
In Situ Caching using Combined TTL-FIFO Algorithm

Gasydech Lergchinnaboot

Department of Mathematics and Computer Science

organization

Chulalongkorn University

Bangkok, Thailand

e-mail: Gasydech@gmail.com

Peraphon Sophatsathit

Department of Mathematics and Computer Science

organization

Chulalongkorn University

Bangkok, Thailand

e-mail: Peraphon.s@chula.ac.th

Saranya Maneeroj

Department of Mathematics and Computer Science organization

Chulalongkorn University

Bangkok, Thailand

e-mail: Saranya.m @chula.ac.th

Abstract— This research proposes an algorithmic cache

arrangement scheme to efficiently utilize existing hardware

that are currently plagued with memory wall problem. The

proposed scheme exploits straightforwardness of First-in,

First-out (FIFO) scheduling algorithm and in situ placement

technique. FIFO allows the proposed scheme a fair caching of

processes. In situ replacement economically utilizes spaces by

replacing the expired process with a new process in the same

memory space without flushing. This combination helps reduce

operating overheads, which in turn lower power consumption.

The benefits of their simplicity and hardware implementable

will accelerate operational speed that eventually closes the gap

between processing speed and memory access/retrieval speed,

thereby lessens the memory wall problem.

Keywords-Algorithmic arrangement; Cache; FIFO;

Simulation.

I. INTRODUCTION

Computers have been extensively used in many facets of
life for decades. Early in their lifetime, the numbers of
applications were limited and used by specialists. The
enormity of computer size was perhaps their trademark. As
technology progresses, their dimensions change drastically,
ranging from small embedded devices, handheld gadgets to
cabinet size supercomputers. Regardless of sizes, they do
share one similarity system architecture. Most systems still
contain 4 main components, namely, input, processing,
memory, and output units.

This research focuses on two components, i.e., processor
and memory. These two components are evolved at different
paces. The processing unit is pushing 50 percent per year,
while the memory unit is merely crawling at 7 percent[1]–[4].
Such progress discrepancies widen their mutual computation
capabilities that eventually lead to the infamous memory
wall problem. This problem will cause performance
bottleneck which can diminish system throughput
considerably.

A system is said to be superior if these bottlenecks are
either reduced or eradicated. However, in practice
bottlenecks cannot be totally obliterated. A number of
researches have addressed these issues by either using more
advanced hardware, reducing data that pass through system’s
critical modules, or introducing efficient algorithms.
Unfortunately, these attempts possess a couple of technical
viewpoints. First, using hardware to improve or fix the
bottleneck problems with advanced hardware is definitely
not a long-lasting solution. Second, by introducing simple
and straightforward memory replacement algorithms that can
virtually operate on existing hardware, the operating
overhead that incurred by all memory related software
systems can be procedurally reduced. Hence, the memory
wall problem is, to an extent, alleviated.

The proposed approach will exploit this latter viewpoint
by re-arranging memory structure to permit fast access,
simple organization, and low operating overhead. These
goals will assume the following conditions that have adverse
effects on existing memory management scheme:

 Increasing number of core counts.

 Rising CPU clock speed.

 Increasing cache size.

 Increasing number of cache blocks.
A proposed algorithm will rearrange system caching

order using the simplest First-In First-out (FIFO) allocation
scheme. New execution contents are then loaded in situ. In
so doing, no cache manager is needed to add on any
overhead. This will make it distinguishable from existing
approaches. Details on how the proposed approach is laid out
and operated will be described in the sections that follow.

This paper is organized as follows. Section 2 summarizes
some related works that are essential to the construction of
the proposed approach. Section 3 describes the work being
performed in detail. Section 4 explains the simulation
process and evaluation of the proposed scheme in
comparison with existing cache systems. Discussion on
further technical aspects is given in Section 5. Future

437

2019 IEEE 5th International Conference on Computer and Communications

978-1-7281-4742-0/19/$31.00 ©2019 IEEE

potential of the proposal scheme and enhancement are given
in the last section.

II. RELATED WORKS

While design and implementation of processing units
advance for decades, memory units are gradually improving.
Flash storage was introduced to speed up storage and
retrieval operations. Unfortunately, memory management
process was still incapable of exploiting faster hardware
capability. Wu and Kuo [5] addressed this issue by
introducing 2 types of translation layer to memory
management system, i.e., Flash translation layer (FTL) and
NAND Flash translation layer (NFTL). These translation
layers have unique characteristics. FTL uses page-level
address translation mechanism, which takes shorter time to
translate addresses, less space, and has considerably low
garbage collection overhead. On the other hand, NFTL
adopts block-level address translation mechanism which has
low memory requirement to operate. By combining these
two mechanisms, we can exploit and dynamically switch
between 2 translation mechanisms to maximize performance
and optimize space utilization.

Parallel file systems (PFS) have become a choice to
minimize performance throttling due to I/O bottlenecks in
computer systems. However, traditional storage drives and
small requests were still able to lessen the overall system
performance problems. He, Wang, and Sun [6] introduced a
Selective and Layout-Aware Cache system that exploited
small set of solid-state drives (SSD). The most
distinguishable characteristic of SSD is minimal latency,
small power consumption, and high bandwidth. Nevertheless,
the operating costs of SSD are relatively high. Proper
algorithms need to be introduced to limit the number of flash
storage usage. At any rate, when systems are less crowded,
every process will be assigned to high performance cache to
maximize system performance.

There are two levels of memory hierarchy for memory
page management. The first level or cache is the closet to
CPU having smaller storage capacity to fit inside CPU for
fast access time. The second layer or main memory is farther
from CPU having larger capacity but takes considerably
longer access time. Chrobak and Noga [7] proposed a page
fault removal algorithm to minimize operating time, cost,
and maximize system performance. To achieve these goals,
only valid data (under processing) are allowed in cache and
invalid data (obsolete) are eliminated. Eviction decisions are
made without knowledge of future memory request. Since all
data transfers must be performed as fast as possible to keep
pace with the CPU speed, the simplest and most efficient
method is used. Typical SSD caches employ Least Recently
Used (LRU) algorithm. However, one crucial consideration
is page fault handling. FIFO removes the longest resident
page, whereas LRU removes the longest unused page.
Without reiterating their pros and cons, in particular,
starvation which was taken care of by TTL, we opted for
FIFO algorithm due to its simplicity, virtually required no
overhead as it was directly hardware implementable [8],
which is in contrast to the study by Chrobak and Noga [7].
The concerns on how much resources have been utilized to

weigh the costing tradeoffs are handled at the operating
system level.

Gomaa, Messier, and Davies [9] employed cache
consistency mechanism to ensure cache validity in system.
They utilized two variants of weak consistency, typical
Time-to-Live (TTL-T) and Time-to-Live immediate ejection
(TTL-IE). The TTL employment system requires less overall
bandwidth than conventional cache system by renewing
valid cache blocks and evicting invalid cache blocks
according to variation of TTLs. However, the performance
of the proposed system heavily depends on the data expiry
rate.

Berger, Henningsen, Ciucu, and Schmitt [10] also
utilized Time-to-Live (TTL) policy to increase hit/miss ratio
in cache system. Utilization was determined by having
multiple decay rates. For a hit page, it will be renewed with
extra TTL. While less popular pages, their TTL will be
reduced to accelerate decay rate. The introduction of TTL
variation was able to increase the hit ratio from 0.64 to 0.77.

III. PROPOSED METHOD

This section explains how the simulation is organized in
this experiment, covering memory structure, prior problems,
their root causes, and possible improvement. Chosen choices,
design rationale, and system architecture will be thoroughly
described in this section.

Currently, consumer grade computer system contains 3
main components, namely, cache, main memory, and
auxiliary memory. According to Rixner’s work, these
memory systems were pushing 7 percent of performance
[11]. Consequently, structural adjustments have been made,
namely, increasing number of cache blocks, widening
bandwidth capability, and expanding storage capacity.

These advancements have yet outperformed the
processing performance owing to their performance gap over
the years. Advanced hardware will not lessen the bottleneck
problem, thereby the root cause still persists.

A. System Architecture

A proposed a new algorithmic cache structure
arrangement aims to minimize the operating overhead, yet be
able to yield a comparable result to existing systems.
Implementation details are described in 3 parts, i.e., system
architecture, input generator, and executor.

The proposed system architecture consists of 3 main
components, namely, process distributor, memory pool, and
result accumulator, as shown in Figure. 1.

Figure 1. System architecture.

The above scheme is set up in a black-box configuration
to offer maximal transparency to system implementor by
making the following assumptions:

1. The process distributor represents some operating
system modules that handle process management.

438

Common working modules are scheduler, dispatcher,
etc.

2. The memory pool is the focus of this research that
will be explained subsequently.

3. The result accumulator represents additional
modules or functionalities run by the operating
system.

 Assumptions 1) and 3) are not part of this research
responsibility. We design 2) as a plug-in module that can be
installed on any compatible hardware configurations. This
pool will utilize as much the underlying hardware
capabilities as possible, e.g., FTL and NFTL, to minimize re-
inventing the wheel. Yet the emphasis lies on TTL-FIFO in
situ caching algorithm. This implementation follows Intel

®

cache structure. In current CPU setting, there are 3 layers,
namely, L1, L2 and L3. The closer cache to processing cores,
the smaller the size and faster transfer speed. Each
processing core is assigned its own set of cache blocks,
except L3 which is a common shared cache among cores as
shown in Figure. 2.

Process distributor manages incoming tasks by splitting
each task into processes and distributing them over available
cache blocks. The process distributor breaks a sizable task
into smaller processes that fit the L3 cache. If L3 is full, the
process distributor will hold the newly split processes until
space is available.

Process allocation will be carried out based on individual
process arrival time. As processes arrive in L3, allocation
order commences using FIFO scheduling algorithm. All
processes waiting in L3 will subsequently be moved up to L2
and L1 and get executed by the CPU.

When the CPU needs to read, it looks for the desired
page through cache one level at a time. If the desired page is
in L1, data will be marks as a hit. Otherwise, it is a miss. A
miss triggers a search in the next level, or L2, and so on. If
the page is not in cache, the main memory will be searched
next until the page is found. Otherwise, an operating system
page fault is triggered to initiate subsequent disk I/O read-in.

Figure 2. Intel® Coffee lake cache organization.

There are two types of process ranking, namely, global
and local. Global ranking system signifies the process class,
which is primarily system processes. Local ranking, on the
other hand, denotes common user processes. A numerical
value ranges from 0 to 255 is set up to represent process
ranking, where lower value process has higher ranking to be
allocated first in the memory pool.

When a system process arrives in memory pool, there are
3 situations to be determined:

1. Memory pool is free.

2. Memory pool is fully occupied by user processes.
3. Memory pool is fully occupied by system processes.
If the memory pool is free, the system will simply push

the first process in FIFO queue to next available memory slot.
If the memory pool is fully utilized and a high system
process arrives, some user processes must be removed.
Removing process from working area is done by removing
the latest arrival process since it unlikely uses any resources.
Finally, if the system processes fully occupy the memory
pool, the system will halt from being overloaded.

The last component is result accumulator. This
component simply collects and reassembles the resulting
data on the next available space. This data gathering process
serves as a verification for completion status to be notified
the operating system.

The proposed architecture is designed, for all practical
purposes, to be independent of the underlying hardware, as
long as the cache arrangement is compatible.

B. Implementation

When a process is dispatched by the process distributor
to the memory pool, the memory pool assigns a global
ranking value and stores it in L3. Eventually, all the
processes will be promoted to L1 for immediate execution.
This is depicted in Figure. 3(a). Notice that user processes
are ranked above 128 (in gray). When a process completes
its execution, it is dispatched to the result accumulator to be
handed over to the operating systems. However, some
processes have not yet completed the execution and their
time-slice (TTL) is not expired. They will be automatically
renewed their L1 residency duration, wherein the processing
status will remain active (or 1), as depicted in Figure. 3(b).
This matrix is used by the execution loader to replace L1 in
situ at the 0-mask positions and leave the 1-mask positions
unreplaced. This procedure repeats forever to keep L1, L2,
and L3 occupied for feeding the processor unit. As such,
considerable memory transfer overheads are reduced. The
procedure is summarized in Algorithm 1 as shown below.

Figure 3. Replacement mask

(a) process rank number in cache block (b) processing status.

Algorithm1: (Process Distributor – Memory Pool –

Result Accumulator)
Input: pid of P, attribute (Process id, user/system)
Output: results of P
Begin

allocate Pi ∈ P on L3

identify type of Pi // System or User

439

assign process value // 0-127 or 128-255

fill Pi ∈ P to L2 // Until L2 is full

find finished process Pj // Pj is in L1
mask all finished processes //Set 0-mask
move to RA // Result Accumulator
renew unfinished processes // extend TTL, set 1-mask
replace Pj by Pi in situ // From L2 to L1

End

IV. EXPERIMENTAL RESULTS

This section discusses the proposed method outcomes,
covering experimental set up, input sequences, and proposed
method performance.

A. Experimental setup

The experiment was simulated on Ubuntu 16.04.6 LTS,
using Intel

®
 i7-8700 with 12 MB cache, Corsair

®
 DDR4

2666 MHz configured as 2x8 GB main memory. The
instructions were stored in M.2 NVMe drive at read/write
speed of 3200/2000 Mbps. Other parameters such as page
size, data transfer rate, etc., were set to the chipset defaults.
One important assumption was imposed on L1 to keep data
on the entire L1 for execution, whereas the actual L1 stored
both data and instructions. Coding was written in C since it
could interact directly with the memory unit.

B. Input sequences

The input parameter values as shown in Figure.4 were
randomly generated to prevent biasness.

Figure. 4. Input sequence structure.

Each field describes the following definitions:

 Sign bit indicates process type, where 1 denotes
system process and 0 as user process.

 Priority shows global ranking of each process.

 ProcID shows number system used to track
processes passing through a system.

 SubProc marks the relationship among processes.

 SubID contains list of all related processes. Positive
values identifies as parent process and negative
values as child process.

 Time indicates minimum time required to finish
execution.

 Value stores actual value of individual process.

C. Performance evaluation

In this experiment, 100,000 processes were executed to
evaluate effectiveness of the overall system. The experiment
was run on traditional cache system using Least Recently
Used (LRU) scheme and the proposed scheme. The
following result statistics were collected: average number of
accepted processes, average number of rejected processes
(owing to the unavailability of cache), execution time, and
number of processes removed from memory pool by LRU.

This removal statistic did not exist in the proposed method
by virtue of replacement in situ scheme.

From the total 100,00 processes, no process was rejected
in the proposed method, as oppose to 3,406 in LRU cache
system. The proposed system outperformed LRU cache
system in terms of execution time. The average size of input
sequence took 77 clock ticks and overall used 8,363,020
clock ticks to finish executing 100,000 processes. The LRU
cache system took 9,293,416 clock ticks to accomplish the
same task as shown in Figure. 5 and Figure. 6.

TABLE I. THE ARRANGEMENT OF CHANNELS

Scheme

Accepted

process

Rejected

Process

Execution

time

(per 100,000)

Removal

Proposed
system

100,000 0 8,363,020 0

LRU cache

system
96,594 3,406 9,293,416 100,000

Figure 5. Accepted, rejected processes

Figure 6. Time to accomplish 100,000 processes

The power consumption can be calculated by the
following equation:

X1 = [(accept + reject + remove) * t + execution] * P (1)

Sign Priority ProcID SubProc SubID Time Value

Int Int Int Bool Int[] Int Int

440

where P denotes power consumption per CPU cycle [3],
which is equal to 5.7778 * 10

-11
, t denotes number of transfer

movements. Table 2 shows the power consumption
calculation, given CPU is running at 3.2 GHz and thermal
design power (TDP) is 65 watts. Accept, reject, and
execution operations take 3 cycles to operate. Substituting
into (1), we have

 proposed system =
[(100,000 + 0 + 0) * 3 + 8,363,020] * 5.7778 * 10

-11

 LRU cache system =
[(96,594+ 3,406 + 100,000) * 3 + 9,293,416] *
5.7778 * 10

-11

TABLE II. POWER CONSUMPTION STATISTICS

Scheme Power consumption Difference

Proposed system 5.0053 * 10-4 0%

LRU cache system 5.7162 * 10-4 +14.2029%

which means the LRU system consumes more power than
the proposed system by 14%. The cost of total caching is
determined by the following equation:

C = rejection + removal + execution
= (r * t1 * A) + (f * t2 * B) + (e * E + X1) (2)

where r, f, e, ti denote the number of rejected processes,
flushing processes, execution duration (in clock ticks), and
clock tick for i = rejection (1), removal (2), respectively, and
A, B, E denote the cost of resubmission, transfer, and
execution per clock tick, respectively. Substituting into (2),
we have

proposed system = (0) + (0) + (8,363,020* 5.0053 * 10

-4
)

LRU cache system = (3406 * 2.8889 * 10
-10

) + (100000 *
1.7333 * 10

-10
) + (9,293,416 * 5.7162 * 10

-4
)

Table 3 shows the resulting estimates, assuming A =

2.8889 * 10
-10

, F = 1.7333 * 10
-10

, E = 1.7333 * 10
-10

, and P
= 5.7778 * 10

-11
. Hence, the cost to operate the proposed

system is reduced by 21% from the current LRU system.

TABLE III. POWER CONSUMPTION STATISTICS

Scheme Cost Percentage reduction

Proposed system 4.1860 * 103 78.6650%

LRU cache system 5.3213 * 103 100%

V. DISCUSSION

This paper exploited the simplicity of FIFO scheduling
and in situ replacement scheme to improve caching
efficiency. Processes coming from Process Distributor
underwent normal cache promotion, i.e., from L3-L2-L1.
The focus of this work was to arrange this promotion in the
fastest and most efficient manner. We devised the
replacement in situ scheme to reduce memory flushing load.
Consequently, less overhead was incurred in cache
transmissions and reallocations. The operating cost was
21.34% less than the existing LRU implementation.

To preserve the work-in-progress contents, we employed
write-through scheme to keep the most up-to-date copy of
data. Cache and memory utilization would run faster to keep
pace with the CPU speed. Thus, the proposed scheme would
co-exist and run with the underlying hardware smoothly.

VI. CONCLUSION

In this paper, the proposed scheme utilized existing cache
system by altering cache arrangement algorithm and
introducing minimal replacement procedure. By exercising
FIFO algorithm and in situ replacement allowed the
proposed scheme to provide comparable performance using
less resources to achieve identical jobs. Since replacement
activities were reduced, the proposed system required few
parameters to run, thereby system overhead was also
decreased.

Perhaps the most important contributions of this work are
its low overhead and simplicity which render the proposed
scheme to be hardware deployable. This would definitely not
duplicating or reinventing the wheel of any operating system
functions. Future work will be focused on placement
algorithms to better utilize cache space and lower power
consumption as the degree of multiprocessing increases. It is
envisioned that such an undertaking will be conducive
toward alleviating the memory wall problem.

REFERENCES

 [1] E. P. Debenedictis, “It’s Time to Redefine Moore’s Law Again,”

 Computer (Long. Beach. Calif)., vol. 50, no. 2, pp. 72–75, 2017.

[2] G. Strawn and C. Strawn, “Moore’s Law at Fifty,” IT Prof., vol. 17,
no. 6, pp. 69–72, 2015.

[3] D. A. P. John L. Hennessy, “Computer Architecture: A Quantitative
Approach.”

 [4] L. B. Kish, “End of Moore ’ s law : thermal (noise) death of
integration in micro and nano electronics,” Phys. Lett. A, vol. 305, pp.
144–149, 2002.

[5] C. H. Wu and T. W. Kuo, “An adaptive two-level management for
the flash translation layer in embedded systems,” IEEE/ACM Int.
Conf. Comput. Des. Dig. Tech. Pap. ICCAD, pp. 601–606, 2006.

[6] S. He, Y. Wang, and X. H. Sun, “Improving Performance of Parallel
I/O Systems through Selective and Layout-Aware SSD Cache,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 10, pp. 2940–2952, 2016.

[7] M. Chrobak and J. Noga, “LRU is Better than FIFO,” Algorithmica,
pp. 180–185, 1999.

[8] G. Lergchinnaboot and P. Sophatsathit, “A biological-like memory
allocation scheme using simulation,” Proc. - 2017 2nd Int. Conf. Inf.
Technol. Inf. Syst. Electr. Eng. ICITISEE 2017, vol. 2018-Janua, pp.
426–429, 2018.

[9] H. Gomaa, G. G. Messier, and R. Davies, “Hierarchical Cache
Performance Analysis under TTL-Based Consistency,” IEEE/ACM
Trans. Netw., vol. 23, no. 4, pp. 1190–1201, 2015.

[10] D. S. Berger, S. Henningsen, F. Ciucu, and J. B. Schmitt,
“Maximizing Cache Hit Ratios by Variance Reduction,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 43, no. 2, pp. 57–59, 2015.

[11] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” Proc. 27th Int. Symp. Comput. Archit.
(IEEE Cat. No.RS00201), vol. 27, no. c, pp. 1–11, 2000.

441

