
COST FUNCTION

Average and marginal costs

c (w, y) ≡ wx (w, y)

The minimum cost of producing y units of output is

the cost of the cheapest way to produce y

Let xf be the vector of fixed factors, xv be the vector

of variable factors

w = (wv,wf) be the vectors of prices of variable and

fixed factors.

The short-run conditional factor demand is xv(w, y,xf)



Short-run Costs

short-run total cost (STC)

= c
³
w, y,xf

´
= wvxv(w, y,xf) +wfxf

short-run variable cost (SVC) = wvxv(w, y,xf)

fixed cost (FC) = wfxf

short-run average cost (SAC) =
c(w,y,xf)

y

short-run average variable cost (SAVC) =
wvxv(w,y,xf)

y

short-run average fixed cost (SAFC) =
wfxf
y

short-run marginal cost (SMC) =
∂c(w,y,xf)

∂y



Long-run Costs

When all factors are variable,

let xf(w, y) be the optimal choice of fixed factors

(now can be varied),

xv(w, y) = xv(w, y,xf(w, y)) be the long-run opti-

mal choice of the variable factors, then

long-run average cost (LAC) =
c(w,y)

y

long-run marginal cost (LMC) = ∂c(w,y)
∂y

Constant returns to scale If the production function

exhibits constant returns to scale, then c (w, y) =

yc (w, 1) and AC = AVC = MC



The geometry of costs

Average cost surves

In the short run, it is often thought that the average

cost first decreases and then increases.

SAC =
c
³
w, y,xf

´
y

=
wvxv(w, y,xf)

y
+
wfxf
y

= SAFC + SAVC

Assuming there are some short-run fixed factors e.g.

machines, buliding ,etc., SAVC may initially because

of economies of scale. However, as SAVC will start

to rise once we approach capacity level of output. On

the other hand, SAFC must decreases with output.

The level of output at which average cost is minimized

is call the minimum efficient scale.



Marginal cost curves

Assume factor prices are fixed.

If y∗ is the minimum average cost, then average costs

are declining when y ≤ y∗,i.e.

d

dy

Ã
c(y)

y

!
≤ 0 when y ≤ y∗

Differentiate

yc0(y)− c(y)

y2
≤ 0 for y ≤ y∗

c0(y) ≤ c(y)

y
for y ≤ y∗

That is MC is less than AC to the left of y∗ the min-
imum average cost.

Analogously,

c0(y) ≥ c(y)

y
for y ≥ y∗



Thus,

c0(y∗) ≥ c(y∗)
y∗

MC = AC at minimum AC

Note also that MC of the first unit of output is equal

to AC os the first unit



Long-run and short-run cost curves

Short-run cost minimization problem is a constrained

version of long-run cost minimization problem. Hence,

long-run cost curve lies on or below short-run cost

curve.

The long-run cost is c(y) = c(y, z(y))

where z(y) = cost-minimizing demand for a single

fixed factor.

Let z∗ = z(y∗) be a long-run demand for the fixed
factor when y = y∗

short-run cost = c(y, z∗) ≥ c(y, z(y)) = long-run

cost, for all y

c(y∗, z∗) = c(y∗, z(y∗)) at y = y∗

Hence, long-run and short-run cost curves must be

tangent at y∗

Alternatively, the slope of the long-run cost curve at

y∗ is

dc(y∗, z(y∗))
dy

=
∂c(y∗, z∗)

∂y
+
∂c(y∗, z∗)

∂z

∂z(y∗)
∂y



but ∂c(y∗,z∗)
∂z = 0 since z∗ is the optimal at y∗, thus

long-run MC = short-run MC at y∗

Thus, we must also have long-run and short-run av-

erage cost curves tangent at y∗

Note also that LAC is the lower envelope of SAC

curves.



Factor prices and cost functions

Properties of the cost function

1) Nondecreasing in w. If w0 ≥ w, then c(w0, y) ≥
c(w, y)

Proof. Let x and x0 be cost-minimizing bundles as-
sociated with w and w0. Then, wx ≤ wx0 by cost
minimization and wx0 ≤ w0x0as w ≤ w0. Hence,

wx ≤ w0x0

2) Homogeneous of degree 1 inw. c(tw, y) = tc(w, y)

for t > 0

Proof. If x is a cost-minization bundle at pricew, then

x must also minimize cost at prices tw. Suppose not

and let x0 minimize cost at tw then twx0 < twx but

this means wx0 < wx cintradicting our assumption

that x is a cost-minization bundle at price w.



3) Concave in w. c(tw + (1 − t)w0, y) ≥ tc(w, y) +

(1− t)c(w0, y) for 0 ≤ t ≤ 1

Proof. Let (w,x), (w0,x0) and (w00,x00)be combi-
nations of prices and input bundles that minimizes

costs where w00 ≡ tw + (1 − t)w0 then c(w00, y) =
w00x00 =twx00+(1−t)w0x00. Note thatwx00 ≥ c(w, y)

and w0x00 ≥ c(w0, y). Thus c(w00, y) = c(tw + (1 −
t)w0, y) ≥ tc(w, y) + (1− t)c(w0, y)

4) The cost function is continuous (see Theorem of

the Maximum)



Shephard’s lemma: Let xi(w, y) be the firm’s con-

ditional factor demand for input i. Then if the cost

function is differentiable at (w, y), and wi > 0 for

i = 1, ...n then

xi(w, y) =
∂c(w, y)

∂wi
i = 1, ...., n

Proof. Let x∗ be a cost-minimizing bundle that pro-
duces y at prices w∗ and define

g(w) = c(w, y)−wx∗ ≤ 0 as c(w, y) is the cheapest
way to produce y.

Note that g(w∗) = 0 is the maximum value, hence

∂g(w∗)
∂wi

=
∂c(w∗, y)

∂wi
− x∗i = 0 i = 1, ...., n



The envelope theorem for constrained opti-
mization

A general problem with n inputs

Define

M(a) ≡ max
x

g(x, a)

s.t. h(x, a) = 0

The Lagrangian is

L = g(x, a)− λh(x, a)

and associated F.O.C.s are

∂g

∂xi
− λ

∂h

∂xi
= 0 i = 1, ...., n

h(x, a) = 0

Denote the solution of this problem by x(a).Remark

that x(a) must satisfy the above F.O.C.s and we have

M(a) = g(x(a), a)



Differentiate w.r.t. a

dM(a)

da
=

∂g

∂x1

dx1
da

+ ....+
∂g

∂xn

dxn

da
+
∂g

∂a

From F.O.C.s

dM(a)

da
= λ

"
∂h

∂x1

dx1
da

+ ....+
∂h

∂xn

dxn

da

#
+
∂g

∂a

Note also that

h(x(a), a) ≡ 0

Differentiate w.r.t. a"
∂h

∂x1

dx1
da

+ ....+
∂h

∂xn

dxn

da

#
+
∂h

∂a
= 0

Hence,

dM(a)

da
=

∂g(x, a)

∂a
|x=x(a) − λ

∂h(x, a)

∂a
|x=x(a)

=
∂L(x, a)

∂a
|x=x(a)

Apply this result to our cost minimization problem,



M(a) = c(w, y),

g(x, a) = w1x1 + ......+wnxn,

and h(x, a) = f(x)− y

∂c(w, y)

∂wi
=

∂L(x,w, y)

∂wi
|xi=xi(w,y)

= xi|xi=xi(w,y) = xi(w, y)

This is the Shepard’s lemma.



Comparative statics

Because of Shepard’s lemma, certain properties of the

cost function translate into conditional factor demand

functions

1) Since the cost function is nondecreasing in factor

prices, ∂c(w,y)∂wi
= xi(w, y) > 0

2) The cost function is homogeneous of degree 1 in

w. Therefore the derivatives of the cost function, the

factor demands are homogeneous of degree 0 in w.

3) The cost function is concave in w. In the case of

two inputs⎛⎜⎜⎝
∂c2(w,y)
∂w2i

∂c2(w,y)
∂wi∂wj

∂c2(w,y)
∂wj∂wi

∂c2(w,y)
∂w2j

⎞⎟⎟⎠ =
⎛⎜⎝ ∂xi(w,y)

∂wi

∂xi(w,y)
∂wj

∂xj(w,y)
∂wi

∂xj(w,y)
∂wj

⎞⎟⎠
is a symmetric negative semidefinite matrix. Thus,



a) the cross-price effects are symmetric

∂xi(w, y)

∂wj
=

∂c2(w, y)

∂wi∂wj
=

∂c2(w, y)

∂wj∂wi
=

∂xj(w, y)

∂wi

b) the own-price effects are nonpositive.

∂xi(w, y)

∂wi
=

∂c2(w, y)

∂w2i
≤ 0

as the diagonal terms of a negative semidefinite must

be nonpositive.The conditional demand curves are down-

ward slopng.

c) The vector of changes in factor demands moves

’opposite’ the vector of changes in factor prices

dwdx ≤ 0
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