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Abstract— This paper presents an error analysis of the linear
approximation model in a multiservice single-link system with
nonlinear equivalent capacity. Two types of error measures
have been proposed, namely, the mean error and probabilistic
error bounds. Derivation of these error measures reveals that
the linear approximation model has two main error sources,
i.e., the nonlinearity in equivalent capacity and the fluctuation
of system dynamics at the mean operating point. In addition,
given the product-form solution of the system with the complete
sharing policy, a numerical procedure is derived to facilitate the
calculation of proposed error measures. This procedure requires
both the time and space complexity of O(Ck), where C is the
link capacity and k is the number of call types. Hence, these
error measures can be efficiently computed in parallel to all the
main system performance parameters (call blocking probabilities
and mean revenue rates).

I. INTRODUCTION

One of the major challenges in communication networking
is to find the efficient mechanisms that can provide the quality
of service (QoS) for a broad range of applications. To deal
with the services with greatly different characteristics, various
forms of service separation have been proposed (see, e.g.,
[1], [2], [3]). The underlying idea of service separation is that
only ATM cell or IP packet streams from the same service are
allowed to be statistically multiplexed. At a switch or router, a
separate buffer is thus allocated to store cells or packets from
each service. The QoS provision for each buffer (i.e., loss rate,
delay and jitter) can then be facilitated by a weighted round
robin or weighted fair queueing scheduler and an appropriate
assignment of the scheduling weights.

For dynamic service separation (also called service sepa-
ration with dynamic partitions in [1]), the scheduling weight
for a given buffer i is made directly proportional to Gi (ni),
which denotes the equivalent capacity (known as the capacity
function in [1]) associated with the buffer i. This equivalent
capacity Gi (ni) is the minimum amount of link capacity
needed to achieve the QoS guarantee for buffer i when ni

connections are being served at the buffer. Therefore, to

achieve the QoS guarantee for all the buffers i ∈ {1, . . . , k}
that share the same link with capacity C, the number of
ongoing connections ni for all i must satisfy the capacity
requirement constraint

∑k
i=1 Gi (ni) ≤ C. Under service

separation, it is worth noting that Gi (·) depends on ni only,
and not nj (j 6= i). Further, to reflect the economies of scale
in statistically multiplexing cell or packet streams, it is known
that Gi (ni) monotonically increases with decreasing slope as
ni increases [4], [5]. For instance, given the on-off source
multiplexing model, the stationary Gaussian approximation [5]
results in Gi(ni) = αini + βi

√
ni. Therefore, we generally

have to cope with a nonlinear equivalent capacity.
In the past, given the dynamic service separation with

nonlinear equivalent capacity, a few QoS mechanisms have
been proposed. For call admission control (CAC), the complete
sharing policy has been analyzed [6] in terms of call blocking
probabilities of different services. This CAC analysis is then
extended to the scenarios of trunk reservation policy [7] to
investigate the fairness and prioritization in allocating the
link capacity to different services. For network routing, a
generalized dynamic alternative routing has been formulated
and analyzed in terms of the lower/upper bounds for the mean
network revenue rates [8].

The major concept used in solving all the formulated
analytical models in [6]–[8] is called the linear approximation
model, whose principle is to convert the analytical models
from the nonlinear domain of equivalent capacity into an
approximated linear domain. Consequently, the efficient nu-
merical techniques in the linear domain can then be employed
to reduce the involved computational complexity. Efficient
numerical techniques are desirable because they need to be
repeatedly invoked in network dimensioning procedures. How-
ever, the previous studies have only provided empirical inves-
tigation on the applicability of linear approximation model.
Theoretical error analysis is still needed and becomes the main
subject of this paper.

In this paper, we theoretically investigate the factors that
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Fig. 1. Approximation of equivalent capacity and resultant error.

influence the linear approximation model’s vulnerability to
errors. Furthermore, we aim at deriving the error measures
that can be efficiently computed. Like [6] and [7], the system
considered in this paper is a single link with a finite capacity
C accessed by k call types (each from a different service). Call
arrivals of each service are characterized by an independent
Poisson process and exponentially distributed holding times.
The readers are referred to [6] and [7] for a complete expos-
itory of the system description and analysis.

The remainder of this paper is organized as follows. In Sec-
tion II, a mean error MEi and its approximation MEi(apx) are
introduced. The derivation reveals the main factors that con-
tribute to the error of linear approximation model. Section III
then considers how to compute for the approximate mean
error MEi(apx) recursively. The derivation in Section III is
based on the product-form solution of complete sharing policy.
Bounds of error probability are then obtained in Section IV.
Numerical results are reported and discussed in Section V.
Finally, Section VI summarizes all the main findings of this
paper.

II. MEAN ERROR OF LINEAR APPROXIMATION MODEL

The essence of linear approximation model is to esti-
mate a nonlinear equivalent capacity Gi (ni) of call type i
(i = 1, . . . , k) by a linear function Gi(apx) (ni) = bini + ci,
as depicted in Fig. 1. The parameters bi, ci are obtained from
a tangential line of equivalent capacity at the mean operating
point. Note here that mi = E(Ni) is mean of the number of
type-i connections at time t, Ni(t).

Therefore, the error of linear approximation model can be
captured by

Ei (ni) , Gi(apx) (ni) − Gi (ni) (1)

for i = 1, . . . , k. This error measure Ei (ni) is always greater
than or equal to 0 since function Gi (ni) is monotone increas-
ing and concave in practice [4], [5].

For the analytical purpose, suppose that Gi (ni) is twice-
differentiable1 on the considered range of ni for all i =
1, . . . , k. In this case, we may represent Gi(apx) (ni) by
Gi (mi) + G′

i (mi) (ni − mi). Based on Taylor’s Theorem,
if Gi (ni) is now approximated by the first three terms of
the expansion about the mean operating point mi, then it is
possible to write down

Gi (ni) ' Gi (mi)+G′
i (mi) (ni − mi)+

G′′
i (mi)

2
(ni − mi)

2
,

(2)
which leads to

Ei (ni) '
−G′′

i (mi)

2
(ni − mi)

2
. (3)

The value of ni is driven by the stochastic process
{Ni (t) , t ≥ 0}. Accordingly, the mean error of linear approx-
imation model in approximating type-i equivalent capacity can
be defined as

MEi , E [Ei (Ni)] (4)

for i = 1, . . . , k.
By combining (3) and (4), the approximate mean er-

ror, MEi(apx), can finally be written as MEi(apx) =
−G′′

i (mi) V ar (Ni) /2. Despite of the minus sign here, it
should be noted that MEi(apx) ≥ 0 since G′′

i (mi) ≤ 0.
Therefore, to prevent misunderstanding, we write

MEi(apx) =
|G′′

i (mi)|
2

V ar (Ni) (5)

for i = 1, . . . , k.
From (5), the error of linear approximation model depends

on two factors. First, the second derivative term represents the
nonlinearity in equivalent capacity at the mean operating point.
Second, how much the system fluctuates around the mean
operating point is captured by the variance term. Consequently,
the linear approximation model may become erroneous if the
considered system operates in the region where the equivalent
capacity is highly nonlinear or if there is a large variation in
the system dynamics or both.

III. RECURSIVE COMPUTATION OF MEAN ERROR

In order to calculate MEi(apx) from (5), we need to know
both mean mi = E (Ni) and variance V ar (Ni). The mean
can be directly obtained in the linear approximation model by

1This assumption may be easily justified if an explicit functional form of
equivalent capacity can be derived from an analytical model. On the other
hand, if the equivalent capacity is obtained from measurements, experiments
or computer simulations, then the values of equivalent capacity function
Gi (ni) may be available at only integer values of ni. In this case, the
first and second derivatives of equivalent capacity function Gi (ni) are here
calculated from G′

i
(a) = Gi (bac + 1) − Gi (bac) and G′′

i
(a) =

Gi (bac + 2) − 2Gi (bac + 1) + Gi (bac) , where a > 0 and bac is the
largest integer which is not greater than a.



mi = ρi (1 − Bi), where ρi is the offered load of type-i call
stream and Bi is the probability of blocking type-i calls. In
this section, we focus on how to calculate V ar (Ni).

The important equation that makes the computation of
V ar (Ni) possible is the derivative formula as derived in [9]
from the product-form solution:

∂Bi

∂ρi
=

1

ρ2
i

(E (Ni) − V ar (Ni)) . (6)

The derivative formula (6) relates V ar (Ni) to ∂Bi/∂ρi.
Therefore, in the following derivation, we focus on calculating
∂Bi/∂ρi. In this respect, recall from the Kaufman-Roberts’s
recursive algorithm [10], [11] that Bi (i = 1, . . . , k) can be
written as

Bi =
∑

{c∈Φ|c+bi /∈Φ}

q (c) . (7)

In (7), Φ is a set containing all possible numbers of the link
capacity units that may be occupied and q (c) is the probability
that c link capacity units are occupied in the steady state.
Further, bi is the capacity requirement per type-i call in the
linear approximation model. It has been shown in [10], [11]
that the distribution q (c) can be obtained from the recursion

cq (c) =

k
∑

j=1

ρjbjq (c − bj) for c ∈ Φ, (8)

in conjunction with another two constraints

q (c) = 0 for c /∈ Φ, (9)
∑

c∈Φ

q (c) = 1. (10)

Let us now take ∂/∂ρi throughout (7)–(10) one by one. It
then follows from (7) that

∂Bi

∂ρi
=

∑

{c∈Φ|c+bi /∈Φ}

q′i (c) , (11)

where q′i (c) denotes ∂q (c) /∂ρi for i = 1, . . . , k. The desired
partial derivative ∂Bi/∂ρi can thus be obtained if one can
calculate q′i (c). Now, by taking ∂/∂ρi at both sides of (8), we
obtain

cq′i (c) = biq (c − bi)+
k

∑

j=1

ρjbjq
′
i (c − bj) for c ∈ Φ. (12)

This recursive relation for q′i (c) in (12) is very similar in
form as its counterpart in (8). Consequently, the computation
of q′i (c) via (12) can be as efficient as the computation of
q (c) via (8). To complete the recursion, two constraints can
be stated in parallel to (9) and (10) as follows:

q′i (c) = 0 for c /∈ Φ, (13)
∑

c∈Φ

q′i (c) = 0. (14)

It should be noted, however, that (14) does not render for an
easy way to invoke the recursion (12). Therefore, it is desirable
to obtain another relation for q′i (c). From the product-form
solution, we here derive the value of q′i (c) at c = 0 as

q′i (0) = −E (Ni) q (0)

ρi
. (15)

As a summary, one can apply (12), (13) and (15) to calculate
q′i (c) for all c ∈ Φ and i = 1, . . . , k. The developed algorithm
for computing q′i (c) has both the time and space complexity
of O (Ck) for the analysis of single-link system with link
capacity C and k call types. Obtaining q′i (c) here thus requires
the same level of computational time as obtaining Bi by the
algorithm in [6].

After q′i (c) is obtained for all c ∈ Φ and i = 1, . . . , k, one
can easily calculate V ar (Ni) from (6) and (11). Specifically,
for i = 1, . . . , k,

V ar (Ni) = E (Ni) − ρ2
i

∑

{c∈Φ|c+bi /∈Φ}

q′i (c) . (16)

Combining (5) and (16) finally gives the desired formula that
can be used to calculate the approximate mean error:

MEi(apx) =
|G′′

i (mi)|
2



E (Ni) − ρ2
i

∑

{c∈Φ|c+bi /∈Φ}

q′i (c)





(17)
for i = 1, . . . , k.

IV. BOUNDS OF ERROR PROBABILITY

So far, the mean value of error measure Ei (Ni) has been
considered via the notion MEi. To obtain more information
on the probability distribution of Ei (Ni), two types of bounds
are obtained in this section.

A. Markov Bound

Since Ei (Ni) is a random variable that takes only nonneg-
ative values, the Markov Inequality [12] yields that

P [Ei (Ni) < ε] ≥ max

(

0, 1 − MEi

ε

)

(18)

for any value ε > 0 and i = 1, . . . , k. The statement (18)
ensures, with a degree of certainty, that the error of linear
approximation model will be less than a given threshold.

B. Chebyshev Bound

First note that, given |ni − mi| < δ for an arbitrary constant
δ > 0, one can obtain a bound on the error measure Ei (ni)
as

Ei (ni) < max (Ei (mi − δ) , Ei (mi + δ)) , (19)



where Ei (a < 0) , Ei (0). Since the value of ni is driven by
the random variable Ni, it follows that

P [Ei(Ni) < max(Ei(mi − δi), Ei(mi + δi))]

≥ P [|Ni − mi| < δ] (20)

Finally, since Ni has a finite mean and variance in practice,
the Chebyshev Inequality [12] yields that P [|Ni−mi| < δ] =
1 − P [|Ni − mi| ≥ δ] ≥ max[0, 1 − V ar(Ni)/δ2] and (20)
results in

P [Ei(Ni) < max(Ei(mi − δi), Ei(mi + δi))]

≥ max[0, 1− V ar(Ni)/δ2] (21)

for any value δ > 0 and i = 1, . . . , k.

V. NUMERICAL RESULTS

A. Study of Mean Error

This section investigates the degree of accuracy as obtained
from the approximate mean error MEi(apx) in (17), which
is resulted from the expansion of Gi (ni) in (2) by only the
first three terms in the Taylor’s series. Like [6], we set k = 2
and use the equivalent capacity of the form Gi (ni) = αini +
βi
√

ni. This quadratic form of equivalent capacity, derived
from the stationary Gaussian traffic model [5], allows us to
vary the nonlinearity in equivalent capacity conveniently by
changing two parameters αi and βi. That is, function Gi(ni)
should be less (more) nonlinear with higher value of αi (βi).
Two experiments of complete sharing policy are here reported.

In the first experiment, (ρ1, ρ2) = (10, 35) Erlang, C =
150 Mbits/s, α1 = 0, . . . , 3 Mbits/s, α2 = 1.5 + α1/2, βi =
21.2132 − 7.0711αi for i = 1, 2. In the second experiment,
α2 = 3 − α1 and all other settings remain the same as in the
first experiment. The settings of (αi, βi) are such that Gi (ni)
always pass through the origin (0, 0 Mbits/s) and the point
(50, 150 Mbits/s). Examples of Gi (ni) can be found in Fig. 1
of [6]. The resultant exact and approximate values of ME1,
ME2 are plotted as a function of α1 in Figs. 2 and 3 for the
first and second experiments, respectively.

Figs. 2 and 3 suggest that both ME1 and ME2 can be
well captured by the approximation in (17) over the whole
range of equivalent capacity considered here. This finding is
useful because it implies that one needs not worried about
other higher (than second) moment terms in the Taylor’s
series to derive for a meaningful error indicator for the linear
approximation model. The importance of this implication
is increased especially when one realizes that, in practice,
calculating the variance is difficult enough and other higher
moments are even harder (if not impossible at all) to obtain.

B. Remarks on Bounds of Error Probability

The complete sharing policy is again assumed. The link
capacity is set to 150 Mbits/s. Loads offered to this link
are fixed at (ρ1, ρ2) = (10, 35) Erlang. Again, βi is set to
21.2132 − 7.0711αi for i = 1, 2. The value of (α1, α2) is
set to (0, 1.5) Mbits/s and the resultant relationship between
the exact value and bounds of P [Ei (Ni) ≥ ε] is depicted by
Figure 4.

Figure 4 suggests that the exact value of P [Ei (Ni) ≥ ε] is
well captured by its bounds, where the Chebyshev bound is
found to be tighter than the Markov bound.

VI. CONCLUSIONS

In this paper, an error analysis has been carried out for
the linear approximation model as applied to the multiservice
single-link system studies with nonlinear equivalent capacity.
The notion of mean error MEi has been introduced and
its approximation MEi(apx) has been obtained in (5). This
approximate mean error MEi(apx) can capture the two main
factors that influence the error of linear approximation model,
namely, (i) the nonlinearity in equivalent capacity at the mean
operating point as quantified by the second derivative term
in (5) and (ii) the fluctuation of system dynamics around the
mean operating point as captured by the variance term in (5).

In addition, a computationally efficient procedure (by (12),
(13), (15) and (17)) has been obtained to calculate MEi(apx)

with the time and space complexity of O (Ck), where C is the
link capacity and k is the number of call types. The derived
formula for MEi(apx) can thus be computed in parallel to
the underlying solution of all the main system performance

M
ea

n
E

rr
o
r

In
P

er
ce

n
ta

g
e

O
f

L
in

k
C

ap
ac

it
y

10 -3

10 -2

10 -1

10 0

Linear Coefficient (Mbits/s)a1

0 0.5 1.5 2.5 31 2

(Exact Value)

(Exact Value)

(Approximate Value)

(Approximate Value)

1ME

ME

1ME

2ME

2

Fig. 2. Exact and approximate mean errors in the first experiment.
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Fig. 3. Exact and approximate mean errors in the second experiment.

parameters (call blocking probabilities and mean revenue
rates).

Finally, the error of linear approximation model has been
bounded probabilistically by the Markov and Chebyshev In-
equalities. The Markov bound and Chebyshev bound can
be calculated from the mean error MEi and the variance
V ar (Ni), respectively. The computationally efficient recur-
sion in Section III should also thus be readily applicable to
obtain both of these bounds in practice. Given the numerical
results herein reported (as well as all others in [13]), it is
expected that the error measures in this paper can be used
as the standard criteria of judgement on when the CAC with
dynamic service separation (which is a nonlinear CAC) can
be acceptably approximated by a linear model.
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