Economic Risk and Decision Analysis for Oil and Gas Industry CE81.9008

School of Engineering and Technology Asian Institute of Technology

January Semester

Presented by Dr. Thitisak Boonpramote

Department of Mining and Petroleum Engineering, Chulalongkorn University

Review Basic Probability Concept

Basic Concepts in Probability

- A phenomenon is random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions.
- Probability of an outcome of a random phenomenon is the proportion of time it would occur in a very long series of repetitions.

Probability for Equally Likely Outcomes

Number of ways event can occur

Probability of an event = f/N

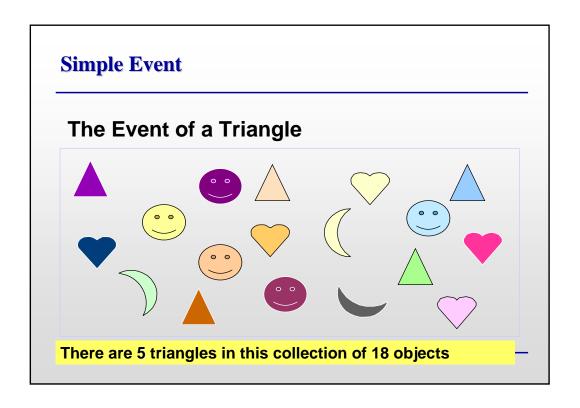
Total number of possible outcomes

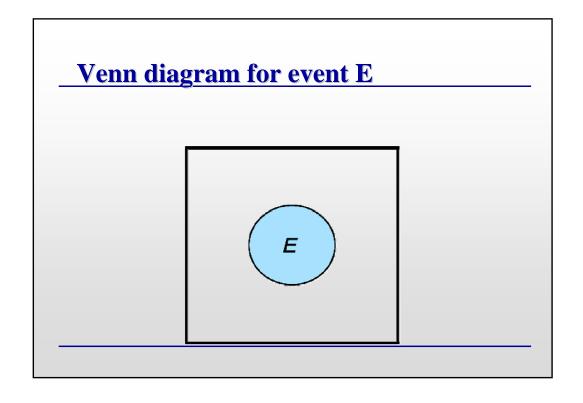
Definitions Used

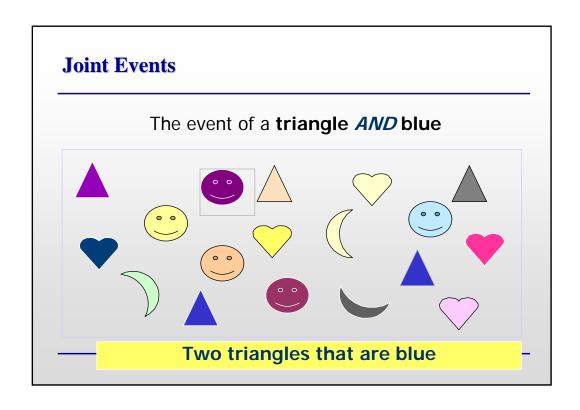
- Random trial or event
 - An action, event or operation that can produce any result or outcome
 - Every possibility has equal chance of being chosen.
- Elementary event
 - Each of the possible results in a single trial or experiment.
 E.g., <u>each</u> coin toss
- Sample space
 - A complete set of elementary events representing all possible outcomes from an experiment. E.g., all coin tosses
- Event set
 - Subset of the sample space

Events

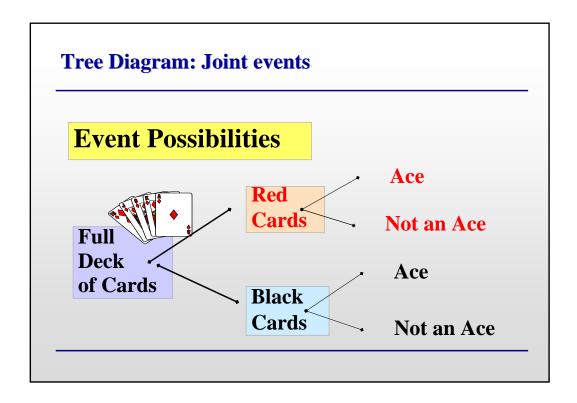
- Simple event
 - Outcome from a sample space with one characteristic
 - e.g.: A red card from a deck of cards
- Joint events
 - Involves two outcomes simultaneously
 - e.g.: An ace that is also red from a deck of cards





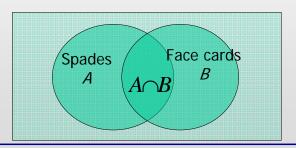


Contingency Table: Joint events A Deck of 52 Cards **Red Ace** Not an **Total** Ace Ace Red 2 24 26 Black 24 26 **Total** 4 48 52 **Sample Space**



Venn Diagrams: Joint events

- Partially overlapping events
 - Part of one event and part of another event can occur together



Operations on Event Sets

Union of two events

- Event set that consists of all the outcomes (sample points) that belong to either A or B or both;
- denoted by AUB

Intersection of two events

- Event set that consists of all the outcomes (sample points) the two event sets A and B have in common;
- denoted by A∩B

Complement of an event set

- Set of all sample points in sample space S not contained in A;
- denoted by \bar{A}

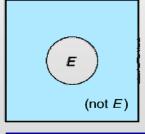
Venn diagram for event

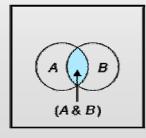
Venn diagrams for

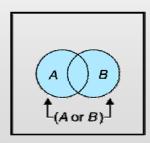
(a) event (not E) : The event "E does not occur"

(b) event (A & B) : The event "both A and B occur."

(c) event (A or B): the event "either A or B or both occur."







(a) (b) (c)

Special Events

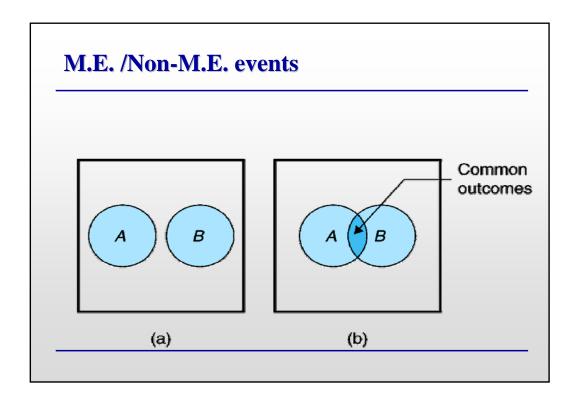
Impossible event
 e.g.: Club & diamond on one card draw

Special Events

Mutually exclusive events

(continued)

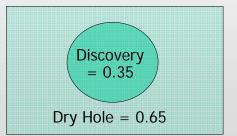
- Two events cannot occur together
- e.g. -- A: queen of diamonds; B: queen of clubs
 - Events A and B are mutually exclusive
- Collectively exhaustive events
 - One of the events must occur
 - The set of events covers the whole sample space
 - e.g. -- A: all the aces; B: all the black cards; C: all the diamonds; D: all the hearts
 - Events A, B, C and D are collectively exhaustive
 - Events B, C and D are also collectively exhaustive



Example: Venn Diagrams for M.E.

Mutually exclusive events

Two or more events that cannot occur together



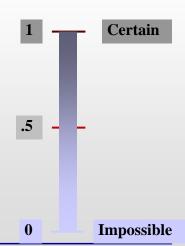
Classical vs. Empirical Approach

Classical Approach Assumptions

- Events are equally likely, collectively exhaustive, and mutually exclusive:
 - Equally likely no outcome more or less likely than any other
 - Collectively exhaustive A set of events that accounts for all of the elementary events in the sample space. The sum of all favorable and unfavorable outcomes equals total number of outcomes
 - Mutually exclusive different outcomes cannot occur simultaneously in a single event

Properties or Axioms

- Probability is the numerical measure of the likelihood that an event will occur
- A number between 0 and 1, called probability of that event, is associated with each event set
- Sum of the probabilities of all mutually exclusive and collectively exhaustive events is 1
- Sum of probabilities of all simple events (or sample points) constituting the sample space is equal to 1
- Probability of compound event is sum of probabilities of simple events comprising the compound event



More Definitions

- Simple probability
 - Probability of occurrence that is *independent* of the occurrence of another event (unconditional);
 - denoted by P(A) or P(B), where A and B are events
- Conditional probability
 - Probability of occurrence that depends on another event;
 - denoted by P(A|B), read as 'probability of A, given that B has occurred'

Simple Probability

- Approach based on a priori or abstract reasoning
- Probability of occurrence of event expressed as P(A)

$$P(A) = \frac{m}{n}$$
 Favorable cases All possible cases

Computing Probabilities

The probability of an event E:

$$P(E) = \frac{\text{number of event outcomes}}{\text{total number of possible outcomes in the sample space}}$$
$$= \frac{X}{T}$$

 Each of the outcomes in the sample space is equally likely to occur

Classical Approach

• Probability of event not happening, $P(\overline{A})$ where \overline{A} is complement of A

$$P(\overline{A}) = \frac{n - m}{n}$$

Same concept stated as law of proportion or law of chance

More Definitions

- Joint probability
 - Probability of more than one event occurring simultaneously or in succession;
 - denoted by *P(AB)*, interpreted as the probability of both A and B
- Marginal probability
 - Sum of joint probabilities

Empirical Approach

- Approach based on experiments and observations which are random
- No bias in favor of any outcome, so all elements have the same chance at selection
- Large number of trials required to establish chance of an event
- Probability of event represents proportion of times (under identical conditions) event can be expected to occur

Empirical Approach Definition

If experiment is repeated a large number of times, under essentially identical conditions, then the limiting value of the ratio of the number of times the Event A happens to the total number of trials of the experiment as the number of trials increases indefinitely is called the probability of the occurrence of A.'

$$P(A) = \lim_{n \to \infty} \frac{m}{n}$$

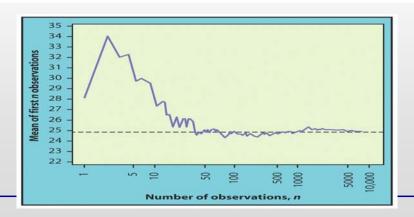
Probability: Long-Run Relative Frequency

Probability = proportion of time it occurs over the long run

- Can be applied when situation can be repeated numerous times and outcome observed each time.
- Relative frequency should settle down to constant value over long run, which is the probability.
- Does not apply to situations where outcome one time is influenced by or influences outcome the next time.
- Cannot be used to determine whether outcome will occur on a <u>single</u> <u>occasion</u> but can be used to <u>predict long-term proportion of times</u> the outcome will occur.

LAW OF LARGE NUMBERS

Draw independent observations at random from any population with finite mean μ . As the number of observations drawn increases, the mean \overline{x} of the observed values gets closer and closer to the mean μ of the population.



Dependent/Independent Events

- Occurrence of independent events in no way affects the occurrence of the other(s)
 - Coin toss always has same two outcomes
- Dependent events are affected by previous trials
 - Removing a card from a deck changes number of cards remaining (outcomes) unless card is replaced before next draw

When Will It Happen?

Probability an **outcome will occur** on any given instance is p. Probability the **outcome will not occur** is (1 - p).

Outcome each time is independent of outcome all other times.

Probability it doesn't occur on 1st try but does occur on 2nd try is (1 - p)p.

Try on Which the Outcome First Happens	Probability		
1	p		
2	(1-p)p		
3	$(1-p)(1-p)p = (1-p)^2p$		
4	$(1-p)(1-p)(1-p)p = (1-p)^3p$		
5	$(1-p)(1-p)(1-p)(1-p)p = (1-p)^4p$		

Rule of Probability

Complementation Rule

Rule 1: If there are **only two possible outcomes** in an uncertain situation, then their probabilities **must add to 1**.

Since an event either occurs or does not occur, and since the sum of collectively exhaustive events must equal one, then

P(A) + P(A) = 1Marginal probability of Marginal probability of

Marginal probability of Marginal probability of no Event A Event A

 $P(\overline{A}) = 1 - P(A)$

Example: If probability of a single birth resulting in a boy is 0.51, then the probability of it resulting in a girl is 0.49.

Addition Rule and Mutually Exclusive

Rule 2: If two outcomes cannot happen simultaneously, they are said to be **mutually exclusive.**

The **probability of one** <u>or</u> the other of two mutually exclusive outcomes happening is the <u>sum</u> of their individual probabilities.

$$P(A \text{ or } B) = P(A) + P(B)$$

Example: If you think probability of getting an A in this class is 50% and probability of getting a B is 30%, then probability of getting either **an A or a B** is 80%. Thus, probability of getting C or less is 20% (using Rule 1).

Addition Rule: Compound event

For N mutually exclusive events

$$P(A \text{ or } B \text{ or } C \dots \text{ or } N) = P(A) + P(B) + P(C) + \dots + P(N)$$

For events that are not mutually exclusive

$$P(A \text{ or } B) = P(A) + P(B) - P(AB)$$

Addition Rule: Compound event

When two or more events will happen at the same time, and the events are **not** mutually exclusive, then:

$$P(X \text{ or } Y) = P(X) + P(Y) - P(X \text{ and } Y)$$

For example, what is the probability that a card chosen at random from a deck of cards will either be a king or a heart?

P(King or Heart) = P(X or Y) = 4/52 + 13/52 - 1/52 = 30.77%

Computing Compound Probability

Probability of a compound event, A or B:

$$P(A \text{ or } B) = P(A \cup B)$$

 $= \frac{\text{number of outcomes from either A or B or both}}{\text{total number of outcomes in sample space}}$

E.g.
$$P(\text{Red Card or Ace})$$

$$= \frac{4 \text{ Aces} + 26 \text{ Red Cards} - 2 \text{ Red Aces}}{52 \text{ total number of cards}}$$

$$= \frac{28}{52} = \frac{7}{13}$$

Addition Rule and Compound Probability

$$P(A_1 \text{ or } B_1) = P(A_1) + P(B_1) - P(A_1 \text{ and } B_1)$$

	Eve		
Event	B ₁	B ₂	Total
A ₁	P(A ₁ and B ₁)	P(A ₁ and B ₂)	P(A ₁)
A ₂	P(A ₂ and B ₁)	P(A ₂ and B ₂)	P(A ₂)
Total	P(B ₁)	P(B ₂)	1

For Mutually Exclusive Events: P(A or B) = P(A) + P(B)

Addition Rule and M.E.

• Addition rule.

$$P=P_a + P_b$$
.

Deal with several outcomes such as the question of whether oil or gas will be the dominant phase in the prospect being evaluated.

Multiplication Rule and Independent

Rule 3: If two events **do not influence** each other, and if knowledge about one doesn't help with knowledge of the probability of the other, the events are said to be **independent** of each other.

If two events are independent, the probability that they both happen is found by multiplying their individual probabilities.

Multiplication Rule and Joint Probability

when two or more events will happen at the same time, and the events are independent, then the <u>special rule</u> of multiplication law is used to find the joint probability:

$$P(X \text{ and } Y) = P(X) \times P(Y)$$

when two or more events will happen at the same time, and the events are dependent, then the general rule of multiplication law is used to find the joint probability:

$$P(X \text{ and } Y) = P(X) \times P(Y|X)$$

Multiplication Rule

For two independent events

$$P(AB) = P(A \text{ and } B) = P(A) \times P(B)$$

For n independent events

$$P(ABC...N) = P(A \text{ and } B \text{ and } C... \text{ and } N)$$

= $P(A) \times P(B) \times P(C) \times ... \times P(N)$

Multiplication Rule for Independent events

Multiplication rule.

$$P=P_a \times P_b \times P_c \times P_d$$

Used when estimating the probability of discovery for mapped prospect.

Prospect probability is a product of several independent factors (such as reservoir, trap, charge and retention).

Joint Probabilities

Probability of obtaining a particular combination of events.

- E.g., probability of flipping a coin twice and getting heads both times.
 - **P** (A and B) = n(A and B) / n(S)

Example: Woman will have two children.

Assume outcome of 2nd birth independent of 1st and probability birth results in boy is 0.51.

Then probability of a boy followed by a girl is (0.51)(0.49) = 0.2499.

About a 25% chance a woman will have a boy and then a girl.

Computing Joint Probability

The probability of a joint event, A and B:

$$P(A \text{ and } B) = P(A \cap B)$$

 $= \frac{\text{number of outcomes from both A and B}}{\text{total number of possible outcomes in sample space}}$

E.g.
$$P(\text{Red Card and Ace})$$

$$= \frac{2 \text{ Red Aces}}{52 \text{ Total Number of Cards}} = \frac{1}{26}$$

Joint Probability Using Contingency Table

		Eve			
	Event	B ₁	B ₂	Total	
	A ₁	P(A ₁ and B ₁)	P(A ₁ and B ₂)	P(A ₁)	
	A ₂	$P(A_2 \text{ and } B_1)$	P(A ₂ and B ₂)	P(A ₂)	
	Total	P(B ₁)	P(B ₂)	1	
Joint Probability Marginal (Simple) Probability				oility	

Multiplication Rule and Conditional Probability

 For dependent events (when the probability of A occurring given that B has occurred is different from the marginal probability of A)

$$P(AB) = P(A \text{ and } B)$$

= $P(B) \times P(A|B) \text{ or } P(A) \times P(B|A)$

Conditional Probability

The probability that event B occurs given that event A has occurred is called a **conditional probability.** It is denoted by the symbol $P(B \mid A)$, which is read "the probability of B given A." We call A the **given event.**

Conditional Probability

Definition of conditional probability in terms of unconditional probabilities

$$P(B|A) = P(A \text{ and } B)/P(A)$$

Example: 50% of people entering a store ask for help. (marginal prob.)

15% of people entering a store both buy and ask for help. (joint prob)

If someone asks for help, how likely is it that they will buy? (conditional)

Computing Conditional Probability

• The probability of event A given that event B has occurred:

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

E.g.

P(Red Card given that it is an Ace)

$$= \frac{2 \text{ Red Aces}}{4 \text{ Aces}} = \frac{1}{2}$$

Conditional Probability Using Contingency Table

	Со		
Туре	Red	Black	Total
Ace	2	2	4
Non-Ace	24	24	48
Total	26	26	52

Revised Sample Space

$$P(\text{Ace } | \text{Red}) = \frac{P(\text{Ace and Red})}{P(\text{Red})} = \frac{2/52}{26/52} = \frac{2}{26}$$

Conditional Probability and Multiplication

Conditional probability:

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

Multiplication rule:

$$P(A \text{ and } B) = P(A \mid B) P(B)$$

= $P(B \mid A) P(A)$

Conditional Probability and Statistical Independence

Events A and B are independent if

$$P(A \mid B) = P(A)$$

or $P(B \mid A) = P(B)$
or $P(A \text{ and } B) = P(A)P(B)$

 Events A and B are independent when the probability of one event, A, is not affected by another event, B

Simple Probability Rules

Rule 4: If the ways in which one event can occur are a subset of those in which another event can occur, then the **probability of the subset event** cannot be higher than the probability of the one for which it is a subset.

Example: Suppose you are 18 and speculating about your future. You decide the probability you will eventually **get** married and have children is 75%.

By Rule 4, probability that you will eventually **get married is** at least 75%.

Summary of Probability Rules

Notation

Denote "events" or "outcomes" with capital letters A, B, C, and so on. If A is one outcome, all other possible outcomes are part of "A complement" = A^C .

P(A) is the probability that the event or outcome A occurs. For any event A, $0 \le P(A) \le 1$.

Rule 1

$$P(A) + P(A^C) = 1$$

A useful formula that results from this is

$$P(A^C) = 1 - P(A)$$

Rule 2

If events A and B are mutually exclusive, then

$$P(A \text{ or } B) = P(A) + P(B)$$

Rule 3

If events A and B are *independent*, then

$$P(A \text{ and } B) = P(A) P(B)$$

Rule 4

If the ways in which an event B can occur are a subset of those for event A, then

 $P(B) \le P(A)$

Probability Exercises

Reservoir Example

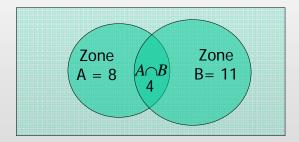
Information: 50 wells drilled in area with blanket sands

- Zone A has 8 productive wells
- Zone B has 11 productive wells
- 4 productive wells intersect both zones
- Determine productive wells in
 - Zone A but not B
 - Zone B but not A
 - Either A or B
- Determine number of wells discovered
- Determine number of dry holes

Reservoir Example (cont.)

Information: 50 wells drilled in area with blanket sands

$$n(S) = 50$$
 $n(A) = 8$ $n(B) = 11$ $n(A \cap B) = 4$



Reservoir Example (cont.)

$$n(S) = 50$$
 $n(A) = 8$ $n(B) = 11$ $n(A \cap B) = 4$

- Determine productive wells in:
 - Zone A but not B

$$n(A \cap \overline{B}) = n(A) - n(A \cap B) = 8 - 4 = 4$$

Zone B but not A

$$n(\overline{A} \cap B) = n(B) - n(A \cap B) = 11 - 4 = 7$$

• Either A or B $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 8 + 11 - 4 = 15$

Reservoir Example (cont.)

$$n(S) = 50$$
 $n(A) = 8$ $n(B) = 11$ $n(A \cap B) = 4$

Determine number of wells discovered

$$n(A \cap \overline{B}) + n(\overline{A} \cap B) + n(A \cap B) = 4 + 7 + 4 = 15$$

Determine number of dry holes

$$n(S) - n(A \cup B) = 50 - 15 = 35$$

Probability Table

Alternative to Venn diagram for solving problems like previous examples

		Zone B		
		Yes	No	Total
Zone A	Yes —	4		→ 8
	No —			-
Total		11	•	→ 50 [†]

Pivot Column (100% probability)

Probability Table

Alternative to Venn diagram for solving problems like previous examples

		Zone B		
		Yes	No	Total
Zone A	Yes	4	4	8
	No	7	35	42
Total		11	39	50

Marginal Probabilities Pivot Column

Calculate Probability of Contamination

Information: 100 random samples of crude oil

- 45 contain sulfur
- 40 contain mercaptans
- 35 contain both
- Calculate probability that sample contains
 - Either sulfur or mercaptans
 - Sulfur only
 - Neither sulfur nor mercaptans

Calculate Probability of Contamination (cont.)

Information: 100 random samples of crude oil

$$n(C) = 100$$
 $n(S) = 45$ $n(M) = 40$ $n(S \cap M) = 35$

- Calculate probability that sample contains:
 - Either sulfur or mercaptans

$$(S \cup M) = \frac{[n(S) + n(M) - n(S \cap M)]}{100}$$
$$= \frac{45 + 40 - 35}{100} = 0.5 \text{ or } 50\%$$

Calculate Probability of Contamination (cont.)

$$n(C) = 100$$
 $n(S) = 45$ $n(M) = 40$ $n(S \cap M) = 35$

- Calculate probability that sample contains:
 - Sulfur only

$$p(S \cup \overline{M}) = \frac{n(S) - n(S \cap M)}{100}$$
$$= \frac{45 - 35}{100} = 0.1 \text{ or } 10\%$$

Calculate Probability of Contamination (cont.)

$$n(C) = 100$$
 $n(S) = 45$ $n(M) = 40$ $n(S \cap M) = 35$

- Calculate probability that sample contains
 - Neither sulfur nor mercaptans

$$p(\overline{S} \cap \overline{M}) = \frac{n(C) - n(S \cup M)}{100}$$
$$= \frac{100 - 50}{100} = 0.5 \text{ or } 50\%$$

Drilling Successive Discoveries

Information: Ten prospective leases acquired

- One well to be drilled in each lease
- All have equal chances of success
- Seismic shows 3 will be commercial
- Calculate probability of drilling first two wells as successive discoveries

Drilling Successive Discoveries

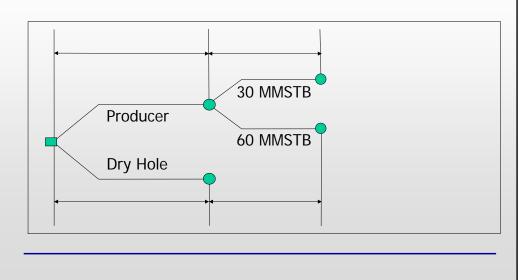
Let W_1 be Well 1 and W_2 be Well 2

$$P(W_1) = \frac{3}{10}$$
 $P(W_2|W_1) = \frac{2}{9}$

$$P(W_1W_2) = P(W_1) \times P(W_2|W_1) = \frac{3}{10} \times \frac{2}{9}$$
$$= \frac{6}{90} = \frac{1}{15} = 0.0667 \text{ or } 6.67\%$$

Probability Trees

- Diagrams representing sequences of lines depicting probabilistic events
 - Branch to all possible sequences that can occur in any situation
- Pictorial presentation of conditional probabilities
- Show all possible branches for each event



Probability Trees

- Each branch is labeled with event taking place at branch and corresponding probability of occurrence given the prior sequence of events required to reach that point in the tree
 - Probabilities on first branch of tree are simple or unconditional probabilities
 - All probabilities after first branch are conditional probabilities because they assume branches to the left model events that have already taken place

Probability Trees

- At sources of branches, called nodes, branches must be mutually exclusive and collectively exhaustive
 - Probabilities at each node must sum to one
 - When probabilities from origin of tree to any terminal point are multiplied, joint probability of that particular sequence of events is obtained

Typical Probability Tree Reserves Well Status Status $3/10 \times 2/3 = 2/10$ 30 MMSTB Res = $2/10 \times 30 = 6$ = 2/3Producer = 3/10 $3/10 \times 1/3 = 1/10$ 60 MMSTB Res = $1/10 \times 60 = 6$ = 1/3 Dry Hole= 7/10 Simple Conditional **Joint**

Probability and Statistics

- Statistics deal with what we observe and how it compares to what might be expected by chance.
- A set of probabilities corresponding to each possible value of some variable, X, creates a <u>probability distribution</u>
 - Common examples include
 - Normal (Gaussian),
 - Poisson,
 - Exponential,
 - Binomial, etc