Introduction to Dynamics

Introduction to Dynamics

- Syllabus
 - ☐ Section 7 website

http://pioneer.netserv.chula.ac.th/~anopdana/212.htm

- My contact information:
 - □ Tel. 02 218 6623
 - □ Email <u>nopdanai.a@chula.ac.th</u>
 - □ Room 308 Hans Bantli Building
- What is Mechanics (กลศาสตร์)?
- What is Dynamics (พลศาสตร์)?

What is Mechanics?

- A branch of physical science which deals with the effects of forces on objects
- Two parts: Statics (equilibrium of bodies) and Dynamics (motion of bodies)
- Applications:
 - Strength of structures and machines (houses, robots, cars, airplanes)
 - □ Vibrations (engine vibrations, bridges, wheels)
 - □ Fluid mechanics (airplanes, fluid machinery)
 - Electrical machines and apparatus (motors, transducers)

re.

Mechanics Fields of Study

- Statics
 - □ Rigid bodies in equilibrium → Forces
- Dynamics
 - □ Rigid bodies in motions → Forces and motions
- Strength of Materials (Mechanics of Materials)
 - □ Deformable bodies in equilibrium → Strength and deformation
- Fluid Mechanics
 - oxdot **Deformable** bodies in **motions** ightarrow Pressure and flow
- Mechanics of Machinery
 - Dynamics of mechanism including linkages
- Vibration
 - □ Rigid and deformation bodies in repetitive motions

Applications of Dynamics

- Robot Arm
- Car Engine
- VehicleDynamics
 - braking/acceler ating
 - □ cornering
- Planetary Gear

Laws/Equations in Dynamics Class

- Newton's Laws (3A, 6A)
- Work Energy Equation (3B, 6B)
- Conservation of Energy (3B, 6B)
- Impulse Momentum Equation (linear and angular) (3C, 6C)

Dynamics Class Topics

For Midterm

- Chapter 2: Kinematics of Particles
 - □ Displacement, velocity, acceleration of a particle in 1 and 2 dimensions
- Chapter 3: Kinetics of Particles
 - Newton's laws
 - Work-Energy
 - □ Impulse-Momentum
 - impact
 - in 1 and 2 dimensions

Dynamics Class Topics

For Final

- Chapter 5: Plane Kinematics of Rigid Bodies
- Chapter 6: Plane Kinetics of Rigid Bodies

Not included in the exams but worth reading

- Chapter 1: Introduction
- Chapter 4: Kinetics of Systems of Particles

м

Learning Strategies

Recommendation:

- If possible, read ahead
 - □ read ahead (+20% understanding), class (+30%), exercise (+40%)
- Two notebooks: for notes and exercises
- Exercise:
 - □ do exercise before looking at solutions
 - □ do in steps and make it easy to read
 - □ in case of getting stuck, ask or look at solutions

м.

Exam Strategies

- Do step by step
- Write the laws to be used: 2nd law...
- Draw Free Body Diagram
- Show coordinates: x, y...
- Define variables
- Show calculations
- State directions of vectors: vel, acc, force...
- Show units at numerical answers: N, m/s...
- Use common sense to check the answer
- Make it clean

Who is Newton?

- Born: 1643 in England
- Physicist, Mathematician, Astronomer, Philosopher etc.
- "Mathematical Principles of National Philosophy" known as "Principia" (1687)
 - Classical mechanics: Laws of Gravitation, Laws of Motion

 Calculus, Reflecting telescope, law of cooling, speed of sound, Newton's method for finding roots of a function, power

series etc.

Interesting Stuff

- Monument: Westminster Abbey, England
- Apple tree
- Stocks
 - □ Lost 20,000 GBP in stock in 1720s (\$2.72M)
 - He stated "I can calculate the motions of heavenly bodies, but not the madness of people."

