
Introduction to Optimization Problem with
Equality Constraint

Maximise or Minimize z(x1, x2, ...xn)

subject to g1(x1, x2, ...xn) = a1

g2(x1, x2, ...xn) = a2

·
·

gm(x1, x2, ...xn) = am

Let x =(x1, x2, ...xn) and g(x) = (g1(x), g2(x), ...gm(x))t

and a = (a1, a2, ...am)t

We can write the above problem as

Maximise or Minimize z(x)

subject to g(x) = a



Letting λ = (λ1, λ2, ...λm).
We can set up the Lagrangian as

L(x,λ) = z(x)−λ1 [g1(x)− a1]−....−λm [gm(x)− am]

or

L(x,λ) = z(x)− λ [g(x)− a]



First-order conditions

If (x∗,λ∗) is the solution to the above problem, we must
have

∂L(x∗,λ∗)
∂x1

= 0

·
·

∂L(x∗,λ∗)
∂xn

= 0

and
∂L(x∗,λ∗)

∂λ1
= 0

·
·

∂L(x∗,λ∗)
∂λm

= 0



Second-order conditions

1) For maximization problem:

Formally, the Hessian of L w.r.t. x at (x∗,λ∗), denoted
by D2xL(x

∗,λ∗), is negative definite subject to the con-
straint Dg(x∗)h = 0 for all h 6= 0

In other word, hTD2xL(x
∗,λ∗)h < 0 subject to the

constraint Dg(x∗)h = 0 for all h 6= 0

2) For minimization problem:

Formally, the Hessian of L w.r.t. x at (x∗,λ∗), denoted
by D2xL(x

∗,λ∗), is positive definite subject to the con-
straint Dg(x∗)h = 0 for all h 6= 0

In other word, hTD2xL(x
∗,λ∗)h > 0 subject to the

constraint Dg(x∗)h = 0 for all h 6= 0



Note:

D2xL(x
∗,λ∗) =

⎛⎜⎜⎜⎜⎜⎜⎝

∂2L(x∗,λ∗)
∂x21

· · ∂2L(x∗,λ∗)
∂xn∂x1

· · ·
· · ·
∂2L(x∗,λ∗)
∂x1∂xn

· · ∂2L(x∗,λ∗)
∂x2n

⎞⎟⎟⎟⎟⎟⎟⎠

and Dg(x∗) =

⎛⎜⎜⎜⎜⎜⎝
∂g1(x

∗)
∂x1

· · ∂g1(x
∗)

∂xn
· · ·
· · ·
∂gm(x∗)
∂x1

· · ∂gm(x∗)
∂xn

⎞⎟⎟⎟⎟⎟⎠



Practical test for definiteness of matrix

First, construct the Bordered Hessian, denoted by

D2(x,λ)L(x
∗,λ∗) =

Ã
0 −Dg(x∗)
−Dg(x∗)T D2xL(x

∗,λ∗)

!
where 0 is an m×m zero matrix

1) For maximization problem:

The bordered-preserving principal minor of order k has
the sign (−1)k for k = 2, 3, ...., n

2) For minimization problem:

The bordered-preserving principal minors of order k are
all negative for k = 2, 3, ...., n

Note: The bordered-preserving principal minor of order 1
is the determinant of



⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · 0 −∂g1(x
∗)

∂x1
· · · ·
· · · ·
0 · · 0 −∂gm(x∗)

∂x1

−∂gm(x∗)
∂x1

· · −∂gm(x∗)
∂x1

∂2L(x∗,λ∗)
∂x21

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



COST MINIMIZATION
Calculus for Cost Minimization

Consider a problem of finding a cost-minmizing way to
produce a given level of output

min
x
wx

subject to f(x) = y

The Lagrangian is

L(x, λ) = wx−λ [f(x)− y]

F.O.C.’s are

wi − λ
∂f(x∗)
∂xi

= 0, for i = 1, 2, ....n

f(x∗)− y = 0

Interpretation of F.O.C.’s

wi

wj
=

∂f(x∗)
∂xi

∂f(x∗)
∂xj

= RTSj for i



RTSj for i or the rate of technical substitution of j for i
is the rate at which factor j can be substituted for factor
i holding output level constant.
wi
wj
is the economic rate of substitution, the rate at which

factor j can be substituted for factor i holding cost con-
stant.

S.O.C.’s are

Suppose there are two factor inputs x1 and x2

L(x1, x2,λ) = w1x1 +w2x2 − λ [f(x1, x2)− y]

D2(x1,x2,λ)
L(x∗1, x

∗
2,λ
∗) =

⎛⎜⎝ 0 −f1 −f2
−f1 −λf11 −λf12
−f2 −λf21 −λf22

⎞⎟⎠

Hence, to satisfy S.O.C.,
the bordered-preserving principal minor of order 2

=

¯̄̄̄
¯̄̄ 0 −f1 −f2
−f1 −λf11 −λf12
−f2 −λf21 −λf22

¯̄̄̄
¯̄̄ < 0



Graphical Representation

Definition: Conditional Factor Demand Function

x (w, y) is the optimal choice of x that minimizes the
cost of producing y given w.

Definition: Cost Function

c (w, y) = wx (w, y) is the minimum cost at factor
prices w and output level y.



Difficulties

1) The technology may not be a differentiable function

2) The above F.O.C. conditions are valid only for interior
solution, i.e. for xi > 0 for all i = 1, 2...n

Otherwise,

wi − λ
∂f(x∗)
∂xi

≥ 0 if x∗i = 0

wi − λ
∂f(x∗)
∂xi

= 0 if x∗i > 0

Example: linear technology

3) F.O.C. conditions may not determine a unique solu-
tion. For a unique global optimum, V (y)must be convex.



Comparative Statics for Conditional Factor De-
mand Function

By dedinition, x (w, y) must satisfy

f(x (w, y)) ≡ y

w−λDxf(x (w, y)) ≡ 0

We can use these identities to find expression for ∂xi
∂wj

by
differentiating w.r.t. wj.

With 2 factor inputs, diffrentiating w.r.t. w1 gives⎛⎜⎝ 0 −f1 −f2
−f1 −λf11 −λf21
−f2 −λf12 −λf22

⎞⎟⎠
⎛⎜⎜⎜⎝

∂λ
∂w1
∂x1
∂w1
∂x2
∂w1

⎞⎟⎟⎟⎠ ≡
⎛⎜⎝ 0
−1
0

⎞⎟⎠
Using Cramer’s rule

∂x1
∂w1

=

¯̄̄̄
¯̄̄ 0 0 −f2
−f1 −1 −λf21
−f2 0 −λf22

¯̄̄̄
¯̄̄

¯̄̄̄
¯̄̄ 0 −f1 −f2
−f1 −λf11 −λf21
−f2 −λf12 −λf22

¯̄̄̄
¯̄̄



∂x1
∂w1

=

¯̄̄̄
¯̄̄ 0 0 −f2
−f1 −1 −λf21
−f2 0 −λf22

¯̄̄̄
¯̄̄

det of bordered Hessian

=
f22

det of bordered Hessian
< 0 by S.O.C.

In addition,

∂x2
∂w1

=

¯̄̄̄
¯̄̄ 0 −f1 0
−f1 −λf11 −1
−f2 −λf12 0

¯̄̄̄
¯̄̄

det of bordered Hessian

=
−f2f1

det of bordered Hessian

=
∂x1
∂w2

=

¯̄̄̄
¯̄̄ 0 0 −f2
−f1 0 −λf21
−f2 −1 −λf22

¯̄̄̄
¯̄̄

det of bordered Hessian

=
−f1f2

det of bordered Hessian

> 0 by S.O.C. and f1, f2 > 0



Hence, as a consequence of cost minimization, the cross-
price effects must be equal.

For 2-input case, their signs must be positive, i.e. the
two factors must be substitutes.



COST FUNCTION

Average and marginal costs

c (w, y) ≡ wx (w, y)

The minimum cost of producing y units of output is the
cost of the cheapest way to produce y

Let xf be the vector of fixed factors, xv be the vector of
variable factors

w = (wv,wf) be the vectors of prices of variable and
fixed factors.

The short-run conditional factor demand is xv(w, y,xf)



Short-run Costs

short-run total cost (STC)

= c
³
w, y,xf

´
= wvxv(w, y,xf) +wfxf

short-run variable cost (SVC) = wvxv(w, y,xf)

fixed cost (FC) = wfxf

short-run average cost (SAC) =
c(w,y,xf)

y

short-run average variable cost (SAVC) =
wvxv(w,y,xf)

y

short-run average fixed cost (SAFC) =
wfxf
y

short-run marginal cost (SMC) =
∂c(w,y,xf)

∂y



Long-run Costs

When all factors are variable,

let xf(w, y) be the optimal choice of fixed factors (now
can be varied),

xv(w, y) = xv(w, y,xf(w, y)) be the long-run optimal
choice of the variable factors, then

long-run average cost (LAC) = c(w,y)
y

long-run marginal cost (LMC) = ∂c(w,y)
∂y

Constant returns to scale If the production function ex-
hibits constant returns to scale, then c (w, y) = yc (w, 1)

and AC = AVC = MC



The geometry of costs

Average cost curves

In the short run, it is often thought that the average cost
first decreases and then increases.

SAC =
c
³
w, y,xf

´
y

=
wvxv(w, y,xf)

y
+
wfxf
y

= SAFC + SAVC

Assuming there are some short-run fixed factors e.g. ma-
chines, buliding ,etc., SAVC may initially fall because of
economies of scale. However, as SAVC will start to rise
once we approach capacity level of output. On the other
hand, SAFC must decreases with output.

The level of output at which average cost is minimized is
call the minimum efficient scale.



Marginal cost curves

Assume factor prices are fixed.

If y∗ is the minimum average cost, then average costs are
declining when y ≤ y∗,i.e.

d

dy

Ã
c(y)

y

!
≤ 0 when y ≤ y∗

Differentiate

yc0(y)− c(y)

y2
≤ 0 for y ≤ y∗

c0(y) ≤ c(y)

y
for y ≤ y∗

That is MC is less than AC to the left of y∗ the minimum
average cost.



Analogously,

c0(y) ≥ c(y)

y
for y ≥ y∗

Thus,

c0(y∗) ≥ c(y∗)
y∗

MC = AC at minimum AC

Note also that MC of the first unit of output is equal to
AC os the first unit



Long-run and short-run cost curves

Short-run cost minimization problem is a constrained ver-
sion of long-run cost minimization problem. Hence, long-
run cost curve lies on or below short-run cost curve.

The long-run cost is c(y) = c(y, z(y))

where z(y) = cost-minimizing demand for a single fixed
factor.
Let z∗ = z(y∗) be a long-run demand for the fixed factor
when y = y∗

short-run cost = c(y, z∗) ≥ c(y, z(y)) = long-run cost,
for all y
c(y∗, z∗) = c(y∗, z(y∗)) at y = y∗

Hence, long-run and short-run cost curves must be tan-
gent at y∗

Alternatively, the slope of the long-run cost curve at y∗

is

dc(y∗, z(y∗))
dy

=
∂c(y∗, z∗)

∂y
+
∂c(y∗, z∗)

∂z

∂z(y∗)
∂y



but ∂c(y∗,z∗)
∂z = 0 since z∗ is the optimal at y∗, thus

long-run MC = short-run MC at y∗

Thus, we must also have long-run and short-run average
cost curves tangent at y∗

Note also that LAC is the lower envelope of SAC curves.


