PROFIT FUNCTION
By definition, profit function

((p) = max py
such that y is in Y
Note that the objective function is a linear function of prices

Properties of Profit Function
1) Nondecreasing in output prices, nonincreasing in input prices.
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 for all inputs, then 

((p′) ≥ ((p)
Proof. 

Let ((p) = py and ((p′) = p′y′, by definition of ((p) → p′y′ ≥ p′y
Since 
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Hence, ((p′) = p′y′  ≥ py  = ((p)
2) Homogeneous of degree 1 in p, ((tp) = t((p) for all t ≥0

Proof.
Let y be profit-maximising net output vector at p, so that  py ≥ py′ for all y′ in Y. It follows that for t ≥0, tpy ≥ tpy′ for all y′ in Y.

Hence, y also maximize profit at price tp → ((tp) = tpy = t((p)
3) Convex in p. ( (tp + (1- t)p′) ≤ t((p) + (1- t)((p′)

Proof. 

Let p′′ = tp + (1- t)p′  and y, y′ and y′′ maximise profits at p, p′ and p′′ respectively, then

( (tp + (1- t)p′y) = (tp + (1- t)p′) y′′= tpy′′ + (1- t)p′y′′

By definition of profit maximization we have 

tpy′′ ≤ tpy = t((p) and (1- t)p′y′′ ≤  (1- t)p′y′ = (1- t)((p′)

Hence, ( (tp + (1- t)p′y) ≤ t((p) + (1- t)((p′)

Example: The effect of price stabilization 

Think of t as the probability that price of output is p and (1- t) the probability that the price is p′. 

Then, by convexity, the average profits with a fluctuating price are at least as large as with a stabilized price.
4) Continuous in p at least when ((p) is well-defined and pi > 0 for i = 1, 2, …n

Note: An expression is called "well defined" if its definition assigns it a unique interpretation or value.
Supply and demand functions from the profit function 
Note that given a net supply function y(p), ((p) = py(p)
(can find ((p) from y(p))

Hotelling’s lemma
Let yi(p) be the firm’s net supply function for good i, then

yi(p) = 
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assuming that the derivative exists and that pi > 0

Alternatively, if  y (p, w) is the supply function and  x (p, w) is the factor demand function, then

y (p,w) = 
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-xi(p,w) = 
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Intuition

When output price changes by a small amount

-Direct effect: because of the price increase, the firm will make more profits even at the same level of output

-Indirect effect: a small increase in output price will induce firms to change output level by a small amount. But the change in profit as output changes by a small amount must be 0 from condition for profit-maximising production plans

To see this consider a case with one output and one input 

((p, w) = pf (x(p, w)) − wx(p, w)  

Differentiate w.r.t pi
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However, 
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 from F.O.C. 

Hence, 
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Similarly for x
The Envelope Theorem
Consider an arbitrary maximization problem 

M (a) = 
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Let x(a) be the value of x that solves the maximization problem, then we can write 

M (a) = f (x(a), a)

The optimized value of the function is equal to the function evaluated at optimizing choice.

By the Envelope Theorem,
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The derivative of M w.r.t. a is given by the partial derivative of the objective function w.r.t. a, holding x fixed at the optimal choice.

Proof. 

Differentiate M (a) w.r.t. a
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Note that since x(a) maximizes f , then 
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Example : one-output and one-input profit maximization problem

((p, w) = 
[image: image18.wmf]x

max

 pf (x) − wx

According to the envelope theorem 
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Comparative statics using the profit function
1) The profit function is monotonic in prices.
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  > 0 if good i is an output, i.e.  yi > 0
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  < 0 if good i is an input, i.e.  yi < 0
2) The profit function is homogenous of degree 1 in the prices.

This implies that the partial derivative 
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 = yi(p) is homogenous of degree zero. (see previous proof for 2))

3) The profit function is a convex function of p.

Hence the Hessian matrix must be positive semidefinite. 

Together with Hotelling’s lemma, we have
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The matrix on the left is the Hessian matrix 

The matrix on the right is called the substitution matrix, it shows how the net supply of good i changes as the price of good j changes.

Example: The LeChatelier principle

For simplicity, assume that there is a single output and all input prices, w, are all fixed. 

Hence profit function = ((p)

Denote the short-run profit function by (S(p,z) 

where z is some factor that is fixed in the short run. 

Let the long-run profit-maximizing demand for this factor be given by z(p),

so that the long-run profit function is given by (L(p) = (S(p,z(p))

Let p* be some given output price, and let z*=z(p*) be the optimal long-run demand for the factor at price p*

The long-run profits are always at least as large as the short-run profits

h(p) = (L(p) − (S(p,z*) = (S(p,z(p)) − (S(p,z*)  ≥  0  

for all prices p

At price p*, h(p) reaches the minimum (=0), hence 
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This implies that 
[image: image25.wmf]0

*)

*,

(

*)

(

=

¶

¶

-

¶

¶

p

z

p

p

p

S

L

p

p


i) By Hotelling’s lemma,  

yL (p*) = yS (p*, z*)

In addition, since p* is the minimum of h(p), the second derivative of h(p) must be nonnegative, 
[image: image26.wmf]0

*)

*,

(

*)

(

2

2

2

2

³

¶

¶

-

¶

¶

p

z

p

p

p

S

L

p

p



ii) By Hotelling’s lemma, 
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The long-run supply response to a change in price is at least as large as the short-run supply response at z*=z(p*)
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