TECHNOLOGY

Specification of Technology

- Input and Output can be specified in arbitrarily fine detail

- n possible goods can be used as input and/or output

- Net Output :
$$y_j = y_j^{output} - y_j^{input}$$

 $y_j > 0 \rightarrow$ net output, $y_j < 0 \rightarrow$ net input

- Production Plan = a list of net outputs, represented by a vector \mathbf{y} in \mathbb{R}^n

- A Production Possibilities Set Y= a set of all technologically feasible production plans

- Restictions on production plans : e.g. a vector z in \mathbb{R}^n could be a list of a maximum amount of inputs and outputs that can be produced in a given time period.

- Restricted or Short-run production possibilities set $Y(\mathbf{z}) \subset Y$, e.g. factor n fixed at $\overline{y}_n \to Y(\overline{y}_n) = \{\mathbf{y} \text{ in } Y : y_n = \overline{y}_n\}$

Input Requirement Set :

 $V(y) = \{ \mathbf{x} \text{ in } R^n_+ : (y, -\mathbf{x}) \text{ is in } Y \}$ is the set of all input bundles **x** that produces at least y unit of output

Note: only one output y, net output is written as $(y, -\mathbf{x})$

Isoquant :

 $Q(y) = \{x \text{ in } R^n_+ : x \text{ is in } V(y) \text{ and } x \text{ is not in } V(y') \text{ for } y' > y\}$ gives all input bundles that produces exactly y units of output

Production Function :

 $f(\mathbf{x}) = \{y \text{ in } R : y \text{ is the maximum output associated}$ with $-\mathbf{x}$ in $Y\}$

Technologically Efficient production plans :

 ${\bf y}$ is technologically efficient if there is no ${\bf y'}$ in Y such that ${\bf y'} \geq {\bf y}$ and ${\bf y'} \neq {\bf y}$

Transformation Function :

 $T: \mathbb{R}^n \to \mathbb{R}$ where $T(\mathbf{y}) = \mathbf{0}$ iff y is efficient can be used to describe a set of technologically efficient production plans.

It is an n-dimensional analog of a production function.

Example: Cobb-Douglas Technology

Let
$$0 < a < 1$$

 $Y = \{(y, -x_1, -x_2) \text{ in } R^3: y \le x_1^a x_2^{1-a}\}$

$$V(y) = \{(x_1, x_2) \text{ in } R^2_+: y \le x_1^a x_2^{1-a}\}$$

$$Q(y) = \{(x_1, x_2) \text{ in } R^2_+: y = x_1^a x_2^{1-a}\}$$

$$Y(z) = \{(y, -x_1, -x_2) \text{ in } R^3: y \le x_1^a x_2^{1-a}, x_2 = z\}$$

$$T(y, x_1, x_2) = y - x_1^a x_2^{1-a}$$

$$f(x_1, x_2) = x_1^a x_2^{1-a}$$

Example: Leontief Technology

Let
$$a > 0$$
 and $b > 0$
 $Y = \{(y, -x_1, -x_2) \text{ in } R^3: y \le \min(ax_1, bx_2)\}$
 $V(y) = \{(x_1, x_2) \text{ in } R^2_+: y \le \min(ax_1, bx_2)\}$
 $Q(y) = \{(x_1, x_2) \text{ in } R^2_+: y = \min(ax_1, bx_2)\}$
 $T(y, x_1, x_2) = y - \min(ax_1, bx_2)$
 $f(x_1, x_2) = \min(ax_1, bx_2)$

Monotonic Technologies

Under free disposal, if x is a feasible way to produce yand $x' \ge x$ should also be a feasible way to produce y

Monotonicity

For input requirement sets: If x is in V(y) and $x' \ge x$, then x' is in V(y)

For production sets: If y is in Y and $y' \leq y$, then y' is in Y

 $\mathbf{y'}$ produces an equal or samller amount of all outputs by using at least as much of all inputs compared to \mathbf{y}

Convex Technologies

Convexity

For input requirement sets: If x and x' are in V(y), then $t\mathbf{x} + (1-t)\mathbf{x}'$ is in V(y) for all $0 \le t \le 1$ For production sets: If y and y' are in Y, then $t\mathbf{y} + (1-t)\mathbf{y}'$ is in Y for all $0 \le t \le 1$

Convex production set implies convex input requirement set

Proof. If Y is a convex set and $(y, -\mathbf{x})$ and $(y, -\mathbf{x}')$ are in Y, then $(ty + (1 - t)y, -t\mathbf{x} - (1 - t)\mathbf{x}')$ must be in Y, i.e. $(y, -t\mathbf{x} - (1 - t)\mathbf{x}')$ is in Y Hence, if \mathbf{x} and \mathbf{x}' are in V(y), then $t\mathbf{x} + (1 - t)\mathbf{x}'$ is in V(y).

Convex input requirement set is equivalent to quasiconcave production function

Proof. By definition, a function is quasiconcave iff it has a convex upper contour set. Since $V(y) = \{\mathbf{x} : f(\mathbf{x}) \ge y\}$ is the upper contour set of $f(\mathbf{x})$, then if V(y) is convex, $f(\mathbf{x})$ is quasiconcave.

Regular Technologies

Regular

V(y) is a closed and nonempty set for all $y \ge 0$ Nonempty \rightarrow there is a way to produce any given amount of output yClosed $\rightarrow V(y)$ includes its own boundary. If a sequence

of input bundles that can produce y converges to an input \mathbf{x}^0 then \mathbf{x}^0 must be capable of producing y

The Technical Rate of Substitution

The technical rate of substitution TRS measures how one of the inputs must adjust in order to keep output constant when another input changes. For 2-dimensional case, TRS measures the slope of the isoquant

TRS of x_2 for $x_1 = \frac{dx_2}{dx_1} = \frac{\partial f(\mathbf{x})/\partial x_1}{\partial f(\mathbf{x})/\partial x_2}$

The Elasticity of Substitution

The elasticity of substitution measures the % change in the factor ratio divided by the % change in the TRS. The elasticity of substitution measures the curvature of the isoquant.

Elasticity of substitution
$$\sigma = \frac{\triangle(x_2/x_1)}{x_2/x_1} / \frac{\triangle \text{TRS}}{\text{TRS}}$$

For small change,
$$\sigma = \frac{d(x_2/x_1)}{x_2/x_1} / \frac{d\text{TRS}}{\text{TRS}} = \frac{\text{TRS}}{x_2/x_1} \frac{d(x_2/x_1)}{d\text{TRS}}$$

Homogeneity

For any scalar k, a function $f(x_1, ..., x_2)$ is homogenoeus of degree k if $f(tx_1, ..., tx_2) = t^k f(x_1, ..., x_2)$ for all $x_1, ..., x_2$ and all t > 0

Returns to Scale

If we scale all inputs up by some amount $t \ge 0$, what will happen to output?

Constant Returns to Scale

A technology exhibits constant returns to scale if one of the following is satisfied i) y is in Y implies ty is in Y, for all $t \ge 0$ ii) x is in V(y) implies tx is in V(y), for all $t \ge 0$ iii) f(tx) = tf(x), for all $t \ge 0$, i.e. the production function is homogeneous of degree 1

Increasing Returns to Scale

A technology exhibits increasing returns to scale if f(tx) > tf(x), for all t > 1

Decreasing Returns to Scale

A technology exhibits decreasing returns to scale if f(tx) < tf(x), for all t > 1

The above measures are global measures. The following gives a local measure of returns to scale

The Elasticity of Scale

The elasticity of scale measures % increase in output due to a one % increase in all inputs

Elasticity of scale
$$e(x) = \frac{df(tx)}{f(tx)} / \frac{dt}{t}$$
 evaluated at $t = 1$

or
$$e(x) = \frac{df(tx)}{dt} \frac{t}{f(tx)}$$
evaluated at $t = 1$

The technology exhibits locally IRS if e(x) > 1, CRS if e(x) = 1, and DRS if e(x) < 1.

Monotonic Transformation

A function $g: R \to R$ is said to be (positive) monotonic transformation if g is a strictly increasing function If x > y then g(x) > g(y)

Homothetic Function

A homothetic function is a monotonic transformation of a homogeneous function (of degree 1) i.e. f(x) is homothetic iff it can be written as f(x) = g(h(x)) where $h(\cdot)$ is homogeneous and $g(\cdot)$ is a monotonic transformation

Homogeneity is a cardinal property whereas Homotheticity is an ordinal property.