Chapter 5
 Plane Kinematics of Rigid Bodies

5. Plane Kinematics

- Introduction
- 5.1 Rotation
- 5.2 Absolute Motion

■ 5.3 Relative Velocity
■ 5.4 Relative Acceleration

5. Plane Kinematics

1.1 Introduction

	Particle	Rigid Body
Size	Small \& Not important	Big \& Important
Motion	Translation only	Translation and Rotation

- Rigid body
= a body with negligible deformation
= distance between any two points in a rigid body is constant

5. Plane Kinematics
1.2 Motions of a Rigid Body

- 1. In space = three dimensions
- 2. In plane = two dimensions
\square Translation
- Rectilinear
- Curvilinear
\square Rotation

5. Plane Kinematics

1.3 Plane Motions of a Rigid Body - Translation

- Rectilinear Translation

- Curviliear translation

Rocket test sled

Parallel-link swinging plate

5. Plane Kinematics

1.3 Plane Motions of a Rigid Body

- Rotation
- Fixed-axis rotation

Compound pendulum

- General Plane Motion = Translation + Rotation

Connecting rod in a reciprocating engine

5. Plane Kinematics

1.3 Plane Motions of a Rigid Body

What is the type of motion of these bodies?

■ Wheel?, Car?, Link AB?
\square Ferris wheel: the wheel?, the car?

5-1 Rotation

5-1 Rotation

■ How to describe rotation of a rigid body?

\square Angle between any line on a body and a reference line can be used to measure rotation of the body.
■ $\theta_{2}=\theta_{1}+\beta$

- For a rigid body, $\beta=$ constant.
- Angular velocity $\dot{\theta}_{2}=\dot{\theta_{1}}$
- Angular acceleration $\ddot{\theta}_{2}=\ddot{\theta}_{1}$
- ω as well as α is the same for every point

5-1 Rotation

Rotation

$$
\begin{aligned}
\omega & =\frac{d \theta}{d t} \\
\alpha & =\frac{d \omega}{d t} \\
\omega d \omega & =\alpha d \theta
\end{aligned}
$$

- For constant angular acceleration ($\alpha=$ constant), we have

$$
\begin{aligned}
\omega & =\omega_{0}+\alpha t \\
\omega^{2} & =\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right) \\
\theta & =\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}
\end{aligned}
$$

5-1 Rotation

1. Rotation about a Fixed Axis

- Any point in the body moves in circular motion
- For Point A

Circular Motion

$$
\begin{aligned}
v & =r \omega \\
a_{n} & =r \omega^{2}=v^{2} / r=v \omega \\
a_{t} & =r \alpha
\end{aligned}
$$

- Note: v and a of other points are different because of different r (ω and α are the same)

5-1 Rotation

1. Rotation about a Fixed Axis

Velocity

- The equations can be rewritten in a vector form (for plane motion)
- Direction of ω is given using the right-hand rule.

Velocity (Pure Rotation)

$$
\vec{v}=\vec{\omega} \times \vec{r}
$$

5-1 Rotation

1. Rotation about a Fixed Axis

Acceleration

- Direction of α is given using the right-hand rule.

$$
\begin{aligned}
& \begin{array}{l}
\text { Acceleration (Pure Ro- } \\
\text { tation) }
\end{array} \\
& \qquad \begin{aligned}
& \vec{a}_{n}=\vec{\omega} \times(\vec{\omega} \times \vec{r}) \\
& \vec{a}_{t}=\vec{\alpha} \times \vec{r}
\end{aligned}
\end{aligned}
$$

5-1 Rotation

Example 1: L-shaped bar

The right-angle bar rotates clockwise with an angular velocity which is decreasing at the rate of $4 \mathrm{rad} / \mathrm{s}^{2}$. Write the vector expression for the velocity and acceleration of point A when $\omega=2 \mathrm{rad} / \mathrm{s}$.

5-1 Rotation

Example 2:

Starting from rest when $s=0$, pulley A is given a constant angular acceleration of $6 \mathrm{rad} / \mathrm{s}^{2}$. Determine the speed of block B when it has risen 6 m .

