TECHNOLOGY

Specification of Technology

- Input and Output can be specified in arbitrarily fine detail
- n possible goods can be used as input and/or output
- Net Output : $y_{j}=y_{j}^{\text {output }}-y_{j}^{\text {input }}$
$y_{j}>0 \rightarrow$ net output, $y_{j}<0 \rightarrow$ net input
- Production Plan $=$ a list of net outputs, represented by a vector \mathbf{y} in R^{n}
- A Production Possibilities Set $Y=$ a set of all technologically feasible production plans
- Restictions on production plans : e.g. a vector \mathbf{z} in R^{n} could be a list of a maximum amount of inputs and outputs that can be produced in a given time period.
- Restricted or Short-run production possibilities set $Y(\mathbf{z}) \subset$ Y, e.g. factor n fixed at $\bar{y}_{n} \rightarrow Y\left(\bar{y}_{n}\right)=\{\mathbf{y}$ in Y : $\left.y_{n}=\bar{y}_{n}\right\}$

Input Requirement Set :

$V(y)=\left\{\mathbf{x}\right.$ in $R_{+}^{n}:(y,-\mathbf{x})$ is in $\left.Y\right\}$
is the set of all input bundles \mathbf{x} that produces at least y unit of output
Note: only one output y, net output is written as $(y,-\mathbf{x})$

Isoquant :

$Q(y)=\left\{\mathbf{x}\right.$ in $R_{+}^{n}: \mathbf{x}$ is in $V(y)$ and \mathbf{x} is not in $V\left(y^{\prime}\right)$ for $\left.y^{\prime}>y\right\}$
gives all input bundles that produces exactly y units of output

Production Function :

$f(\mathbf{x})=\{y$ in $R: y$ is the maximum output associated with $-\mathbf{x}$ in $Y\}$

Technologically Efficient production plans :

\mathbf{y} is technologically efficient if there is no \mathbf{y}^{\prime} in Y such that $\mathbf{y}^{\prime} \geq \mathbf{y}$ and $\mathbf{y}^{\prime} \neq \mathbf{y}$

Transformation Function :

$T: R^{n} \rightarrow R$ where $T(\mathbf{y})=0$ iff y is efficient
can be used to describe a set of technologically efficient production plans.
It is an n-dimensional analog of a production function.

Example: Cobb-Douglas Technology

Let $0<a<1$
$Y=\left\{\left(y,-x_{1},-x_{2}\right)\right.$ in $\left.R^{3}: y \leq x_{1}^{a} x_{2}^{1-a}\right\}$
$V(y)=\left\{\left(x_{1}, x_{2}\right)\right.$ in $\left.R_{+}^{2}: y \leq x_{1}^{a} x_{2}^{1-a}\right\}$
$Q(y)=\left\{\left(x_{1}, x_{2}\right)\right.$ in $\left.R_{+}^{2}: y=x_{1}^{a} x_{2}^{1-a}\right\}$
$Y(z)=\left\{\left(y,-x_{1},-x_{2}\right)\right.$ in $\left.R^{3}: y \leq x_{1}^{a} x_{2}^{1-a}, x_{2}=z\right\}$
$T\left(y, x_{1}, x_{2}\right)=y-x_{1}^{a} x_{2}^{1-a}$
$f\left(x_{1}, x_{2}\right)=x_{1}^{a} x_{2}^{1-a}$

Example: Leontief Technology

Let $a>0$ and $b>0$
$Y=\left\{\left(y,-x_{1},-x_{2}\right)\right.$ in $\left.R^{3}: y \leq \min \left(a x_{1}, b x_{2}\right)\right\}$
$V(y)=\left\{\left(x_{1}, x_{2}\right)\right.$ in $\left.R_{+}^{2}: y \leq \min \left(a x_{1}, b x_{2}\right)\right\}$
$Q(y)=\left\{\left(x_{1}, x_{2}\right)\right.$ in $\left.R_{+}^{2}: y=\min \left(a x_{1}, b x_{2}\right)\right\}$
$T\left(y, x_{1}, x_{2}\right)=y-\min \left(a x_{1}, b x_{2}\right)$
$f\left(x_{1}, x_{2}\right)=\min \left(a x_{1}, b x_{2}\right)$

Monotonic Technologies

Under free disposal, if \mathbf{x} is a feasible way to produce y and $\mathbf{x}^{\prime} \geq \mathbf{x}$ should also be a feasible way to produce y

Monotonicity

For input requirement sets: If \mathbf{x} is in $V(y)$ and $\mathbf{x}^{\prime} \geq \mathbf{x}$, then \mathbf{x}^{\prime} is in $V(y)$
For production sets: If \mathbf{y} is in Y and $\mathbf{y}^{\prime} \leq \mathbf{y}$, then \mathbf{y}^{\prime} is in Y
\mathbf{y}^{\prime} produces an equal or samller amount of all outputs by using at least as much of all inputs compared to \mathbf{y}

Convex Technologies

Convexity

For input requirement sets: If \mathbf{x} and \mathbf{x}^{\prime} are in $V(y)$, then $t \mathbf{x}+(1-t) \mathbf{x}^{\prime}$ is in $V(y)$ for all $0 \leq t \leq 1$
For production sets: If \mathbf{y} and \mathbf{y}^{\prime} are in Y, then $t \mathbf{y}+(1-$ $t) \mathbf{y}^{\prime}$ is in Y for all $0 \leq t \leq 1$

Convex production set implies convex input requirement set
Proof. If Y is a convex set and $(y,-\mathbf{x})$ and $\left(y,-\mathbf{x}^{\prime}\right)$ are in Y, then $\left(t y+(1-t) y,-t \mathbf{x}-(1-t) \mathbf{x}^{\prime}\right)$ must be in Y, i.e. $\left(y,-t \mathbf{x}-(1-t) \mathbf{x}^{\prime}\right)$ is in Y
Hence, if \mathbf{x} and \mathbf{x}^{\prime} are in $V(y)$, then $t \mathbf{x}+(1-t) \mathbf{x}^{\prime}$ is in $V(y)$.

Convex input requirement set is equivalent to quasiconcave production function
Proof. By definition, a function is quasiconcave iff it has a convex upper contour set. Since $V(y)=\{\mathrm{x}: f(\mathrm{x}) \geq$ $y\}$ is the upper contour set of $f(\mathbf{x})$, then if $V(y)$ is convex, $f(\mathrm{x})$ is quasiconcave.

Regular Technologies

Regular

$V(y)$ is a closed and nonempty set for all $y \geq 0$
Nonempty \rightarrow there is a way to produce any given amount of output y
Closed $\rightarrow V(y)$ includes its own boundary. If a sequence of input bundles that can produce y converges to an input x^{0} then x^{0} must be capable of producing y

The Technical Rate of Substitution

The technical rate of substitution TRS measures how one of the inputs must adjust in order to keep output constant when another input changes. For 2-dimensional case, TRS measures the slope of the isoquant

TRS of x_{2} for $x_{1}=\frac{d x_{2}}{d x_{1}}=\frac{\partial f(\mathrm{x}) / \partial x_{1}}{\partial f(\mathbf{x}) / \partial x_{2}}$

The Elasticity of Substitution

The elasticity of substitution measures the \% change in the factor ratio divided by the \% change in the TRS. The elasticity of substitution measures the curvature of the isoquant.

Elasticity of substitution $\sigma=\frac{\triangle\left(x_{2} / x_{1}\right)}{x_{2} / x_{1}} / \frac{\triangle \text { TRS }}{\text { TRS }}$

For small change, $\sigma=\frac{d\left(x_{2} / x_{1}\right)}{x_{2} / x_{1}} / \frac{d \text { TRS }}{\text { TRS }}=\frac{\operatorname{TRS}}{x_{2} / x_{1}} \frac{d\left(x_{2} / x_{1}\right)}{d \text { TRS }}$

Homogeneity

For any scalar k, a function $f\left(x_{1}, \ldots x_{2}\right)$ is homogenoeus of degree k if
$f\left(t x_{1}, \ldots t x_{2}\right)=t^{k} f\left(x_{1}, \ldots x_{2}\right)$ for all $x_{1}, \ldots x_{2}$ and all $t>0$

Returns to Scale

If we scale all inputs up by some amount $t \geq 0$, what will happen to output?

Constant Returns to Scale

A technology exhibits constant returns to scale if one of the following is satisfied
i) \mathbf{y} is in Y implies $t \mathrm{y}$ is in Y, for all $t \geq 0$
ii) \mathbf{x} is in $V(y)$ implies $t \mathbf{x}$ is in $V(y)$, for all $t \geq 0$
iii) $f(t x)=t f(x)$, for all $t \geq 0$, i.e. the production function is homogeneous of degree 1

Increasing Returns to Scale

A technology exhibits increasing returns to scale if $f(t x)>t f(x)$, for all $t>1$

Decreasing Returns to Scale

A technology exhibits decreasing returns to scale if $f(t x)<t f(x)$, for all $t>1$

The above measures are global measures. The following gives a local measure of returns to scale

The Elasticity of Scale

The elasticity of scale measures \% increase in output due to a one \% increase in all inputs

Elasticity of scale $e(x)=\frac{d f(t x)}{f(t x)} / \frac{d t}{t}$ evaluated at $t=1$
or $e(x)=\frac{d f(t x)}{d t} \frac{t}{f(t x)}$ evaluated at $t=1$

The technology exhibits locally IRS if $e(x)>1$, CRS if $e(x)=1$, and DRS if $e(x)<1$.

Monotonic Transformation

A function $g: R \rightarrow R$ is said to be (positive) monotonic transformation if g is a strictly increasing function If $x>y$ then $g(x)>g(y)$

Homothetic Function

A homothetic function is a monotonic transformation of a homogeneous function (of degree 1)
i.e. $f(x)$ is homothetic iff it can be written as $f(x)=$ $g(h(x))$ where $h(\cdot)$ is homogeneous and $g(\cdot)$ is a monotonic transformation

Homogeneity is a cardinal property whereas Homotheticity is an ordinal property.

