
Software Interoperability through De-facto Standard and Supporting
Environment

Nalinee Sophatsathit

Computer Science Program, Faculty of Science and Technology
Suan Sunandha Rajabhat University

Peraphon Sophatsathit

Advanced Virtual and Intelligent Computing (AVIC) Center
Department of Mathematics, Faculty of Science

Chulalongkorn University

Abstract

 The proliferation of software application in
daily operations is undeniably deep-rooted and
intertwined with every fabric of life. Complicated
as software systems are, they evolve in much the
same manner as the chaotic world of their creator.
Yet no one complains about the shortcomings of
these heterogeneous software systems created by
unassociated developers that were never meant to
interoperate. We propose a novel framework that
assembles existing techniques to glue together
pieces of software. The simplicity of abiding by a
de-facto standard and straightforward
implementation of a well-established process is the
key to realization of the proposed framework. As
such, succeeding modification, reorganization, or
even re-invention of this novel idea can be
systematically performed to establish greater
extent of software interoperability environments
and pave way for interoperable software systems
development.

Keywords: software/tool interoperability, XML,
software engineering environments.

1. Software Engineering Environments

 Modern software development paradigms focus
on commonality of processing format to facilitate
interoperability. The good old notion of integrated
development environment (IDE) has been
rejuvenated as a means for creating, operating,
integrating, storing, retrieving, and maintaining of
the desired information. Unfortunately, most IDEs

operate on homogeneous basis, whereby foreign
data must undergo format conversion upon
importation, let alone the software itself. In so
doing, the ultimate goal of the IDE as being truly
interoperable is defeated. Moreover, the
extraneous data and format conversion inevitably
introduces additional processing burden that, in
many cases, does not justify the efforts in exchange
for imperfect conversion and information loss.
Ironically, software engineering environments in
primitive IDE forms have been around since the
advent of Ada Programming Support Environment
(APSE). APSE and its derivatives, Common
APSE Interface Set, (CAIS) [1], as well as their
counterpart development environment family—the
Portable Common Tool Environment (PCTE) and
PCTE+ [2], were the two most comprehensive but
homogeneous Integrated Programming Support
Environments (IPSE) then. Admittedly, they were
never fully taken off commercially. More
environment specifics, such as PNMPI inter-tool
communication [3], offer dynamic loading and
concurrent use at the expense of some
infrastructure compliance overhead. At any rate,
newer IDEs/IPSEs are more commonplace in
development community, e.g., the .NET, EJB, and
CORBA, yet still preserve their locality. For all
practical purposes, any foreign software or tools
must comply with the underlying mandate in order
to co-exist.
 The expansion of distributed processing also
imposes additional interoperability requirements
among software systems across heterogeneous
platforms. The distribution does not render these
software systems to operate at higher level of
amalgamated integration. Interoperability is

usually achieved through API, message interfaces,
command-line options [4], as well as an
information structure model describing the
communication bindings between
ToolCommunications [5] structures. These
endeavors exemplify the needs for resolving
heterogeneity that may exist among software
systems on the same or across platforms. The
latter issue is usually handled by means of
Workflow Management Coalition [6], as well as
meta-data and ontology mechanisms [7] to ensure
reliable operation of intercommunicating systems.
Fortunately, one predominant effort has established
itself as a de-facto standard is the semi-structured
XML which permits flexible cross-platform
development and software interoperability. This
simplicity of textual platform independent
framework does not come without a small penalty.
It cannot exist alone without a supporting
IDE/IPSE to complement its potential.
Nevertheless, a more involved problem is the
inherent semantic complexity brought about by the
underlying language and support systems. Decker,
et. al. [8] studied the roles of Document Type
Definition (DTD), Resource Description
Framework (RDF) schema, and applied Ontology
Interchange Language (OIL) to investigate
semantic knowledge representation as far as
expressive power, syntactic and semantic
interoperability are concerned, thereby fostering
long-term semantic interoperability.

2. Reference Architecture

 As software operations span the distributed
computing network, conventional software/tool
interoperability through API, message interfaces,
and command-line options, serve as a
comprehensible and convenient interface. The
notion of Component Mill architecture [9]
furnishes an infrastructure for component
integration on heterogeneous environments by
exposing the meta-component model and
constructs to supporting technologies.
Interoperability enhancement can be further fine-
tuned with the help of dynamic and late binding
mechanisms as software is executed as a separated
application. Unfortunately, these provisions
inevitably introduce a new layer of human
interconnecting complexity ranging from command
language semantic, analysis and design
abstractions, user-friendliness overhead, code and
style legibility restrictions, and so on.

 Bearing the above issues in mind, we propose a
novel configuration based on XML technology as a
test-bed for software interoperability. The
combined knowledge of XML versatility and
platform independence makes up a reference
architecture of the proposed approach. The critical
artifact is a simple and straightforward byte-level
encoding scheme that is machine readable,
whereby no syntactic or semantic processing
overhead is incurred.
 The proposed framework encompasses two
simple steps that will enable straightforward
software interoperation as illustrated in Figure 1.
The first step (a) involves creating XML schemas
to denote individual software interface artifacts and
mechanisms. This has been practiced in many
existing applications, particularly database and
Internet related work. The second step (b) is to
translate all XML schemas by a “native byte-
assembler” into byte-level instructions in the same
manner as the 2-pass assembler. These byte-level
instructions, by no means being confined to
machine language, are then installed on the target
machine programming support environment, thus
enabling software systems to co-exist and work
together. The simplicity of direct translation from
standard XML code to byte-level instructions by
passes the aforementioned abstractions, semantic,
human-oriented complexities, as well as XML
support overhead. As such, it is self-contained,
light weight, platform independent, and machine
readable that lends itself to machine-to-machine
communication without human intervention.

Figure 1 Byte-level instruction of the

corresponding XML code.

 To demonstrate the above 2-step procedure
from an operating standpoint, the participating
software configuration is schematically described
and represented by XML constructs. This process
is the state-of-the-practice in many today’s cross-
platform development. Procedurally, rather than
leaving the output XML code to be further
processed by down-stream software, the proposed
approach translates XML code into byte-level

instructions as illustrated in Figure 2. The sample
XML code segment [10] gets translated into byte-
level instructions in the same manner as assembly
language translation. The instructions are
subsequently executed in the target environment,
enabling heterogeneous software modules that
were never design to work together to procedurally

interoperate. One important pre-translation
consideration is organization of the XML source.
Some refactoring activities [11] may be called for
to ensure that the rearrangement is efficient, non-
redundant, and yet still preserves software behavior
and quality attributes after translation.

<xs:element name="EnrolledCourse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Grade" type="xs:string"/>
 <xs:any namespace="##any" minOccurs="0"
 maxOccurs="unbounded" processContents="lax"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>
</xs:element>

xs_element csect ;begin level 1
label1_1 BYTE “EnrolledCourse”
xs_complexType csect ;begin level 2
xs_sequence csect ;begin level 3
label3_1 BYTE “Name”
label3_2 BYTE “Grade”
xs_any begin_blk
namespace3_1 BYTE “##any”
minOccurs DEC 0
maxOccurs DEC Nan ;unbounded
processContents BYTE “lax”
 end_blk ;xs_any
 end_csect ;xs_sequence
xs_anyAttribute begin_blk
namespace2_1 BYTE “##any”
processContents BYTE “lax”
 end_blk ;xs_anyAttribute
 end_csect ;xs_complexType
 end_csect ;xs_element

Figure 2 Byte-level instruction of the corresponding XML code.

 The rationale behind the proposed byte-level
instruction is two folds. First and foremost, byte-
level instructions permit easy and speedy machine
execution of various software interchanges as they
are native code and there are virtually no format
and data conversions required. Second, byte-level
instructions are portable on any target machines.
As software is ported, the corresponding XML
schemas are cross-compiled through the target
machine native byte-assembler during system
configuration. Subsequent modifications, plug-

and-play set ups, and a variety of IDE/IPSE
supports can be incorporated or reconfigured
accordingly with minimal efficiency and
performance tradeoffs. Such a small and machine
processible representation makes this framework
ideal for applications running on limited resource
devices such as embedded code, mobile agent
interconnection protocols, foreground/background
processing, and heterogeneous software
interoperability exchange. The only price tag is
building the desired portable native byte-assembler

to be installed on any IDE/IPSE host where byte-
level instructions or other forms of native code can
be generated for the designated target machine.

3. Case studies

 The viability of the proposed approach is
demonstrated in two case studies contrived to
illustrate the principles. The first case was a small
and simple spreadsheet created by a popular
software and exported (in CSV format carrying no
extra conversion overhead) to be displayed on a
mobile phone, running its own software that was
never meant to work with the spreadsheet software.
Figure 3 depicts the handcrafted byte-level
instructions. However, the conversion was carried
out manually due to technical difficulties inhibited

by the phone’s capability. Eventually, these byte-
level instructions were further translated with the
help of J2ME support, a well known IDE/IPSE for
mobile phone application tool. In so doing, it re-
affirmed the notion of flexible interoperability
without confining to native machine instruction or
platform-specific mandate. Nonetheless, the
experiment was never thoroughly tested over the
actual mobile network owing to legal commission
rights of local phone operators and communication
law prohibition of individual access on public
frequencies. At any rate, this over-simplified case
study was devised to demonstrate how the
proposed schema could be realized with available
state-of-the-practice technologies.

<?xml version="1.0" encoding="UTF-8" ?>
<project name="score" default="csv" basedir=".">
 <tally name="show">
 <property name="stock_id" value="xs:string"
 count="0" price="0"/>
 </tally>
</project>

xml prog
version BYTE 1.0
encoding BYTE “UTF-8”
 end_prog
project START
name BYTE “”
default BYTE “csv”
basedir BYTE “.”
tally csect
name BYTE “show”
property begin_blk
name BYTE “stock_id”
count DEC 0
price DEC 0
 end_blk ;property
 end_csect ;tally
 END ;project

Figure 3 Byte-level instruction of the header.

 The second case study demonstrates the
importance of IDE/IPSE’s role in cross platform
development. It was a fun-filled mobile phone
game called “Mobigocchi” that was created as a
senior project from the same J2ME support. The
application was subsequently downloaded to
selected models of mobile phone equipped with
compatible IDE/IPSE. Principal components of the

game are depicted in Figure 4. It was primarily
played on a stand-alone mobile phone, or against
another mobile phone player over Bluetooth
protocol. The game won the third prize in the 2007
Collegiate Mobile Game Development competition
organized by a local phone operator.

<?xml version="1.0" encoding="UTF-8" ?>
<project name="" default="jar" basedir=".">
<description>Builds, tests, and runs the project .</description>
<import file="nbproject/build-impl.xml" />
<!-- Written by: Wizarut Niyomsart and Maytita Charoenrat -->
<!-- Dept of Mathematics, Faculty of Science, Chulalongkorn University -->
<!--
 BattleCanvas.jav background templates
 BattleClient.jav a client
 BattleSever.java server
 Godji.java game main function
 MobiBluetooth.java Bluetooth connection
 MobiCanvas.java phone display background
 MobiNormal.java phone interface
-->
</project>

Figure 4 Principal components of a mobile phone game.

 One important issue concerning this novel
approach is commercialization. As XML is a de-
facto open standard that has been widely accepted
by both academia and industry, the native byte-
assembler can be made proprietary based on
specific platforms and needs. Better yet, third
party developers are free to abolish this native
byte-assembler and opt for their own proprietary
implementation such as the use of J2ME support in
this article. Consequently, interoperable software
systems development can still be realized without
sacrificing commercial leverage and trade secrets.

4. Conclusion

 This article proposes a novel byte-level
framework that complements normal use of XML
versatility to permit interoperable software systems
development. The notion of IDE/IPSE supports is
fully exploited to enhance software/tool
interoperability. As developers create myriad of
software systems for general or specific purposes,
there bounds to be new requirements precipitating
from various software applications that call for the
software systems to co-exist and interoperate.
Without attempting to do it all, the proposed
approach introduces a 2-step process based on
well-practiced disciplines that is simple and
straightforward to implement on any platform.
Optionally, XML code refactoring may be needed
to optimize schema organization. The overall
provisions entail greater software interoperability
that not only augments the-state-of-the-practice
interoperable software systems development, but
also broadens the horizon of machine learning

research and development. It is hope that the
efforts expended by the software community to
reckon with the silver bullet will arrive at
applicable robust mechanisms akin to what
tangible goods already possess [12].

5. References

[1] Common APSE Interface Set, MIL-STD-

1838A, September 30, 1989.
[2] ECMA Technical Committee (TC33)—

ECMA TR/55, A Reference Model for
Frameworks of Computer-Assisted Software
Engineering Environments, European
Computer Manufacturers Association
(ECMA), 114 Rue du Rhone - CH - 1204
Geneva (Switzerland), December 1990.

[3] Schulz, M.; de Supinski, B.R, “A Flexible
and Dynamic Infrastructure for MPI Tool
Interoperability”, International Conference
on Parallel Processing 2006 (ICPP 2006),
August 2006, pp. 193-202.

[4] Yimin Bao and Ellis Horowitz, “A New
Approach to Software Tool
Interoperability”, Proceedings of the 1996
ACM symposium on Applied Computing
(SAC '96), pp. 500-509.

[5] Harvey, J.G.; Marlin, C.D, “A Layered
Operational Model for Describing Inter-tool
Communication in Tool Integration
Frameworks”, Proceedings of 1996
Australian Software Engineering
Conference, 14-18 July 1996, pp. 55-63.

[6] Hazem T. El-Khatib, M. Howard Williams,
David h. Marwick, and Lachlan M.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3810
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3810

Mackinnon, “Using a Distributed Approach
to Retrieve and Integrate Information from
Heterogeneous Distributed Databases”, The
Computer Journal, Vol. 45, No. 4, 2002, pp.
381-394.

[7] Ngamnij Arch-int and Peraphon
Sophatsathit, “A semantic information
gathering approach for heterogeneous
information sources on WWW”, Journal of
Information Science, Vol. 29, No. 5, 2003,
pp. 357-374.

[8] Stefan Decker, Sergey Melnik, Frank Van
Harmelen, Dieter Fensel, Michael Klein,
Jeen Broekstra, Michael Erdmann, and Ian
Horrocks, “The Semantic Web: The Roles
of XML and RDF”, IEEE Internet
Computing, Vol. 4, Issue 5, September-
October 2000, pp. 63-74.

[9] Ly Danielle Sauer, Robert L. Clay, and Rob
Armstrong, “Meta-Component Architecture
for Software Interoperability”, Proceedings
of the International Conference on Software
Methods and Tools 2000 (SMT 2000), 6-9
Nov. 2000, pp. 75-84.

[10] “Service Modeling Language, Version 1.1”,
W3C Working Draft 6 August 2007,
http://www.w3.org/TR/2007/WD-sml-
20070806/

[11] Tom Mens and Tom Tourwe, “A Survey of
Software Refactoring”, IEEE Transactions
on Software Engineering, Vol. 30, No. 2,
February 2004, pp. 126-139.

[12] Brad Cox, “No Silver Bullet Revisited”,
American Programmer Journal, 1995.

