CHOICE

INCOME EXPANSION PATH: The locus of utilitymaximizing bundles when income varies holding prices fixed.

ENGEL CURVE: The function that relates income to the demand of each good.

- If the income expansion path is a straight line through the origin, the consumer has a unit income elasticity. He consumes the same proportion of each commodity at each income level.
- If the income expansion path bends towards one good, that good is a luxury good while the other is a necessary good. As income increases, the consumers consumes more of both goods (hence both goods are normal goods) but proportionally more of the luxury good than of the necessary good.
- If the income expansion path bends bacwards and away from a good, that good is an inferior good. The consumers consumes less of that good as income increases.

PRICE OFFER CURVE: The locus of utility-maximizing bundles when the price of one good varies holding other prices and income fixed.

- If demand for a good increases as its price decreases, the good is an ordinary good.
- If the offer curve bends backwards, a decrease in the price of a good leads to a decrease in demand of that good.

The Slutsky equation
Slutsky equation:
$\frac{\partial x_{j}(\mathbf{p}, m)}{\partial p_{i}}=\frac{\partial h_{j}(\mathbf{p}, v(\mathbf{p}, m))}{\partial p_{i}}-\frac{\partial x_{j}(\mathbf{p}, m)}{\partial m} x_{i}(\mathbf{p}, m)$
Proof. If \mathbf{x}^{*} yields maximum utility of $u^{*}=u\left(\mathbf{x}^{*}\right)$ at \mathbf{p}^{*} and m^{*}
We know that $\mathbf{h}\left(\mathbf{p}, u^{*}\right) \equiv \mathbf{x}\left(\mathbf{p}, e\left(\mathbf{p}, u^{*}\right)\right)$

Differentiate wrt p_{i} and evaluate at \mathbf{p}^{*} to get $\frac{\partial h_{j}\left(\mathbf{p}^{*}, u^{*}\right)}{\partial p_{i}}=\frac{\partial x_{j}\left(\mathbf{p}^{*}, m^{*}\right)}{\partial p_{i}}+\frac{\partial x_{j}\left(\mathbf{p}^{*}, m^{*}\right)}{\partial m} \frac{\partial e\left(\mathbf{p}, u^{*}\right)}{\partial p_{i}}$
or $\frac{\partial x_{j}\left(\mathbf{p}^{*}, m^{*}\right)}{\partial p_{i}}=\frac{\partial h_{j}\left(\mathbf{p}^{*}, u^{*}\right)}{\partial p_{i}}-\frac{\partial x_{j}\left(\mathbf{p}^{*}, m^{*}\right)}{\partial m} x_{i}^{*}$
The slutsky equation decomposes the demand change Δx_{j} as a result of the price change Δp_{i} into income and substitution effect

$$
\Delta x_{j} \approx \frac{\partial x_{j}\left(\mathbf{p}^{*}, m^{*}\right)}{\partial p_{i}} \Delta p_{i}=\frac{\partial h_{j}\left(\mathbf{p}^{*}, u^{*}\right)}{\partial p_{i}} \Delta p_{i}-\frac{\partial x_{j}\left(\mathbf{p}^{*}, m^{*}\right)}{\partial m} x_{i}^{*} \Delta p_{i}
$$

Properties of Demand Functions

1) The matrix $\left(\frac{\partial h_{j}(\mathbf{p}, u)}{\partial p_{i}}\right)$ is a negative semidefinite matrix.
First, recall that $e(\mathbf{p}, u)$ is concave in \mathbf{p} and $h_{j}(\mathbf{p}, u)=\frac{\partial e(\mathbf{p}, u)}{\partial p_{j}}$,
hence $\left(\frac{\partial h_{j}(\mathbf{p}, u)}{\partial p_{i}}\right)=\left(\frac{\partial^{2} e(\mathbf{p}, u)}{\partial p_{j} \partial p_{i}}\right)$ which is a negative semidefintie matrix.
2) The matrix of substitution term is symmetric since $\left(\frac{\partial h_{j}(\mathbf{p}, u)}{\partial p_{i}}\right)=\left(\frac{\partial^{2} e(\mathbf{p}, u)}{\partial p_{j} \partial p_{i}}\right)=\left(\frac{\partial^{2} e(\mathbf{p}, u)}{\partial p_{i} \partial p_{j}}\right)=\left(\frac{\partial h_{i}(\mathbf{p}, u)}{\partial p_{j}}\right)$.
3) The hicksian demand curve slopes downward as the compensated own-price effect is nonpositive
$\left(\frac{\partial h_{i}(\mathbf{p}, u)}{\partial p_{i}}\right)=\left(\frac{\partial^{2} e(\mathbf{p}, u)}{\partial p_{i}^{2}}\right) \leq 0$
since a negative semidefinite matrix has nonpositive diagonal terms.
4) The substitution matrix $\left(\frac{\partial x_{j}(\mathbf{p}, m)}{\partial p_{i}}+\frac{\partial x_{j}(\mathbf{p}, m)}{\partial m} x_{i}\right)$ is a symmetric semidefintie matrix.

Comparative Statics using F.O.C.s

Consider the case with two goods, F.O.C.s are $p_{1} x_{1}\left(p_{1}, p_{2}, m\right)+p_{2} x_{2}\left(p_{1}, p_{2}, m\right)-m \equiv 0$ $\frac{\partial u\left(x_{1}\left(p_{1}, p_{2}, m\right), x_{2}\left(p_{1}, p_{2}, m\right)\right)}{\partial x_{1}}-\lambda p_{1} \equiv 0$ $\frac{\partial u\left(x_{1}\left(p_{1}, p_{2}, m\right), x_{2}\left(p_{1}, p_{2}, m\right)\right)}{\partial x_{2}}-\lambda p_{2} \equiv 0$

Differentiate w.r.t. p_{1} and rearrange in matrix form, we have

$$
\left(\begin{array}{lll}
0 & -p_{1} & -p_{2} \\
-p_{1} & u_{11} & u_{12} \\
-p_{2} & u_{21} & u_{22}
\end{array}\right)\left(\begin{array}{c}
\frac{\partial \lambda}{\partial p_{1}} \\
\frac{\partial x_{1}}{\partial p_{1}} \\
\frac{\partial x_{2}}{\partial p_{1}}
\end{array}\right) \equiv\left(\begin{array}{c}
x_{1} \\
\lambda \\
0
\end{array}\right)
$$

Solving for $\frac{\partial x_{1}}{\partial p_{1}}$ via the Cramer's rule

$$
\frac{\partial x_{1}}{\partial p_{1}}=\frac{\left|\begin{array}{ccc}
0 & x_{1} & -p_{2} \\
-p_{1} & \lambda & u_{12} \\
-p_{2} & 0 & u_{22}
\end{array}\right|}{H}
$$

where H is determinant of bordered Hessian and is greater than zero by S.O.C.

Expanding this by cofactors on the second column, we have

$$
\frac{\partial x_{1}}{\partial p_{1}}=\lambda \frac{\left|\begin{array}{ll}
0 & -p_{2} \\
-p_{2} & u_{22}
\end{array}\right|}{H}-x_{1} \frac{\left|\begin{array}{ll}
-p_{1} & u_{12} \\
-p_{2} & u_{22}
\end{array}\right|}{H}
$$

Now, differentiate F.O.C.s again but this time w.r.t. m

$$
\left(\begin{array}{lll}
0 & -p_{1} & -p_{2} \\
-p_{1} & u_{11} & u_{12} \\
-p_{2} & u_{21} & u_{22}
\end{array}\right)\left(\begin{array}{l}
\frac{\partial \lambda}{\partial m} \\
\frac{\partial x_{1}}{\partial m} \\
\frac{\partial x_{2}}{\partial m}
\end{array}\right) \equiv\left(\begin{array}{l}
-1 \\
0 \\
0
\end{array}\right)
$$

By Cramer's rule

$$
\frac{\partial x_{1}}{\partial m}=\frac{\left|\begin{array}{cc}
-p_{1} & u_{12} \\
-p_{2} & u_{22}
\end{array}\right|}{H}
$$

In addition, by setting up expenditure minimization problem, we can show that $\frac{\partial h_{1}}{\partial p_{1}}=\lambda \frac{\left|\begin{array}{ll}0 & -p_{2} \\ -p_{2} & u_{22}\end{array}\right|}{H}$

