Economic Risk and Decision Analysis for Oil and Gas Industry CE81.9008

School of Engineering and Technology Asian Institute of Technology

January Semester

Presented by Dr. Thitisak Boonpramote

Department of Mining and Petroleum Engineering, Chulalongkorn University

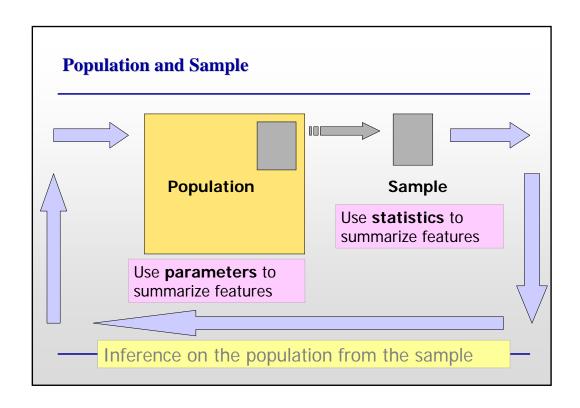
Review of Descriptive Statistics

Why you needs to know about Statistics

- To know how to properly present information
- To know how to draw conclusions about populations based on sample information
- To know how to improve processes
- To know how to obtain reliable forecasts

Key Definitions

- A population (universe) is the collection of things under consideration.
 - data set that contains all possible items of interest
- A sample is a portion of the population selected for analysis.
 - data set that contains only a few random or otherwise representative elements of a data set
- A parameter is a summary measure computed to describe a characteristic of the population.
 - measures of central tendency and other statistical characteristics that describe a population
- A statistic is a summary measure computed to describe a characteristic of the sample
 - corresponding measures and statistical characteristics that describe a sample



Statistical Methods

- Descriptive statistics
 - Collecting and describing data
 - What to describe?
 - What is the "location" or "center" of the data? ("measures of location")
 - How do the data vary? ("measures of variability")
- Inferential statistics
 - Drawing conclusions and/or making decisions concerning a population based only on sample data

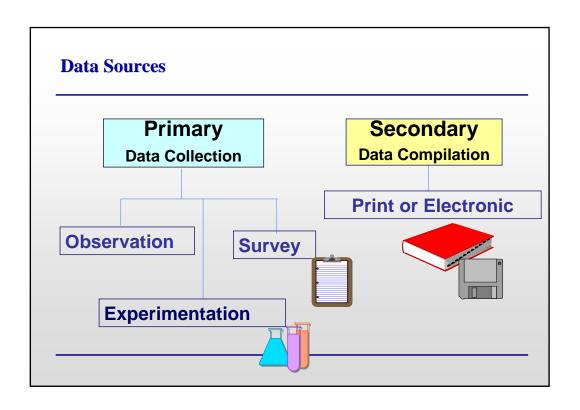
Descriptive Statistics

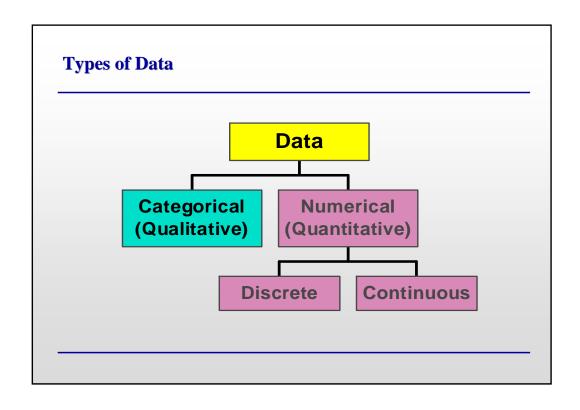
- Collect data
 - e.g. Survey
- Present data
 - e.g. Tables and graphs

• e.g. Sample mean =
$$\frac{\sum X}{n}$$

- Estimation
 - e.g.: Estimate the population mean weight using the sample mean weight
- Hypothesis testing
 - e.g.: Test the claim that the population mean weight is 120 pounds

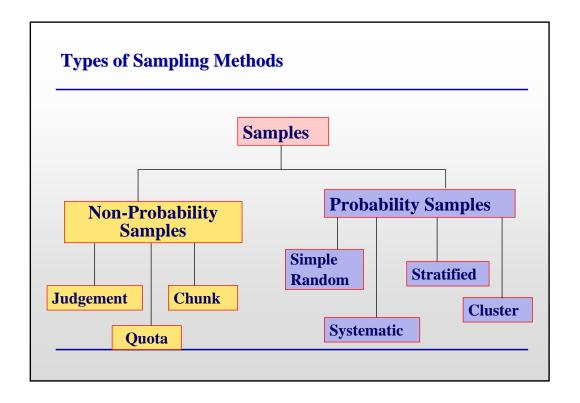
Drawing conclusions and/or making decisions concerning a population based on sample results.

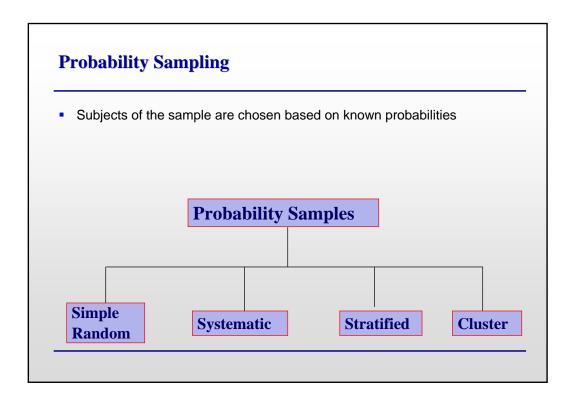




Reasons for Drawing a Sample

- Less time consuming than a census
- Less costly to administer than a census
- Less cumbersome and more practical to administer than a census of the targeted population



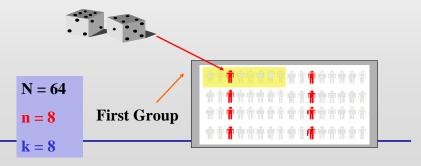


Simple Random Samples

- Every individual or item from the frame has an equal chance of being selected
- Selection may be with replacement or without replacement
- Samples obtained from table of random numbers or computer random number generators

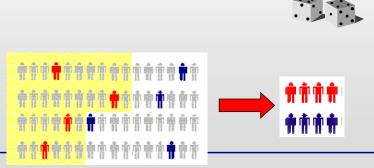
Systematic Samples

- Decide on sample size: n
- Divide frame of N individuals into groups of k individuals: k=n/N
- Randomly select one individual from the 1st group
- Select every k-th individual thereafter



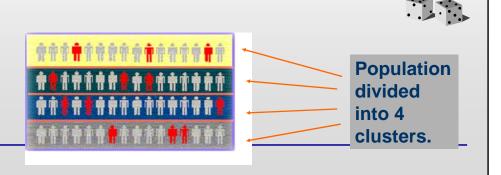
Stratified Samples

- Population divided into two or more groups according to some common characteristic
- Simple random sample selected from each group
- The two or more samples are combined into one



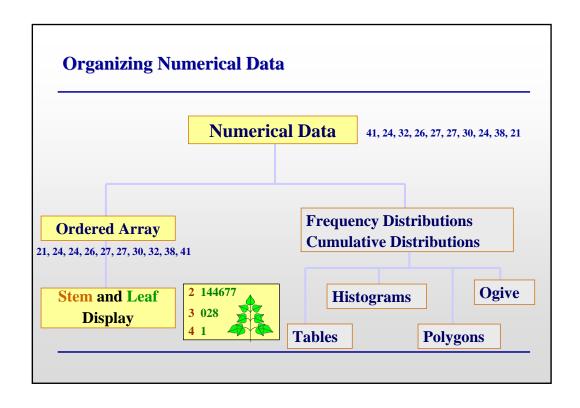
Cluster Samples

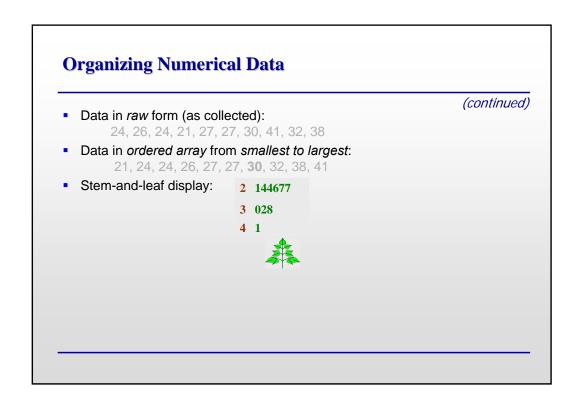
- Population divided into several "clusters," each representative of the population
- Simple random sample selected from each
- The samples are combined into one

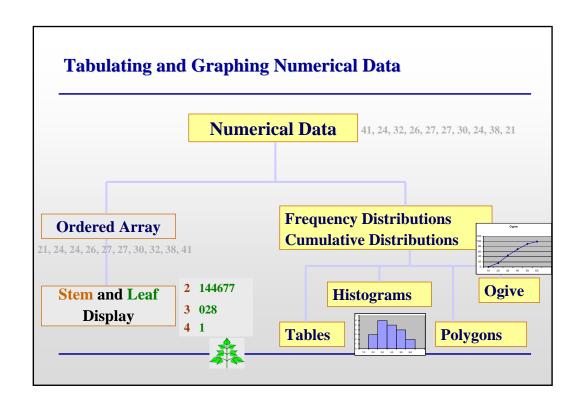


Advantages and Disadvantages

- Simple random sample and systematic sample
 - Simple to use
 - May not be a good representation of the population's underlying characteristics
- Stratified sample
 - Ensures representation of individuals across the entire population
- Cluster sample
 - More cost effective
 - Less efficient (need larger sample to acquire the same level of precision)







Tabulating Numerical Data: Frequency Distributions

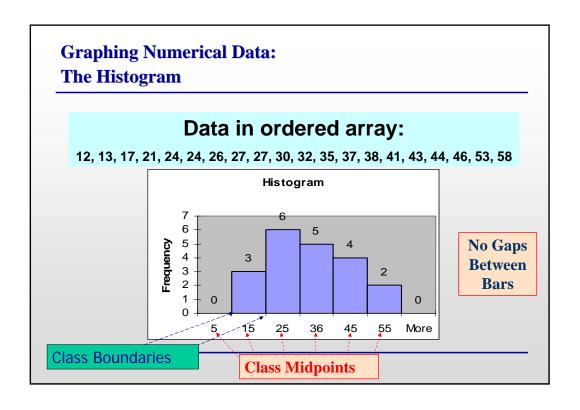
- Sort raw data in ascending order:
 - 12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58
- Find range: 58 12 = 46
- Select number of classes: 5 (usually between 5 and 15)
- Compute class interval (width): 10 (46/5 then round up)
- Determine class boundaries (limits): 10, 20, 30, 40, 50, 60
- Compute class midpoints: 15, 25, 35, 45, 55
- Count observations & assign to classes

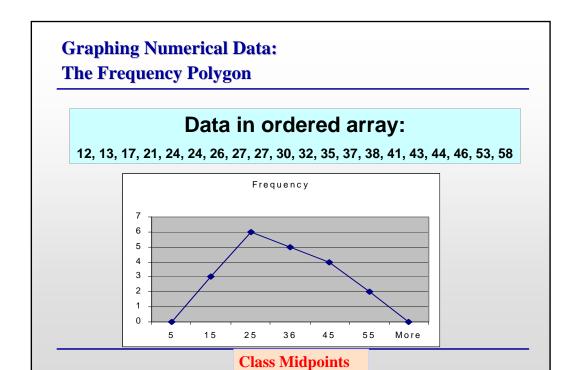
Frequency Distributions, Relative Frequency Distributions and Percentage Distributions

Data in ordered array:

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Class	Frequency	Relative Frequency	Percentage
10 but under 20	3	.15	15
20 but under 30	6	.30	30
30 but under 40	5	.25	25
40 but under 50	4	.20	20
50 but under 60	2	.10	10
Total	20	1	100



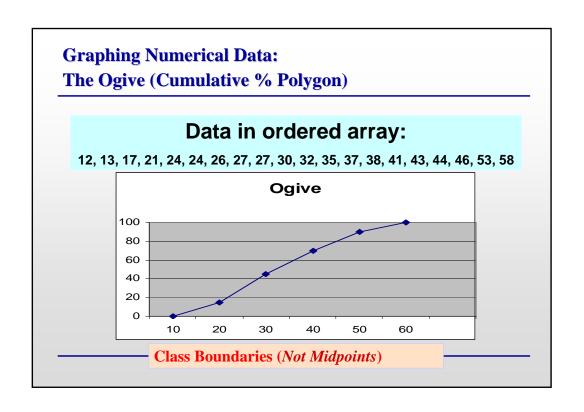


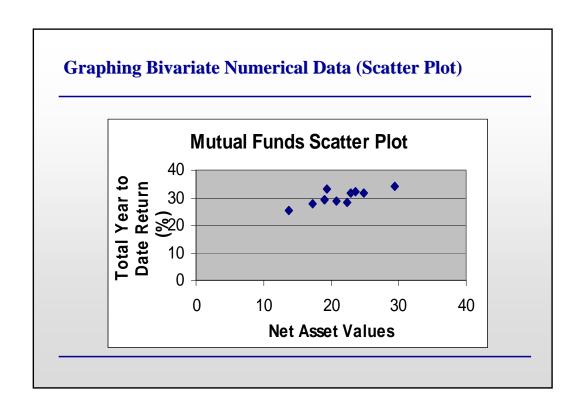
Tabulating Numerical Data: Cumulative Frequency

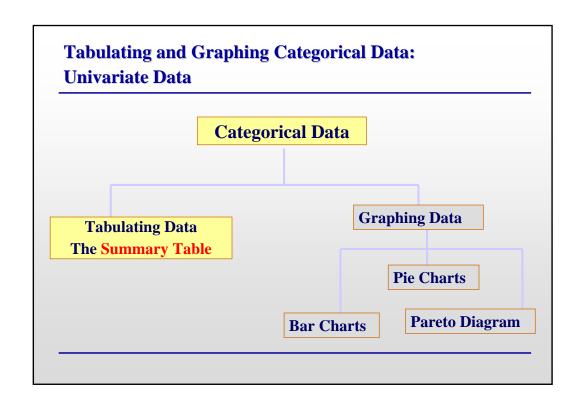
Data in ordered array:

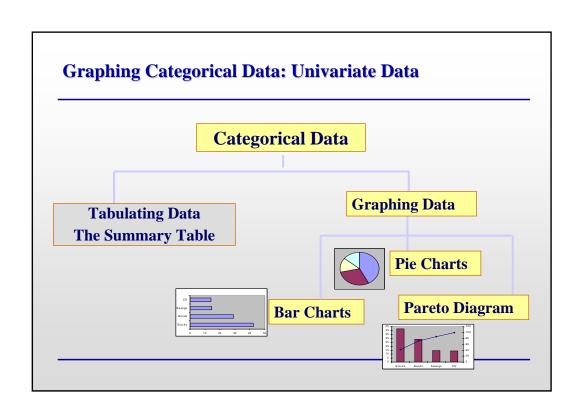
12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

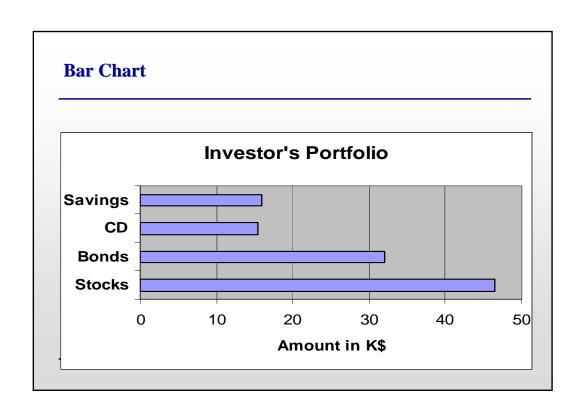
	Cumulative	Cumulative
Class	Frequency	% Frequency
10 but under 20	3	15
20 but under 30	9	45
30 but under 40	14	70
40 but under 50	18	90
50 but under 60	20	100

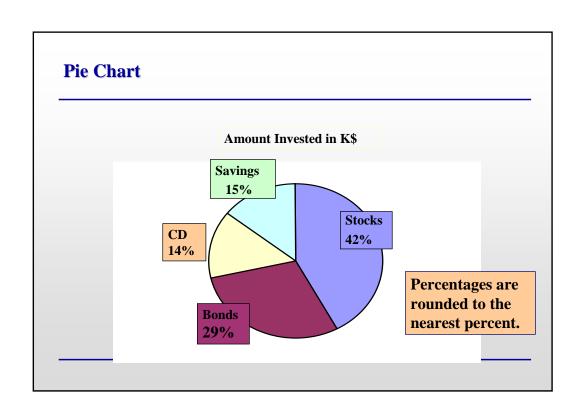


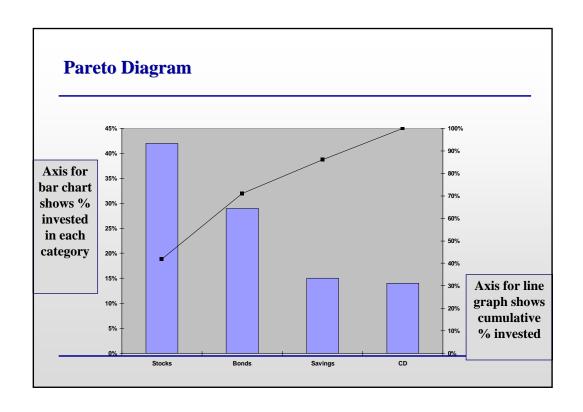








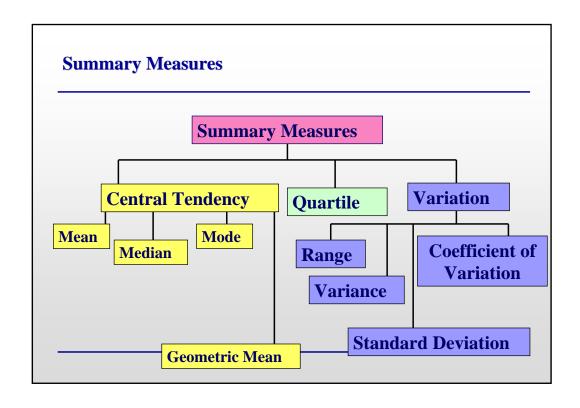


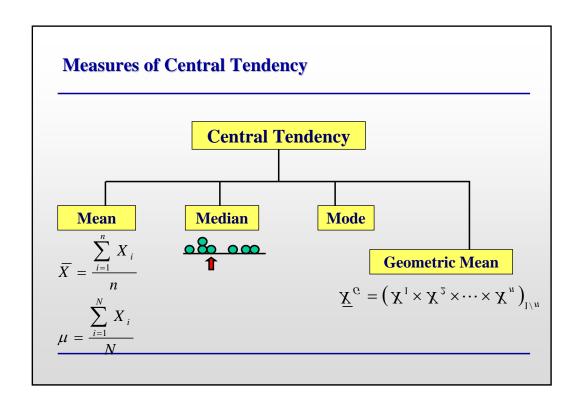


Tabulating and Graphing Bivariate Categorical Data

Contingency tables: investment in thousands of dollars

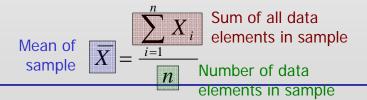
Investment Category	Investor A	Investor B	Investor C	Total
Stocks	46.5	55	27.5	129
Bonds	32	44	19	95
CD	15.5	20	13.5	49
Savings	16	28	7	51
Total	110	147	67	324





Mean

- Also called arithmetic mean
 - Symbol <u>µ</u> represents population mean
 - Symbol X represents sample mean
 - Commonly called average
- Calculated by adding values of all items in data set and dividing by total number of items in set



Mean

(continued)

Mean of data values

Sample mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} = \frac{X_{1} + X_{2} + \dots + X_{n}}{n}$$

Population mean
$$\mu = \frac{\sum\limits_{i=1}^{N} X_i}{N} = \frac{X_1 + X_2 + \cdots + X_N}{N}$$

Properties of Mean

Sum of deviations from mean is zero

Population
$$\sum_{i=1}^{N} (X_i - \overline{X}) = 0$$

Sum of squared deviations minimized when deviations are measured from mean

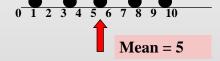
$$\sum_{i=1}^{N} \left(X_i - \overline{X} \right)^2 = \text{minimum}$$

Mean may be influenced by extreme values.

Mean

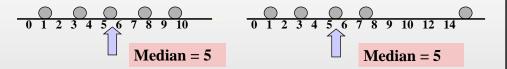
(continued)

Affected by extreme values (outliers)



Median

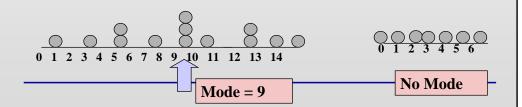
- Robust measure of central tendency
- Not affected by extreme values



- In an ordered array, the median is the "middle" number
 - If n or N is odd, the median is the middle number
 - If n or N is even, the median is the average of the two middle numbers

Mode

- Poor measure of central tendency in most cases—does not take into account values of other data elements
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may be no mode
- There may be several modes e.g., bimodal (two modes)



Calculate Footage Drilled

- 20 bits drilled 2,013 ft
- Determine mean, median, mode

Bit number	Ft. Drilled
1	53
2	69
3	72
4	76
5	80
6	89
Mode	90
(most freque	ent) ₉₅
9	102
10	102

Bit number	Ft. Drilled
11	105
12	108
13	109
14	110
≯ €	115
1 Mediar	1
1102 + 1	$\frac{105}{100} = 103.5 \text{ ft}$
1 2	— – 103.3 It
1	.00
20	139

Calculate Footage Drilled

- 20 bits drilled 2,013 ft
- Determine mean, median, mode

Bit number	Ft. Drilled		Bit number	F	t. Drilled
1	53		11		105
	22				108
Mean					109
n					110
>	X_{i}	_			115
$\overline{\mathbf{V}}$ _ $i=1$	_ 2,01	3	= 100 .65 ft		116
Λ			- 100 .05 It		123

IVIEdIT				109
n				110
>	X_i	2		115
$\overline{\mathbf{Y}}$ - $\overline{i=1}$	$\frac{1}{1} - \frac{2,01}{1}$	<u> </u>	= 100 .65 ft	116
Λ –	$\frac{1}{20}$		- 100 .03 It	123
8	95		18	125
9	102		19	135
10	102		n = 20	139

Geometric Mean (G_m)

Nth root of product of individual data elements of data set with N elements

$$G_m = \sqrt[n]{X_1 \bullet X_2 \bullet X_3 \bullet \dots \bullet X_n}$$

Calculation simplified using logarithms

$$G_{m} = anti \, \log \left(\frac{1}{n} \sum_{i=1}^{n} \log X_{i} \right) = 10^{\left(\frac{1}{n} \sum_{i=1}^{n} \log X_{i} \right)}$$
 In terms of natural logarithms
$$G_{m} = e^{\left(\frac{1}{n} \sum_{i=1}^{n} \ln X_{i} \right)}$$

In terms of natural logarithms

Properties of the Geometric Mean

- Biased toward smaller values; appropriate for skewed data sets (asymmetrical distributions)
- Not affected as much as arithmetic mean by extreme values
- Undefined for data sets with negative or zero values

Geometric Mean

Useful in the measure of rate of change of a variable over time

$$\overline{X}_G = (X_1 \times X_2 \times \dots \times X_n)^{1/n}$$

- Geometric mean rate of return
 - Measures the status of an investment over time

$$\overline{R}_G = \left[\left(1 + R_1 \right) \times \left(1 + R_2 \right) \times \dots \times \left(1 + R_n \right) \right]^{1/n} - 1$$

Example

An investment of \$100,000 declined to \$50,000 at the end of year one and rebounded to \$100,000 at end of year two:

$$X_1 = \$100,000$$
 $X_2 = \$50,000$ $X_3 = \$100,000$
Average rate of return:

$$\overline{X} = \frac{(-50\%) + (100\%)}{2} = 25\%$$

Geometric rate of return:

$$\overline{R}_G = \left[\left(1 + \left(-50\% \right) \right) \times \left(1 + \left(100\% \right) \right) \right]^{1/2} - 1$$

$$= \left[\left(0.50 \right) \times \left(2 \right) \right]^{1/2} - 1 = 1^{1/2} - 1 = 0\%$$

Harmonic Mean, H_m

Reciprocal of arithmetic mean of reciprocals of data elements in data set

$$H_{m} = \frac{n}{\sum_{i=1}^{n} \frac{1}{X_{i}}}$$

Quadratic Mean, Q_m (Root Mean Square)

$$Q_m = \left(\frac{\sum_{i=1}^n X_i^2}{n}\right)^{1/2}$$

Weighted Average

Averages in which data elements are weighted by frequency of occurrence

$$X_{w} = \frac{\sum_{i=1}^{n} w_{i} X_{i}}{\sum_{i=1}^{n} w_{i}}$$
 Weighting factor of element X_{i}

Weighted Average

Weighted geometric mean (G_{wm})

$$G_{wm} = anti \log \left(\frac{\sum_{i=1}^{n} w_{i} \log X_{i}}{\sum_{i=1}^{n} w_{i}} \right)$$

 $G_{wm} = anti \log \left(\frac{\sum_{i=1}^{n} w_i \log X_i}{\sum_{i=1}^{n} w_i} \right)$ • Weighted harmonic mean (H_{wm}) $H_{wm} = \left(\frac{\sum_{i=1}^{n} w_i}{\sum_{i=1}^{n} \frac{w_i}{X_i}} \right)$

Calculate Footage Drilled

Determine geometric, harmonic, quadratic means of bit record

Bit	Ft (X _i)	Log X _i	1/X _i	X _i ²
1	53	1.7243	0.0189	2,809
2	69	1.8388	0.0145	4,761
3	72	1.8573	0.0139	5,184
4	76	1.8808	0.0132	5,776
5	80	1.9031	0.0125	6,400
6	89	1.9494	0.0112	7,921
20	139	2.1430	0.0072	19,321
n = 20	2,013	39.8215	0.21057	212,435

Calculate Footage Drilled

• Determine geometric, harmonic, quadratic means of bit record

Bit	Ft (<i>X</i> _i)	Log X _i	1/X _i	X _i ²
n = 20		39.8215	0.21057	212,435

Geometric mean

$$G_m = 10^{\left(\frac{1}{n}\sum_{i=1}^{n}\log X_i\right)} = 10^{\left(\frac{1}{20}\times 39.8215\right)}$$
= 97.97 ft

Calculate Footage Drilled

Determine geometric, harmonic, quadratic means of bit record

Bit	Ft (<i>X_i</i>)	Log X _i	1/X _i	X_i^2
n = 20		39.8215	0.21057	212,435

Harmonic mean

$$H_m = \frac{n}{\sum_{i=1}^n \frac{1}{X_i}} = \frac{20}{0.2105} = 95.01 \text{ ft}$$

Calculate Footage Drilled

• Determine geometric, harmonic, quadratic means of bit record

Bit	Ft (<i>X</i> _i)	Log X _i	1/X _i	X _i ²
n = 20		39.8215	0.21057	212,435

Quadratic mean

$$Q_m = \frac{\sum_{i=1}^n X_i^2}{n} = \frac{212,435}{20} = 103.6 \text{ ft}$$

Calculate Weighted-Average Porosity

- 22-ft pay zone
- Calculate weighted-average porosity

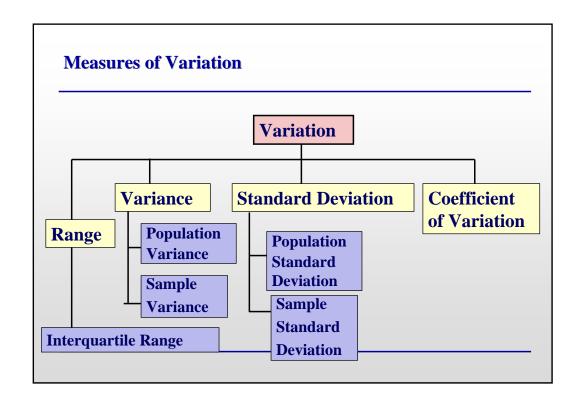
	Porosity (ϕ), %	Thickness (h), ft			$\phi \times h$	
	15.2		2			30.4
	n		3			31.5
	$\sum \phi_i h_i$		5	Majah	tod	66.0
$ \phi_w =$	$\frac{\sum_{i=1}^{q} \varphi_i v_i}{n} = \frac{283.9}{22}$	= 12.9	2	Weight	v (d	37.2
"	$\sum_{i=1}^{n} h_{i}$ 22		6	× <i>h</i>)	y (\psi	68.4
	i=1		4		50.4	
		Σh	= 2	2	Σ	$\phi h = 283.9$

Calculate Weighted-Average Cost of Capital

- Company will invest in \$500,000 project
 - \$150,000 equity at cost of 8%
 - 350,000 long-term debt at 18%
- Calculate weighted-average cost of capital

$$i_w = \frac{150,000 \times 0.08 + 350,000 \times 0.18}{500,000}$$
$$= \frac{12,000 + 63,000}{500,000} \times 100 = 15\%$$

Quartiles • Split Ordered Data into 4 Quarters 25% 25% 25% 25% $(Q_1) \quad (Q_2) \quad (Q_3)$ • Position of i-th Quartile $(Q_i) = \frac{i(n+1)}{4}$ • Q_1 and Q_3 Are Measures of Noncentral Location • Q_2 = Median, A Measure of Central Tendency Data in Ordered Array: 11 12 13 16 16 17 18 21 22 Position of $Q_1 = \frac{1(9+1)}{4} = 2.5$ $Q_1 = \frac{(12+13)}{2} = 12.5$

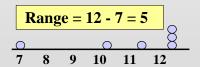


Range

- Measure of variation
- Difference between the largest and the smallest observations:

Range =
$$X_{\text{Largest}} - X_{\text{Smallest}}$$

- Ignores the way in which data are distributed
- Not particularly useful measure of dispersion, since it uses only two values from data set



Interquartile Range

- Measure of variation
- Also known as midspread
 - Spread in the middle 50%
- Difference between the first and third quartiles

Data in Ordered Array: 11 12 13 16 16 17 17 18 21

Interquartile Range =
$$Q_3 - Q_1 = 17.5 - 12.5 = 5$$

Not affected by extreme values

Variance

- Important measure of variation
- Shows variation about the mean
 - Sample variance:

$$S^{2} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}{n-1}$$

Population variance:

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (X_{i} - \mu)^{2}}{N}$$

Standard Deviation

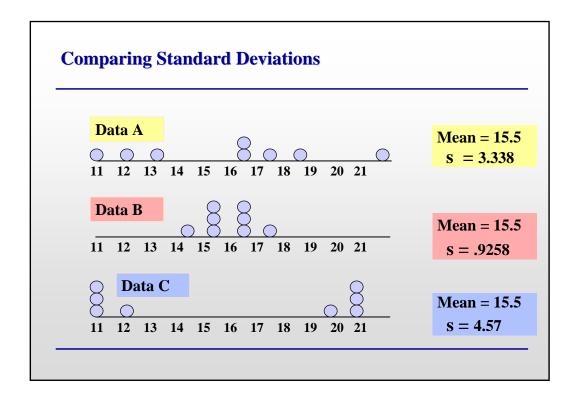
- Most important measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}{n-1}}$$

Population standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$



Mean Absolute Deviation, d_m

Average deviation of data from the mean over all observations

$$d_m = \frac{\sum_{i=1}^n |X_i - \overline{X}|}{n}$$
 Absolute

For symmetric (bell-shaped) distributions

$$s = 1.25 d_m$$

Coefficient of Variation

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Expresses standard deviation as fraction of percentage of mean
- Is used to compare two or more sets of data measured in different units

$$CV = \left(\frac{S}{\overline{X}}\right) 100\%$$

Comparing Coefficient of Variation

- Stock A:
 - Average price last year = \$50
 - Standard deviation = \$5
- Stock B:
 - Average price last year = \$100
 - Standard deviation = \$5

• Coefficient of variation:
$$CV = \left(\frac{S}{\overline{X}}\right) 100\% = \left(\frac{\$5}{\$50}\right) 100\% = 10\%$$
• Stock B:
$$CV = \left(\frac{S}{\overline{X}}\right) 100\% = \left(\frac{\$5}{\$100}\right) 100\% = 5\%$$

Stock B:
$$CV = \left(\frac{S}{\overline{X}}\right) 100\% = \left(\frac{\$5}{\$100}\right) 100\% = 5\%$$

Calculate Statistical Values for Drilling

Determine range, standard deviation, for bit record

Bit	Ft (<i>X</i>)	<i>X- X</i>	$(X-\overline{X})^2$	X ²	$ X-\overline{X} $	
1	53	(47.65)	2,270.52	2,809	47.65	
2	69	(31.65)	1,001.72	4,761	31.65	
3	72	(28.65)	820.82	5,184	28.65	
4	76	(24.65)	607.62	5,776	24.65	
5	80	(20.65)	426.42	6,400	20.65	
6	89	(11.65)	135.72	7,921	11.65	
		•••				
20	139	38.35	1,470.72	19,321	38.35	
<i>n</i> = 20	2,013	0	9,826.55	212,435	362.4	

Calculate Statistical Values for Drilling

Determine range, standard deviation for bit record

Bit	Ft (X)	X- X	\overline{X} $(X-X^{-})^2$ X^2		$ X-\overline{X} $
<i>n</i> = 20	2,013	0	9,826.55	212,435	362.4

Range

$$R = X_{\text{max}} - X_{\text{min}} = 139 - 53 = 86$$

Calculate Statistical Values for Drilling

Determine range, standard deviation for bit record

Bit	Ft (X)	X- X	[X-X] ²	X 2	$ X - \overline{X} $
n = 20	2,013	0	9,826.55	212,435	362.4

Standard deviation

$$s = \left[\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1} \right]^{1/2} = \left[\frac{9,826.55}{20-1} \right]^{1/2} = 22.7417 \text{ ft}$$

Calculate Statistical Values for Drilling

Determine range, standard deviation for bit record

Bit	Ft	Arithmetic mean	X 2	$ X-\overline{X} $
<i>n</i> = 20	2,0	X = 100.65 ft	12,435	362.4

Standard deviation (alternate method)

$$s = \left[\frac{\sum_{i=1}^{n} X_{i}^{2}}{n-1} - \frac{n}{n-1} \overline{X}^{2}\right]^{1/2} = \left[\frac{212,435}{20-1} - \frac{20}{20-1} \times 100.65^{2}\right]^{1/2}$$

 $= [11,180.79 - 1.053 \times 10,13042]^{1/2} = 22.66 \text{ ft}$

Calculate Statistical Values for Drilling

Determine variance, mean absolute deviation for bit record

Bit	Ft (X)	X- X	(X-X ⁻) ²	X 2	$ X-\overline{X} $
n = 20	2,013	0	9,826.55	212,435	362.4

Variance (square of standard deviation)

$$s^2 = 22.7417^2 = 517.19$$

Calculate Statistical Values for Drilling

• Determine variance, mean absolute deviation for bit record

Bit	Ft (X)	X- X	(X-X ⁻) ²	X 2	$ X-\overline{X} $
n = 20	2,013	0	9,826.55	212,435	362.4

Mean absolute deviation

$$d_m = \frac{\sum_{i=1}^{n} |X_i - \overline{X}|}{n} = \frac{362.40}{20} = 18.12$$

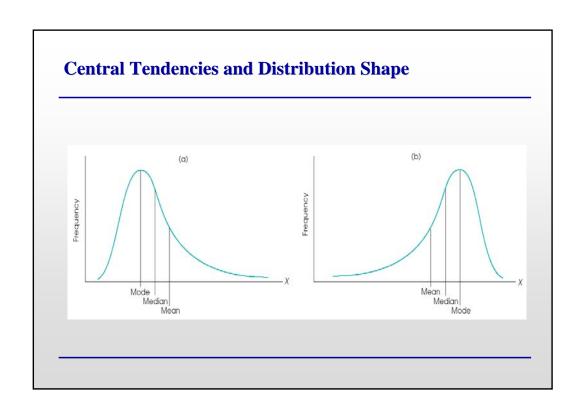
Calculate Footage Drilled

Determine coefficient of variation for bit record

Bit	Ft	Arithmetic mean	X 2	$ X-\overline{X} $
n = 20	2,0	\overline{X} = 100.65 ft	212,435	362.4

Coefficient of variation

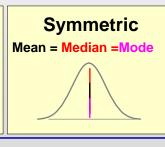
$$v = \frac{s}{\overline{X}} \times 100 = \frac{22.74}{100.65} \times 100 = 22.59 \%$$

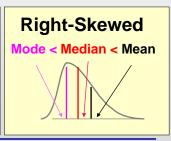


Shape of a Distribution

- Describes how data is distributed
- Measures of shape
 - Symmetric or skewed

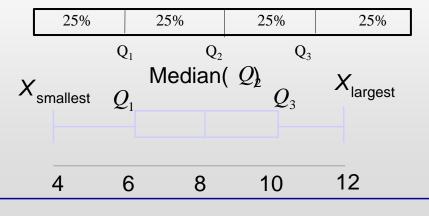
Left-Skewed Mean < Median < Mode





Exploratory Data Analysis

- Box-and-whisker plot
 - Graphical display of data using 5-number summary
 - A plot that shows the center, spread and skewness of data set



Distribution Shape and Box-and-Whisker Plot

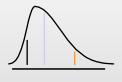
Left-Skewed

 Q_1 Q_2 Q_3

Symmetric

 $Q_1Q_2Q_3$

Right-Skewed



 $Q_1 Q_2 Q_3$

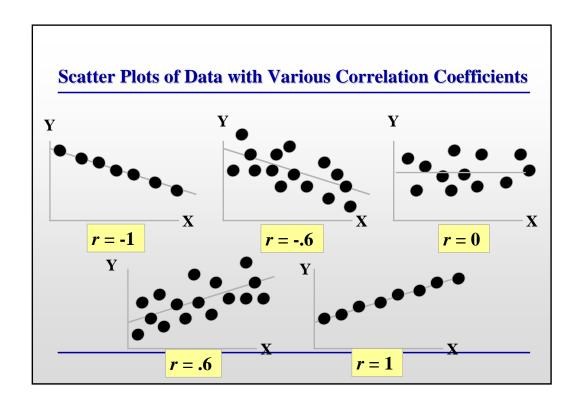
Coefficient of Correlation

Measures the strength of the linear relationship between two quantitative variables

$$r = \frac{\displaystyle\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right)}{\sqrt{\displaystyle\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y}\right)^{2}}}$$

Features of Correlation Coefficient

- Unit free
- Ranges between –1 and 1
- The closer to −1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship



Pitfalls in Numerical Descriptive Measures

- Data analysis is objective
 - Should report the summary measures that best meet the assumptions about the data set
- Data interpretation is subjective
 - Should be done in fair, neutral and clear manner

Ethical Considerations

Numerical descriptive measures:

- Should document both good and bad results
- Should be presented in a fair, objective and neutral manner
- Should not use inappropriate summary measures to distort facts

