Introduction to Optimization Problem with
Equality Constraint

Maximise or Minimize z(x1, T2, ...xn)

subject to g1(x1, 2, ...xn) = a1
go(z1, 2, ...xn) = ap
gm(x1,T2,...xn) = am

Let x =(x1, 2, ...on) and g(x) = (91(x), g2(X), ...gm(x))"
and a = (a1, ay, ...am)t

We can write the above problem as

Maximise or Minimize z(x)

subject to g(x) = a



Letting A = (A1, A2, ...Am).
We can set up the Lagrangian as

L(x, A) = z(x)—A1 [g1(x) — a1]—....— M [gm(X) — am]

or

L(x,A) = 2(x) — Alg(x) — a]



First-order conditions

If (x*, A*) is the solution to the above problem, we must

have
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Second-order conditions

1) For maximization problem:

Formally, the Hessian of L w.r.t. x at (x*, A*), denoted
by DZ2L(x*, A\*), is negative definite subject to the con-
straint Dg(x*)h =0 forallh #0

In other word, h' D2L(x*, A*)h < 0 subject to the
constraint Dg(x*)h =0 for all h # 0

2) For minimization problem:

Formally, the Hessian of L w.r.t. x at (x*, A*), denoted
by D2L(x*, A*), is positive definite subject to the con-
straint Dg(x*)h =0 forallh #0

In other word, h' DZ2L(x*, A*)h > 0 subject to the
constraint Dg(x*)h =0 for all h # 0



Note:
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Practical test for definiteness of matrix

First, construct the Bordered Hessian, denoted by

0 —Dg(x*)

2 * *\ g
D(X,A)L(X AT = ( —Dg(x*)l D2L(x*, \*) )
where 0 is an m X m zero matrix

1) For maximization problem:

The bordered-preserving principal minor of order k has
the sign (—1)’“ fork=2,3,.....m

2) For minimization problem:

The bordered-preserving principal minors of order k are
all negative for k =2,3,.....n

Note: The bordered-preserving principal minor of order 1
is the determinant of
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COST MINIMIZATION
Calculus for Cost Minimization

Consider a problem of finding a cost-minmizing way to
produce a given level of output

min wx
X

subject to f(x) =y
The Lagrangian is
L(x,A) = wx—A[f(x) — ]

F.O.C.'s are

of (x*)
ox;
f(x*)—y =0

w; — A 0, fore =1,2,....n

Interpretation of F.O.C.’s
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RT'S; for ¢ or the rate of technical substitution of j for ¢
is the rate at which factor 5 can be substituted for factor
¢ holding output level constant.

% is the economic rate of substitution, the rate at which
factor 5 can be substituted for factor ¢ holding cost con-
stant.

S.0.C.'s are

Suppose there are two factor inputs x1 and x»
L(z1,22,A) = wiwy + wpzp — A[f(21, 72) — y]

2 * %k \ k 0 _fl _f2
Dy L1, 23 0°) = | —f1 =Afi1 =M1
—J2 —Afo1 —Af2

Hence, to satisfy S.0.C.,
the bordered-preserving principal minor of order 2
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Graphical Representation

Definition: Conditional Factor Demand Function

x (w,y) is the optimal choice of x that minimizes the
cost of producing y given w.

Definition: Cost Function

c(w,y) = wx(w,y) is the minimum cost at factor
prices w and output level y.



Difficulties
1) The technology may not be a differentiable function

2) The above F.O.C. conditions are valid only for interior
solution, i.e. for x; > 0 forallz =1,2...n

Otherwise,
*
w; — 22X S g e o
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Example: linear technology

3) F.O.C. conditions may not determine a unique solu-
tion. For a unique global optimum, V' (y) must be convex.



Comparative Statics for Conditional Factor De-

mand Function

By dedinition, x (W, y) must satisfy

f(x(w,y))
W_ADXf(X (Wa y))

We can use these identities to find expression for

differentiating w.r.t. w;.
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With 2 factor inputs, diffrentiating w.r.t. wy gives
ON
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Using Cramer's rule
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In addition,
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Hence, as a consequence of cost minimization, the cross-

price effects must be equal.

For 2-input case, their signs must be positive, i.e. the

two factors must be substitutes.



COST FUNCTION

Average and marginal costs

c(w,y) =wx(w,y)

The minimum cost of producing y units of output is the
cost of the cheapest way to produce y

Let x f be the vector of fixed factors, x, be the vector of
variable factors

w = (Wy, W) be the vectors of prices of variable and
fixed factors.

The short-run conditional factor demand is xy(W, y, X r)



Short-run Costs

short-run total cost (STC)

=c (w, y,xf) = WoXo(W, Y, X ) + Wexy
short-run variable cost (SVC) = wyxy(W,y,X )
fixed cost (FC) = wex ¢

c(w,y,x5)
Yy

short-run average cost (SAC) =

WXy (W,y,Xr)
Y

short-run average variable cost (SAVC) =

short-run average fixed cost (SAFC) = %

aC(W,y,Xf)
y

short-run marginal cost (SMC) =



Long-run Costs

When all factors are variable,

let x (W, y) be the optimal choice of fixed factors (now
can be varied),

Xu(W,y) = Xu(W, y,X (W, y)) be the long-run optimal
choice of the variable factors, then

long-run average cost (LAC) = C(VZ’?J)
long-run marginal cost (LMC) = _30(8";;&)

Constant returns to scale If the production function ex-

hibits constant returns to scale, then ¢ (w, y) = yc(w, 1)
and AC = AVC = MC



The geometry of costs

Average cost curves

In the short run, it is often thought that the average cost
first decreases and then increases.

SAC — c(W,’y,Xf) _ WUX@(W,y,Xf) n W X f

Y Y Y
= SAFC 4 SAVC

Assuming there are some short-run fixed factors e.g. ma-
chines, buliding ,etc., SAVC may initially fall because of
economies of scale. However, as SAVC will start to rise
once we approach capacity level of output. On the other
hand, SAFC must decreases with output.

The level of output at which average cost is minimized is
call the minimum efficient scale.



Marginal cost curves

Assume factor prices are fixed.

If y* is the minimum average cost, then average costs are
declining when y < y*.i.e.

d (c(y)) < 0 when y < y*
dy \ Yy

Differentiate

Y -
dy) < W oy <y
Y
That is MC is less than AC to the left of y* the minimum

average cost.



Analogously,

c(y)

Cl(y) > 7 for y > y*

Thus,
c(y™)

*

Cl(y*) 2

MC = AC at minimum AC

Note also that MC of the first unit of output is equal to
AC os the first unit



Long-run and short-run cost curves

Short-run cost minimization problem is a constrained ver-
sion of long-run cost minimization problem. Hence, long-
run cost curve lies on or below short-run cost curve.

The long-run cost is c(y) = c(y, 2(y))

where z(y) = cost-minimizing demand for a single fixed
factor.

Let z* = z(y*) be a long-run demand for the fixed factor
when y = y*

short-run cost = ¢(y, 2*) > ¢(y, z(y)) = long-run cost,
for all y

c(y*, z%) = c(y*, 2(y")) at y = y*

Hence, long-run and short-run cost curves must be tan-
gent at y*

Alternatively, the slope of the long-run cost curve at y*
IS
de(y™, z(y*)) _ Oc(y™, z7) | Oc(y”, 2")0z(y")
dy - oy * 0z oy




>k >k
but % — 0 since z* is the optimal at y*, thus

long-run MC = short-run MC at y*

Thus, we must also have long-run and short-run average

cost curves tangent at y*

Note also that LAC is the lower envelope of SAC curves.



