PROFIT MAXIMIZATION
With n activity levels

Economic Profit 
=
revenue ( cost = R(a1,…,an) ( C(a1,…,an)

All costs must be included e.g. opportunity cost

A firm chooses actions (a1,…,an) to maximize R(a1…,an) – C(a1,…,an) 
The profit maximization problem
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i=1, …,n.

 MR = MC

If MR > MC → increase the level of the activity and vice versa

Interpretations

I) The firm should 

i) choose the level of output so that the production of one more unit of output should produce MR equal to its MC of production.  

ii) hire an amount of labor such that the MR from employing one more unit of labor equal to the MC of hiring that additional unit of labor.

II) If two firms have identical revenue functions and cost functions.  In the long run, the two firms cannot have unequal profits.

Alternatively, write 

Profit = Revenue – Cost

  = price of output times output – price of input times input

The firm can choose to set prices instead of output level but it cannot set prices and activity levels unilaterally 

In general the firm faces two types of constraints:

I) Technological constraints concern the feasibility of the production plan 
II) Market constraints concern the effect of actions of other agents, e.g. consumers and suppliers of inputs
EXAMPLE 
Competitive firm: Firm takes price as given 
Situation where price-taking behavior might be appropriate  
i) well-imformed consumers 

ii) homogeneous product 
iii) large number of firms.  
Then it is reasonably clear that all firms must charge the same price.
Profit maximization of Competitive Firms
Let p be a vector of prices for inputs and outputs of the firm.

Profit Function ( (p) gives the maximum profits as a function of the prices
( (p) = max py
such that y is in Y
Short-run Profit Function or Restricted Profit Function:
( (p, z) = max py
such that y is in Y (z)
The Case with Single Output and Multiple Inputs
( (p, w) = max pf(x) – wx
where p is now the (scalar) price of output w is the vector of factor prices. 
Define the Cost Function as
c(w, y) = min wx
such that x is in V (y).

i.e. c(w, y) gives the minimum cost of producing a level of output y when factor prices are w. 
Then Restricted or Short-run Cost Function:

c(w,y, z) = min wx

such that (y, -x) is in Y (z)
First-Order Conditions: 

p [image: image5.wmf]i

x

x

f

¶

¶

)

(

*

= wi







i = 1, …, n.
Value of marginal product of factor i = price of i

Vector notation

PDf(x*) = w.

where Df(x*)
=
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 is the gradient of f(x)

Second-Order Conditions:

The Hessian matrix D2 f(x*) (The matrix of second derivatives of the production function) must be negative semidefinite at x*
hD2 f(x*)ht ( 0 for all vector h.
where D2 f(x*) = 
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The production function must lie below its tangent hyperplane at x*
Note: D2 f(x*) is negative semidefinite iff the principal minor determinants of order k have sign (-1)k for k = 1,…n

Two-dimensional case: Π= py – wx.→ y = Π/p + (w/p)x.
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Profit maximization: Slope of the isoprofit line equals the slope of the production function.
Tangency condition (F.O.C) : [image: image9.wmf]p
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Second-order condition: 
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  → locally concave at x*
Definitions
Factor Demand Function x(p,w) gives the optimal choice of inputs as a function of the prices is of the firm.  
Supply function of the firm y(p,w) = f(x(p,w)) 
DIFFICULTIES
i) Technology cannot be described by a differentiable production   The Leontief technology
ii) The above conditions are valid only for interior solutions –where each of the factors is used in a positive amount.

To handle boundary solutions, the relevant first-order conditions are
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Note that the marginal profit from increasing xI must be nonpositive, otherwise the firm would increase xi

iii) There may exist no profit-maximizing production plan. 
For example if  f(x) = x when p > w, want to choose x → ∞  
A maximal profit production plan exists only when p < w, → profits = zero.

For any constant-returns-to-scale technology.

Pf(x*) ( wx* = (* > 0

Pf(tx*) ( wtx* = t[pf(x*) (wx*] = t(* > (*
The only nontrivial profit-maximizing position for a constant-returns-to-scale firm is one involving zero profits.  It is indifferent about the level of output at which it produces.

iv) Even when a profit-maximizing production plan exists, it may not be unique. e.g. the case of CRS technology
EXAMPLE: The profit function for Cobb-Douglas technology

Cobb-Douglas technology f(x) = xa where a > 0.  
The first-order condition is

paxa-1 = w
Second-order condition reduces to 

pa(a-1)xa-2 < 0
The second-order condition can only be satisfied when a < 1, which means that the production function must have constant or decreasing returns to scale for competitive profit maximization to be meaningful.
If a = 1 → F.O.C.: p = w.  
When w =  p  any value of x is a profit-maximizing choice.  
If a < 1, use F.O.C. to solve for the factor demand function
X(p,w) = [image: image13.wmf]1
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The supply function is given by 

Y(p,w) = f (x(p,w)) = [image: image14.wmf]1
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The profit function is given by
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Properties of Demand and Supply Functions 
The factor demand functions xi (p,w) for i = 1, …, n 
must satisfy the restriction that
xi(tp, tw) = xi(p,w)   

 
(see tangency condition)
i.e. homogeneous of degree zero.
COMPARATIVE STATICS using the first-order conditions
Comparative Statics (Sensitivity analysis): The study of how an economic variable responds to changes in its environment
The term comparative refers to comparing a “before”and an äfter”situation.  The term statics refers to the idea that the comparison is made after all adjustments have been “worked out” that is, we must compare one equilibrium situation to another.

Example: one output and one input
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If f(x) is differentiable, necessary F.O.C. and S.O.C. are

pf((x(p,w)) – w ( 0

pf(((x(p,w)) ≤ 0
i.e. by definition x(p,w) must satisfy the conditions identically

Differentiate w.r.t w
pf(((x(p,w))[image: image17.wmf]dw
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Assuming regular maximum so that f(( (x) is not zero,
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If the production function is very curved in a neighborhood of the optimum, then the change in factor demands as the factor price changes will be small.

From second-order condition, 
f(( (x(p,w)), is negative → dx(p,w)/dw is negative.  
The factor demand curve slopes downward.
The Case of Two Inputs 
normalize p = 1, F.O.C. are
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Differentiating with respect to w1, 
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Differentiating with respect to w2, 
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In matrix form
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Assume that we have a regular maximum, the Hessian matrix [image: image29.wmf]÷
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 is nonsingular, thus
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Substitution Matrix [image: image32.wmf]÷
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describes how firm substitutes one input for another as factor prices changes.

Since the inverse of a symmetric negative definite matrix is a symmetric negative definite matrix. We have
1) (xi/(wi < 0, for i = 1,2, since the diagonal entries of a negative definite matrix must be negative.

2) (xi/(wj = (xj/(wi by the symmetry of the matrix

The Case of Multiple Inputs  
Normalizing p = 1, F.O.C. are
Df(x(w)) – w ( 0
Differentiate with respect to w, 
D2f(x(w)) Dx(w) – I ( 0
Assume a regular maximum and solve for the substitution matrix,
Dx(w) (  [D2f(x(w))]-1
is symmetric negative definite
If w changes to w+dw, →dx = Dx(w)dwt   and 
dwdx = dwDx(w)dwt ≤ 0 

by the definition of a negative
The inner product of the (infinitesimal) change in factor prices and the change in factor demands must always be nonpositive
COMPARATIVE STATICS using algebra

Suppose we have a list of observed price vectors pt, and the associated net output vectors yt, for t = 1, …, T.  
The data are (pt, y(pt)) for some observations t = 1,…, T.

Weak Axiom of Profit Maximization (WAPM):
ptyt ( ptys       for all t and s = 1,…, T.

is implied by a necessary condition for profit maximization is that
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Panel A shows two observations that violate WAPM, 
since p1y2 > p1y1.  
Panel B shows two observations that satisfy WAPM.

Consequences:  
pt(yt – ys) ( 0 and – ps(yt – ys) ( 0

Adding → 

  (pt – ys)(yt – ys) ( 0

Letting (p = (pt – ps) and  (y = (yt – ys) → (p(y ( 0
The inner product of a vector of price changes with the associated vector of changes in net outputs must be nonnegative
Applies to all changes in prices, not just infinitesimal changes.

2.6 Recoverability

Recoverability: The operation of constructing a technology consistent with the observed choices.
We will show that if a set of data satisfies WAPM it is always possible to find a technology for which the observed choices are profit-maximizing choices.

Our task is to construct a production set that will generate the observed choice (pt, yt) as profit-maximizing choices

Suppose that the true production set Y is convex and monotonic.  The Inner Bound = the smallest convex, monotonic set that contains y1, …,yt.  This set is called the convex, monotonic hull of the points y1, …,yT and is denoted by

YI = convex, monotonic hull of {yt : t = 1, …, T}
YI must be contained in any convex technology that generated the observed behavior: It gives us an “inner bound” to the true technology that generated the observed choices.

The Outer Bound to this “true” technology = A set YO that is guaranteed to contain any technology that is consistent with the observed behavior?

Rule out all of the points that could not possibly be in the true technology 

NOTY = {y: pty >ptyt for some t }

Hence,
YO = {y: pty ( ptyt for all t = 1, …, T}.

YO must contain any production set consistent with the data (yt).  
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