Economic Risk and Decision Analysis for Oil and Gas Industry CE81.9008

School of Engineering and Technology Asian Institute of Technology

January Semester

Presented by Dr. Thitisak Boonpramote

Department of Mining and Petroleum Engineering, Chulalongkorn University

Descriptive Statistics

Part B: Working With Grouped Data

Grouping Data

- Condensing large data sets into groups simplifies calculations of parameters
- Steps in grouping
 - 1. Define classes for data set to be analyzed
 - 2. Determine **frequency** of data element appearances in each class
 - 3. Calculate absolute and relative frequency
 - 4. Calculate class mark (CM), or midpoint, for each class
 - 5. Proceed with calculation of parameters

Guidelines for Defining Classes

- Number of classes should be between 5 and 20
- Define classes so that every element in data set falls into one and only one class
- No class should be empty

Guidelines for Defining Classes

Approximate number of classes (N_c) for data set with N elements

$$N_c = 1 + 3.322 \log N$$

Class interval (CI) should be same for entire data set

$$CI = \frac{X_{\text{max}} - X_{\text{min}}}{N_c}$$

Determining Mean

Frequency of individual class

$$\overline{X} = \frac{\sum_{i=1}^{n} f_{i}(\mathbf{CM}_{i})}{\sum_{i=1}^{n} f_{i}}$$
 (mid value of individual class)

Class mark

Determining Median, Mode

Lower boundary elements of class preceding Median = L + CIClass interval

Number of frequency of class preceding median class

Number of elements in median class

Cumulative

Mode taken as CM of class with highest frequency of data elements

Determining Geometric, Harmonic Mean

Geometric mean

$$G_m = \exp \left| \frac{\sum_{i=1}^n f_i \ln(CM_i)}{\sum_{i=1}^n f_i} \right|$$

Harmonic mean

$$\mathbf{H}_{m} = \exp \left[\frac{\sum_{i=1}^{n} f_{i}}{\sum_{i=1}^{n} (f_{i}/\mathbf{CM}_{i})} \right]$$

Determining Standard Deviation, Variance

Standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} f_i(CM_i)^2 - \left[\sum_{i=1}^{n} f_i(CM_i)\right]^2 / n}{n}}$$

■ Variance = s²

Calculate Parameters From Grouped Data

Calculate measures of central tendency for grouped drill-bit data

Bit number	Ft. Drilled
1	53
2	69
3	72
4	76
5	80
6	89
20	139

Group data

$$N_c = 1 + 3.322 \log N$$

= 1 + 3.322 log(20)
= 5.322 \cong 5

Calculate class interval

$$CI = \frac{X_{\text{max}} - X_{\text{min}}}{N}$$
$$= \frac{139 - 53}{5} = 17.2 \cong 17$$

Calculate measures of central tendency for grouped drill-bit data

	Class	Class Mark (CM)	Freq. (<i>f</i>)	f (CM)	f (CM) ²	f In(CM)	f/(CM)
	52-69	60.5	2	121.0	7.320.50	8.2053	0.0331
	70-87	78.5	3	235.5	18,486.75	12.0893	0.0382
	88-105	96.5	<i>b</i> = 6	579.0	55,873.50	27.4173	0.0622
'	106-123	114.5	6	697.0	78,661.50	28.4434	0.0524
Ľ	124-141	132.5	3	397.5	52,668.75	14.6597	0.0226
			$\Sigma f = 20$	2,020.0	213,011.00	91.8150	0.2085

Calculate Parameters From Grouped Data

Calculate measures of central tendency for grouped drill-bit data

Class	СМ	f	f (CM)	f (CM) ²	f In(CM)	f/(CM)
		$\Sigma f = 20$	2,020.0	213,011.00	91.8150	0.2085

Mean
$$\overline{X} = \frac{\sum_{i=1}^{n} f_i(CM_i)}{\sum_{i=1}^{n} f_i} = \frac{2,020.0}{20} = 101 \,\text{ft}$$

Calculate measures of central tendency for grouped drill-bit data

Clas	SS	СМ	f	f (CM)	f (CM) ²	f In(CM)	f/(CM)
			$\Sigma f = 20$	2,020.0	213,011.00	91.8150	0.2085

Median

$$M = L + CL \left(\frac{n/2 - a}{b}\right) 88 + 17 \left(\frac{20/2 - 5}{6}\right)$$

= 102.17 ft

Calculate Parameters From Grouped Data

Calculate measures of central tendency for grouped drill-bit data

Class	СМ	f	f (CM)	f (CM) ²	f In(CM)	f/(CM)
		$\Sigma f = 20$	2,020.0	213,011.00	91.8150	0.2085

Geometric mean

$$G_m = \exp\left[\frac{\sum_{i=1}^n f_i \ln(CM_i)}{\sum_{i=1}^n f_i}\right] = \exp\left(\frac{91.8150}{20}\right) = e^{4.5980} = 98.57 \text{ ft}$$

Calculate measures of central tendency for grouped drill-bit data

Class	СМ	f	f (CM)	f (CM) ²	f In(CM)	f/(CM)
		$\Sigma f = 20$	2,020.0	213,011.00	91.8150	0.2085

Harmonic mean

$$H_m = \left[\frac{\sum_{i=1}^n f_i}{\sum_{i=1}^n f_i (f_i / CM_i)} \right] = \frac{20}{0.2085} = 95.92 \text{ ft}$$

Calculate Parameters From Grouped Data

Calculate measures of central tendency for grouped drill-bit data

Class	СМ	f	f (CM)	f (CM) ²	f In(CM)	f/(CM)
		$\Sigma f = 20$	2,020.0	213,011.00	91.8150	0.2085

Standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} f_i (CM_i)^2 - \left[\sum_{i=1}^{n} f_i (CM_i)\right]^2 / n}{n}} = \sqrt{\frac{213,011 - \frac{2,020^2}{20}}{20}}$$
$$= \sqrt{\frac{213,011 - 204,020}{20}} - \sqrt{449.55} - 21.20 \text{ ft}$$

Calculate measures of central tendency for grouped drill-bit data

Class	СМ	f	f (CM)	f (CM) ²	f In(CM)	f/(CM)
		$\Sigma f = 20$	2,020.0	213,011.00	91.8150	0.2085

Variance (s²)

$$s^2 = 21.20^2 = 449.55$$

Frequency Distribution (Histogram)

- Presents distribution of frequencies of values of variables
 - Sometimes used for ungrouped data, usually discrete variables
 - More commonly used for grouped data, either discrete or continuous variables
- Absolute frequency distribution shows actual number of data elements in each class
- Relative frequency distribution shows proportion of data items in each class

Kinds of Distributions

- Cumulative include number or proportion of data elements in and below each class
- Decumulative include number or proportion of data elements in and above each class

Frequency Curve

- Frequency polygon in which data points are fitted to smooth curve
- To fit normal curve to histogram

Number of observations (n = 1 if drawn on proportional frequency) Class interval used to draw histogram _

$$f(x) = \frac{n \times CI}{s\sqrt{2\pi}} e^{-0.5\left(\frac{X-\overline{X}}{s}\right)^2}$$

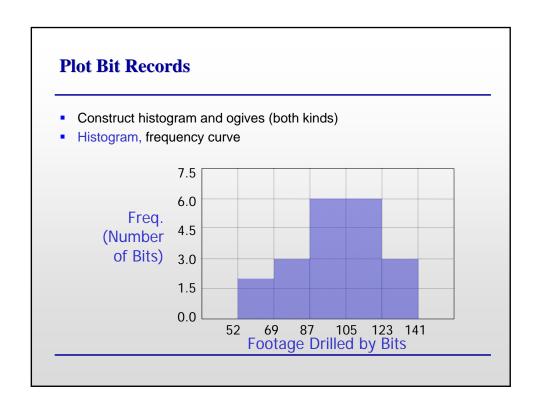
Ogive

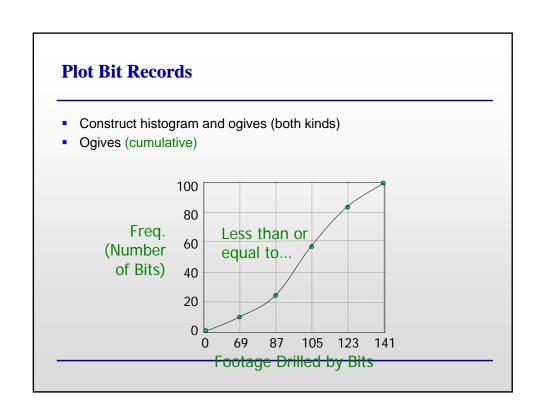
- Presents cumulative frequencies (relative or absolute) vs. class boundaries
 - Cumulative (frequencies equal to or less than) ogive has frequencies plotted at upper boundary of each class
 - Decumulative (frequencies equal to or greater than) ogive has frequencies plotted at lower boundary of each class

Plot Bit Records

Construct histogram and ogives (both kinds)

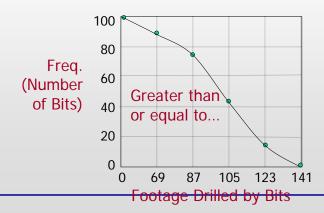
Class	Class Mark (CM)	Freq.	Cum. Freq (CF)	Cum. Rel. Freq.	Decum. Rel. Freq.
52-69	60.5	2	2	2/20=0.10	20/20=1.00
70-87	78.5	3	3+2=5	5/20=0.25	18/20=0.90
88-105	96.5	6	6+5=11	11/20=0.55	15/20=0.75
106-123	114.5	6	6+11=17	17/20=0.85	9.20=0.45
124-141	132.5	3	3+17=20	20/20=0.00	3/20=0.15
		20			





Plot Bit Records

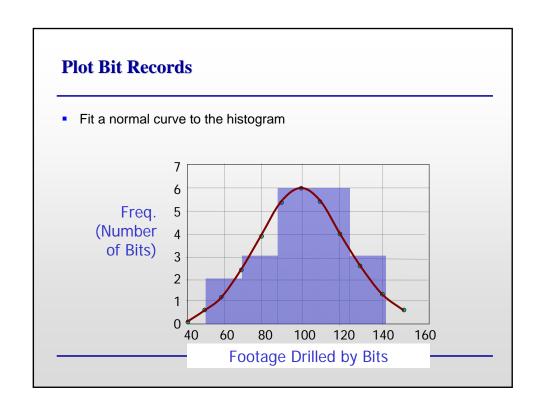
- Construct histogram and ogives (both kinds)
- Ogives (decumulative)

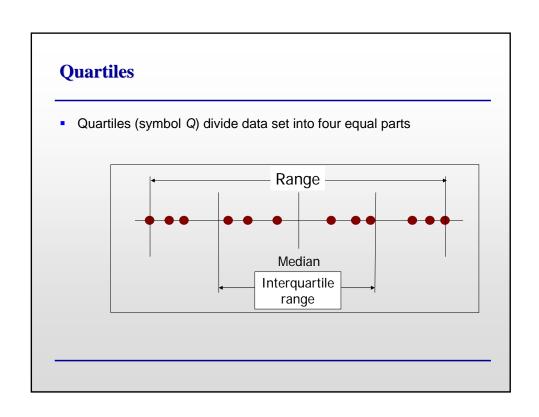


Plot Bit Records

• Fit a normal curve to the histogram

х	$p = -0.5 \left(\frac{x - \overline{X}}{s}\right)^s$	e^p	$f(x) = e^p \frac{20CI}{s\sqrt{2\pi}}$
40	-3.5567	0.0285	0.1702
50	-2.4805	0.0837	0.4992
60	-1.5978	0.2024	1.2070
	•••		
140	-1.4972	0.2238	1.3347
150	-2.3549	0.0949	0.5661





Calculating Quartiles

$$Q_{1} = L_{1} + \operatorname{CI}\left(\frac{n/4 - a_{1}}{b_{1}}\right)$$

$$Q_{2} = L_{2} + \operatorname{CI}\left(\frac{n/4 - a_{2}}{b_{2}}\right)$$

$$Q_{3} = L_{3} + \operatorname{CI}\left(\frac{n/4 - a_{3}}{b_{3}}\right)$$

Lower limits of classes containing quartiles

Analogous to a in equation for computational median

Analogous to *b* in equation for computational median

Other Subdivisions of Data Sets

- Deciles (symbol D) divide data set into 10 equal parts
- Percentiles (symbol P) divide data set into 100 equal parts

Median, second quartile (O_2) , fifth decile (D_5) , and 50th percentile (P_{50}) are identical.

Position Indicator for Fractile

Fractile indicator $(P_i, D_j, or Q_j)$ at which fractile is read from ungrouped data $F = \frac{i}{k}(n+1)$ Maximum number of divisions

Determine Footage Drilled at Fractiles

- Use ungrouped drilling records
- Determine footage drilled for P₅₀, D₇, Q₃, and D₅

Bit number	Ft. Drilled
1	53
2	69
3	72
20	139

$$F(P_{50}) = \frac{50}{100}(20+1) = 10.5$$

10th value = 102; 11th value = 105 $\therefore P_{50} = (102+105)/2 = 103.5$

Determined Footage Drilled at Fractiles

- Use ungrouped drilling records
- Determine footage drilled for P₅₀, D₇, Q₃, and D₅

Bit number	Ft. Drilled
1	53
2	69
3	72
20	139

$$F(D_7) = \frac{7}{10}(20+1) = 14.7$$

14th value = 110; 15th value = 115 $\therefore D_7 = 110+0.7(115-110)=113.5$

Determined Footage Drilled at Fractiles

- Use ungrouped drilling records
- Determine footage drilled for P₅₀, D₇, Q₃, and D₅

Bit number	Ft. Drilled
1	53
2	69
3	72
20	139

$$F(Q_3) = \frac{3}{4}(20+1) = 15.75$$

15th value = 115; 16th value = 116 $\therefore Q_3 = 115 + 0.75(116 - 115) = 115.75$

Determined Footage Drilled at Fractiles

- Use ungrouped drilling records
- Determine footage drilled for P₅₀, D₇, Q₃, and D₅

Bit number	Ft. Drilled
1	53
2	69
3	72
20	139

$$F(D_5) = \frac{5}{10}(20+1) = 10.5$$
Since $D_5 = P_{50}$,
$$D_5 = 103.5$$

Coefficient of Peakedness, a4

Dimensionless value

$$a_4 = \frac{\text{fourth central moment}}{s^4} = \frac{m_4}{s_4}$$

$$\sum_{i=1}^n f_i (X_i - \overline{X})^4$$

$$= \frac{n}{s^4}$$

Coefficient of Skewness, a₃

$$a_3 = \frac{\text{third central moment}}{s^3} = \frac{m_3}{s_3}$$

$$= \frac{\sum_{i=1}^{n} f_i (X_i - \overline{X})^3}{\frac{n}{s^3}}$$

When $a_3 = 0$, curve is symmetric or bell shaped

When $a_3 < 0$, curve is skewed to right

When $a_3 > 0$, curve is skewed to left

Using Spreadsheets (Excel)

- May need to install plug-in(s)
- May enter data in random order
 - No need to sort
 - May need to enter data in single column or row
- Excel uses 'kurtosis' for 'peakedness'

Find Means, Median, Mode

- Enter data in single column
- Use Tools > Data Analysis > Descriptive Analysis
 - Enter range of data
 - Click 'Grouped by columns'
 - Click 'Summary Statistics'

