Chapter 6 Plane Kinetics of Rigid Bodies

6. Plane Kinetics

- Introduction
- 6.1 Force, Mass, and Acceleration (Newton's laws of motion)
- 6.2 Work and Energy
- 6.3 Impulse and Momentum

6. Plane Kinetics

Introduction

- Relations between forces and motion of rigid body will be studied.
- For rigid bodies, translational and rotational motions must be considered (for particles, only translational motion is).
- We will consider only <u>plane</u> motion (2-D motion)
 - Translation
 - Rectilinear
 - Curvilinear
 - Fixed Axis Rotation
 - General Plane Motion

- 1. Introduction
- 2. Force Equation
- 3. Moment Equation (about G)
- 4. Kinetic Diagram
- 5. Moment Equation about Other Point
- 6. Translation
 - Rectilinear
 - Curvilinear
- 7. Fixed Axis Rotation
- 8. General Plane Motion

1. Introduction

- A free body diagram is required.
- Three Newton's laws of Motion are used.
- The second law has two equations,
 - □ force equation
 - □ moment equation

both applies simultaneously.

Proofs are in Chapter 4: Systems of Particles.

$$\Sigma \vec{F} = m \vec{a}_G$$

 $\Sigma \vec{M}_G = \dot{\vec{H}}_G$

2. Force Equation

Newton's Second Law (Rigid Body)

$$\Sigma \vec{F} = m \vec{a}_G$$

- \vec{F} = forces acting on the rigid body,
- m = mass of the body,
- \vec{a}_G = acceleration of the center of mass, G

3. Moment Equation (about G)

The Moment Equation (Rigid Body)

$$\Sigma M_G = I_G \alpha$$

- \vec{M}_G = moment (of external force) about G
- \vec{H}_G = Angular momentum of the system about G
- Hence, for plane motion

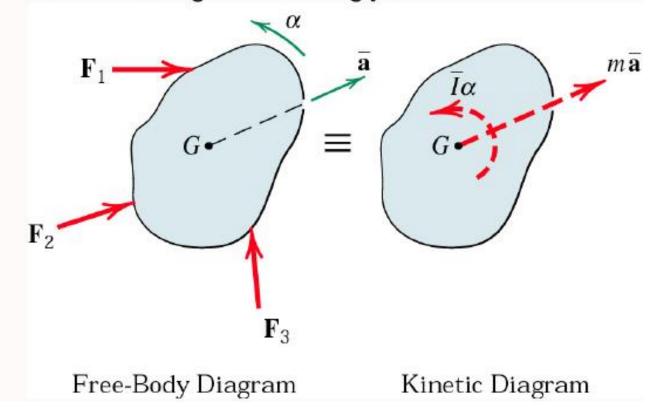
$$H_G = \bar{I}\omega = I_G\omega$$

■ Then, (since I_G is a constant)

$$\dot{H}_G = \bar{I}\dot{\omega} = I_G\dot{\omega}$$

4. Kinetic Diagram

A Kinetic Diagram is strongly recommended.

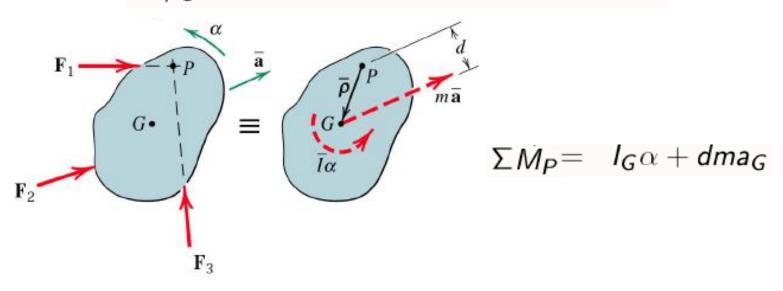


5. Moment Equation about Other Point

Alternative Moment Equation

$$\Sigma \vec{M}_P = I_G \vec{\alpha} + \vec{\rho}_G \times m\vec{a}_G$$

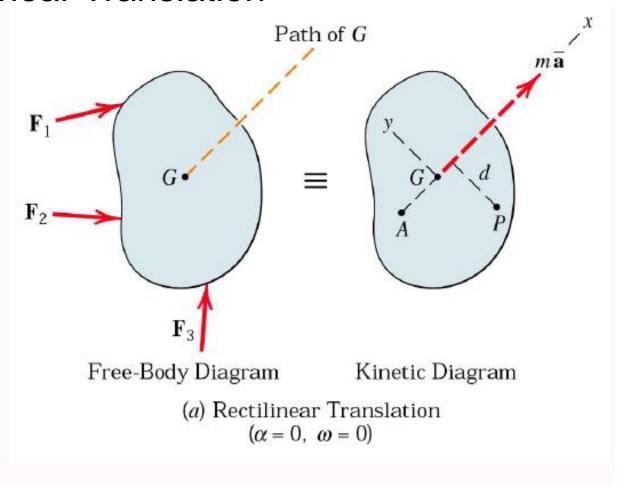
- M_P = moment about some point P
- ho_G = vector from P to the mass center G



Free-Body Diagram

Kinetic Diagram

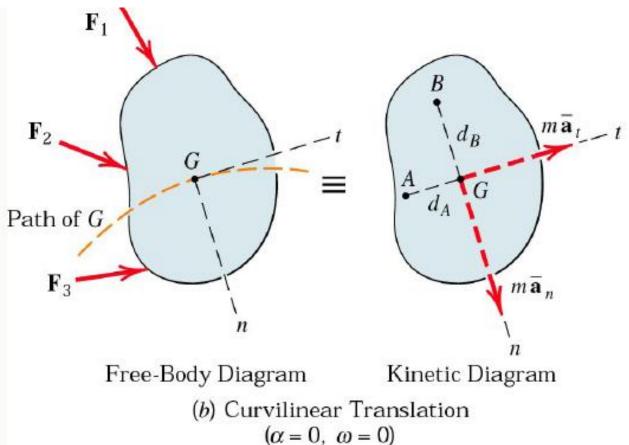
6.1 Rectilinear Translation



$$\Sigma \vec{F} = m\vec{a}_G, \ \Sigma \vec{M}_G = 0$$

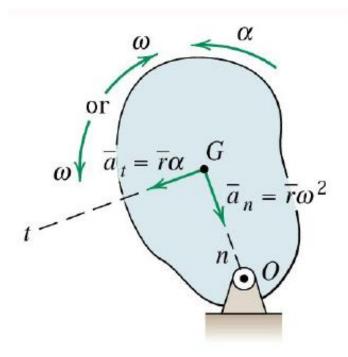
11

6.2 Curvilinear Translation



$$\Sigma \vec{F} = m \vec{a}_G$$
, $\Sigma \vec{M}_G = 0$
2142211 Mechanical Dynamics, NAV

7. Fixed Axis Rotation



Fixed-Axis Rotation

Kinematics:

$$(\vec{a}_G)_t = \vec{\alpha}_{OG} \times \vec{r}_{O \to G}$$

$$\vec{a}_G)_n = \\ \vec{\omega}_{OG} \times (\vec{\omega}_{OG} \times \vec{r}_{O \to G})$$

7. Fixed Axis Rotation

EOM: General Motion

$$\Sigma \vec{F} = m \vec{a}_G$$

$$\Sigma M_G = I_G \alpha$$

and

$$\Sigma M_O = I_O \alpha$$

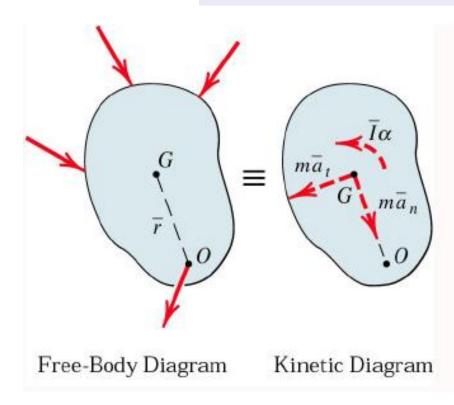
- Rigid body rotates about O
- M_O = moment of forces about O
- $I_O =$ mass moment of inertia about point O

7. Fixed Axis Rotation

Proof:

Moment Equation about point O

$$\Sigma M_O = I_O \alpha$$



$$\Sigma M_O = I_G \alpha + ma_{Gt} \bar{r}$$

■ But,
$$a_{Gt} = \alpha \bar{r}$$

Then,

$$\Sigma M_O = I_G \alpha + m\bar{r}^2 \alpha$$

$$\Sigma M_O = (I_G + m\bar{r}^2) \alpha$$

■ We know that

$$I_O = I_G + m\bar{r}^2$$

Parallel Axis Theorem

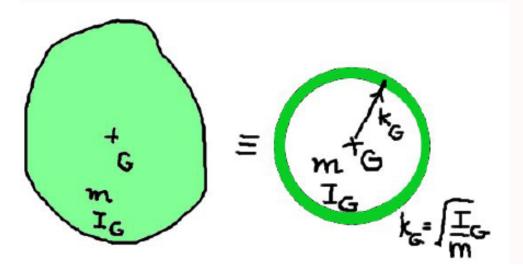
7. Fixed Axis Rotation

Radius of Gyration

- Radius of gyration is often used to specify the mass moment of inertia of a rigid body.
- Given mass m and the radius of gyration k_P (about point P), we have

$$I_P = mk_P^2$$

- Usually point P is G or the fixed point O
- Imagine mass concentrated at radius k_G



8. General Plane Motion

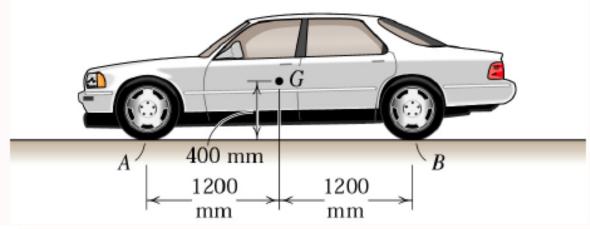
Same as before

EOM: General Motion
$$\Sigma \vec{F} = m \vec{a}_G$$

$$\Sigma M_G = I_G \alpha$$

Example 1: A Moving Car

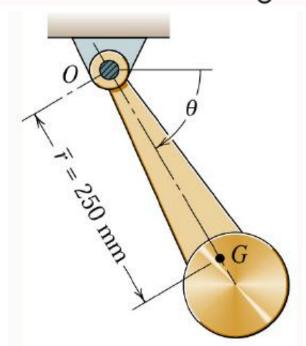
The 1600-kg car has its mass center at G. Calculate the normal force N_A and N_B between the road and the front and rear pairs of wheels when acceleration of the car is 2 m/s². The mass of the wheels are small compared to the mass of the car.



- Do this: If the coefficient of static friction between the tire and the ground is 0.8, what is the maximum possible acceleration of this car if
 - it is a front wheel drive car,
 - it is a rear wheel drive car.

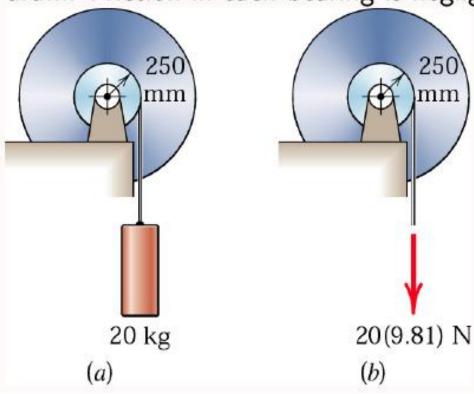
Example 2: Swinging Pendulum

The pendulum has a mass of 7.5 kg with center of mass at G and has a radius of gyration about the pivot O of 295 mm. If the pendulum is released from rest at $\theta=0$, determine the total force supported by the bearing at the instant when $\theta=60^{\circ}$. Friction in the bearing is negligible.



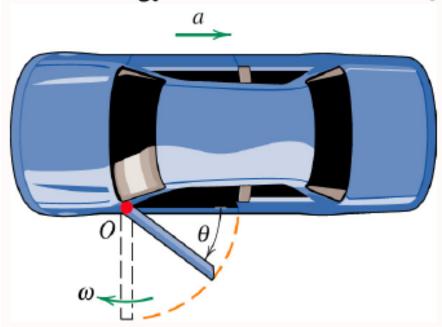
Example 3: Concept Test

Each of the two drums and connected hubs of 250 mm radius has a mass of 100 kg and has a radius of gyration about its center of 375 mm. Calculation the angular acceleration of each drum. Friction in each bearing is negligible.



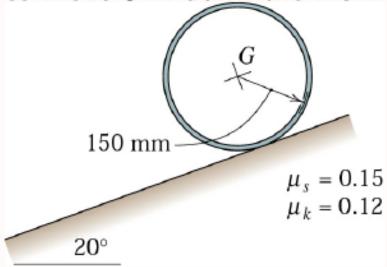
Example 4: Car's Door

A car door swings open when the car brakes with acceleration a. Derive expressions for the angular velocity of the door as it swing pass the 90° and the forces at O for any value of θ . The door has mass m, mass center is located at \bar{r} from O, and the radius of gyration about O is k_O .



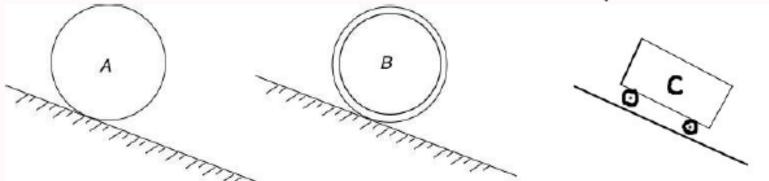
Example 5: Rolling Loop

A metal hoop with a radius r=150 mm is released from rest on the 20° incline. If $\mu_s=0.15$ and $\mu_k=0.12$, determine the angular acceleration α of the hoop and the time t for the hoop to move 3 m down the incline.



Example 6: Which one is the fastest?

Which one roll down the incline the fastest? (same mass, noslip)



(No friction for case C)