit. As such, 
considerable memory transfer overheads are reduced. The 
procedure is summarized in Algorithm 1 as shown below. 

 

 

Figure 3. Replacement mask  

(a) process rank number in cache block (b) processing status. 

Algorithm1: (Process Distributor –  Memory Pool – 

Result Accumulator)  
Input: pid of P, attribute (Process id, user/system)  
Output: results of P  
Begin  

allocate Pi ∈ P on L3  

identify type of Pi // System or User  
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assign process value // 0-127 or 128-255  

fill Pi ∈ P to L2 // Until L2 is full  

find finished process Pj // Pj is in L1  
mask all finished processes //Set 0-mask  
move to RA // Result Accumulator  
renew unfinished processes // extend TTL, set 1-mask  
replace Pj by Pi in situ // From L2 to L1  

End 

IV. EXPERIMENTAL RESULTS 

This section discusses the proposed method outcomes, 
covering experimental set up, input sequences, and proposed 
method performance. 

A. Experimental setup 

The experiment was simulated on Ubuntu 16.04.6 LTS, 
using Intel

®
 i7-8700 with 12 MB cache, Corsair

®
 DDR4 

2666 MHz configured as 2x8 GB main memory. The 
instructions were stored in M.2 NVMe drive at read/write 
speed of 3200/2000 Mbps. Other parameters such as page 
size, data transfer rate, etc., were set to the chipset defaults. 
One important assumption was imposed on L1 to keep data 
on the entire L1 for execution, whereas the actual L1 stored 
both data and instructions. Coding was written in C since it 
could interact directly with the memory unit. 

B. Input sequences 

The input parameter values as shown in Figure.4 were 
randomly generated to prevent biasness. 

Figure. 4. Input sequence structure. 

 
Each field describes the following definitions: 

 Sign bit indicates process type, where 1 denotes 
system process and 0 as user process. 

 Priority shows global ranking of each process. 

 ProcID shows number system used to track 
processes passing through a system. 

 SubProc marks the relationship among processes. 

 SubID contains list of all related processes. Positive 
values identifies as parent process and negative 
values as child process. 

 Time indicates minimum time required to finish 
execution. 

 Value stores actual value of individual process. 

C. Performance evaluation 

In this experiment, 100,000 processes were executed to 
evaluate effectiveness of the overall system. The experiment 
was run on traditional cache system using Least Recently 
Used (LRU) scheme and the proposed scheme. The 
following result statistics were collected: average number of 
accepted processes, average number of rejected processes 
(owing to the unavailability of cache), execution time, and 
number of processes removed from memory pool by LRU. 

This removal statistic did not exist in the proposed method 
by virtue of replacement in situ scheme. 

From the total 100,00 processes, no process was rejected 
in the proposed method, as oppose to 3,406 in LRU cache 
system. The proposed system outperformed LRU cache 
system in terms of execution time. The average size of input 
sequence took 77 clock ticks and overall used 8,363,020 
clock ticks to finish executing 100,000 processes. The LRU 
cache system took 9,293,416 clock ticks to accomplish the 
same task as shown in Figure. 5 and Figure. 6. 

TABLE I.  THE ARRANGEMENT OF CHANNELS 

Scheme 

Accepted  

process 

Rejected 

Process 

Execution 

time 

(per 100,000) 

Removal 

Proposed 
system 

100,000 0 8,363,020 0 

LRU cache 

system 
96,594 3,406 9,293,416 100,000 

 

 

Figure 5. Accepted, rejected processes 

 

Figure 6. Time to accomplish 100,000 processes 

The power consumption can be calculated by the 
following equation: 

X1 = [(accept + reject + remove) * t + execution] * P  (1) 

Sign Priority ProcID SubProc SubID Time Value 

Int Int Int Bool Int[] Int Int 
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where P denotes power consumption per CPU cycle [3], 
which is equal to 5.7778 * 10

-11
, t denotes number of transfer 

movements. Table 2 shows the power consumption 
calculation, given CPU is running at 3.2 GHz and thermal 
design power (TDP) is 65 watts. Accept, reject, and 
execution operations take 3 cycles to operate. Substituting 
into (1), we have 

 proposed system =  
[(100,000 + 0 + 0) * 3 + 8,363,020] * 5.7778 * 10

-11
 

 LRU cache system =  
[(96,594+ 3,406 + 100,000) * 3 + 9,293,416] * 
5.7778 * 10

-11
 

TABLE II.  POWER CONSUMPTION STATISTICS 

Scheme Power consumption Difference 

Proposed system 5.0053 * 10-4 0% 

LRU cache system 5.7162 * 10-4 +14.2029% 

which means the LRU system consumes more power than 
the proposed system by 14%. The cost of total caching is 
determined by the following equation: 

C  = rejection + removal + execution 
= (r * t1 * A) + (f * t2 * B) + (e * E + X1)           (2) 

where r, f, e, ti denote the number of rejected processes, 
flushing processes, execution duration (in clock ticks), and 
clock tick for i = rejection (1), removal (2), respectively, and 
A, B, E denote the cost of resubmission, transfer, and 
execution per clock tick, respectively. Substituting into (2), 
we have 

 
proposed system = (0) + (0) + (8,363,020* 5.0053 * 10

-4
) 

LRU cache system = (3406 * 2.8889 * 10
-10

) + (100000 * 
1.7333 * 10

-10
) + (9,293,416 * 5.7162 * 10

-4
) 

 
Table 3 shows the resulting estimates, assuming A = 

2.8889 * 10
-10

, F = 1.7333 * 10
-10

, E = 1.7333 * 10
-10

, and P 
= 5.7778 * 10

-11
. Hence, the cost to operate the proposed 

system is reduced by 21% from the current LRU system. 

TABLE III.  POWER CONSUMPTION STATISTICS 

Scheme Cost Percentage reduction 

Proposed system 4.1860 * 103 78.6650% 

LRU cache system 5.3213 * 103 100% 

V. DISCUSSION 

This paper exploited the simplicity of FIFO scheduling 
and in situ replacement scheme to improve caching 
efficiency. Processes coming from Process Distributor 
underwent normal cache promotion, i.e., from L3-L2-L1. 
The focus of this work was to arrange this promotion in the 
fastest and most efficient manner. We devised the 
replacement in situ scheme to reduce memory flushing load. 
Consequently, less overhead was incurred in cache 
transmissions and reallocations. The operating cost was 
21.34% less than the existing LRU implementation.  

To preserve the work-in-progress contents, we employed 
write-through scheme to keep the most up-to-date copy of 
data. Cache and memory utilization would run faster to keep 
pace with the CPU speed. Thus, the proposed scheme would 
co-exist and run with the underlying hardware smoothly.  

VI. CONCLUSION 

In this paper, the proposed scheme utilized existing cache 
system by altering cache arrangement algorithm and 
introducing minimal replacement procedure. By exercising 
FIFO algorithm and in situ replacement allowed the 
proposed scheme to provide comparable performance using 
less resources to achieve identical jobs. Since replacement 
activities were reduced, the proposed system required few 
parameters to run, thereby system overhead was also 
decreased.  

Perhaps the most important contributions of this work are 
its low overhead and simplicity which render the proposed 
scheme to be hardware deployable. This would definitely not 
duplicating or reinventing the wheel of any operating system 
functions. Future work will be focused on placement 
algorithms to better utilize cache space and lower power 
consumption as the degree of multiprocessing increases. It is 
envisioned that such an undertaking will be conducive 
toward alleviating the memory wall problem. 
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