Economic Risk and Decision Analysis for Oil and Gas Industry CE81.9008

School of Engineering and Technology Asian Institute of Technology

January Semester

Presented by Dr. Thitisak Boonpramote

Department of Mining and Petroleum Engineering, Chulalongkorn University

Structuring Decisions using Decision Tree

Introduction

- Decision Tree Analysis is one of the tools available to aid in the decision making process.
- Decision Tree is diagrammatic representation of decision situation that chronologically displays all the decisions and uncertainties.
- It also provides a probability based solution, and its main appeal is its intuitive approach and ease of use.

Decision Trees Described

- Decision trees
 - Help decision maker develop clear understanding of structure of problem
 - Make it easier to determine possible scenarios that can result if particular course of action chosen
 - Help decision maker judge nature of information needed for solving given problem
 - Help decision maker identify alternatives that maximize EMV
 - Serve as excellent communication medium

Decision Trees

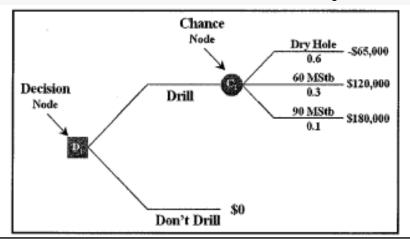
- Decision trees are composed of **nodes** that are connected by **branches**.
- The nodes represent points in time.
 - A decision node is a time when a decision is made.
 - A chance node is a time when the result of an uncertain event becomes known.
 - An end node indicates that the problem is completed - all decisions have been made, all uncertainty have been resolved and all payoffs received

Decision Trees

- Time proceeds from *left to right*
 - This means that branches leading into a node (from the left) have already occurred.
 - Any branches leading out of a node (to the right) have not yet occurred.
- Branches leading out of a decision node represent the possible decisions; the decision maker can choose the preferred branch.
- Branches leading out of probability nodes represent the possible outcomes of uncertain events; the decision maker has no control over which of these will occur.

Decision Trees

- Probabilities are listed in the chance nodes.
- These probabilities are conditional on the events that have already been observed (those to the left).
- The probabilities on branches leading out of any particular probability node must add to 1.
- Cash flows are shown below the branches where they occur, and cumulative values are shown to above the branches.

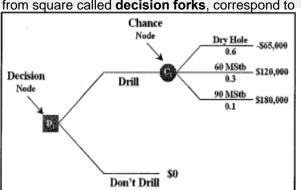

Decision Making Elements

- Although there is a wide variety of contexts in decision making, all decision making problems have three elements:
 - The set of decisions (or strategies) available to the decision maker
 - The set of possible outcomes and the probabilities of these outcome
 - A value model that prescribes results, usually monetary values, for the various combinations of decisions and outcomes.
- Once these elements are known, the decision maker can find an "optimal" decision.

Example Decision Tree: Drill or Don't Drill

From left to right

- •Typically start with a decision to be made
- •Proceed to other decisions or chance events in chronological order



Conventions on Decision Tree

Decision Nodes

- •Represented by **square** \square
- •Point at which we have control and must make a choice
- •Assigned sequential numbers (D₁ here)
- •May be followed by another decision node or chance node
- •Branches emanating from square called decision forks, correspond to

choices available



Conventions on Decision Tree

Chance Nodes

- •Represented by **circle O**, numbered sequentially (C₁ in example)
- •Point at which we have no control, chance determines outcome
- •Chance event probabilistic
- •May be followed by series of decision nodes or chance nodes
- •Branches emanating from circle called chance forks, represent

possible outcomes

Conventions on Decision Tree

- Probability or chance
 - Likelihood of possible outcomes happening
- End, terminal, or payoff node
 - Payoff deterministic financial outcome of decision
 - Node represented by triangle (not on example)
 - Has no branches following, returns payoff and probability for associated path

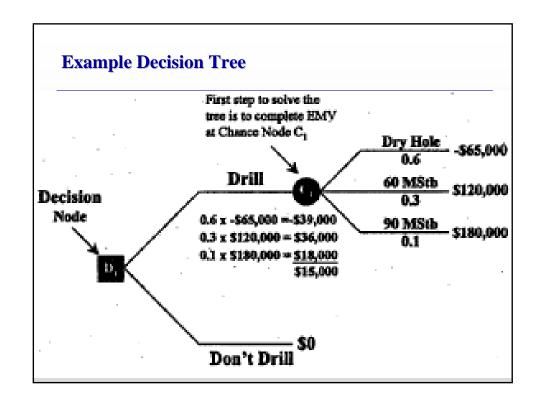
Guidelines for Designing Trees

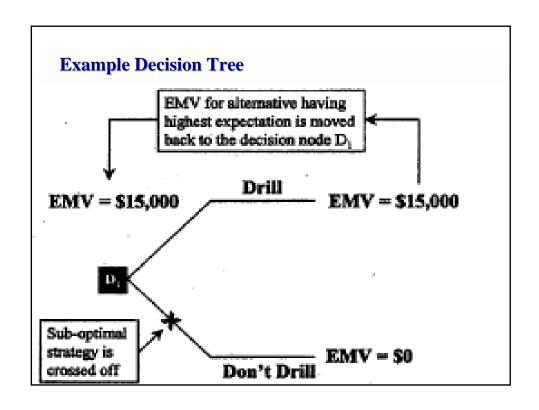
- Tree construction is iterative we can change our minds as we learn more
- We should keep trees as simple as possible
- Define decision nodes so we can choose only one option (but we should describe every option)

Guidelines for Designing Trees

- We should design chance nodes so they are mutually exclusive and collectively exhaustive
- Tree should proceed chronologically from left to right
- Sum of probabilities should equal one at each chance node
- Remember that often we can draw a tree in number of different ways that look different but that are structurally equivalent

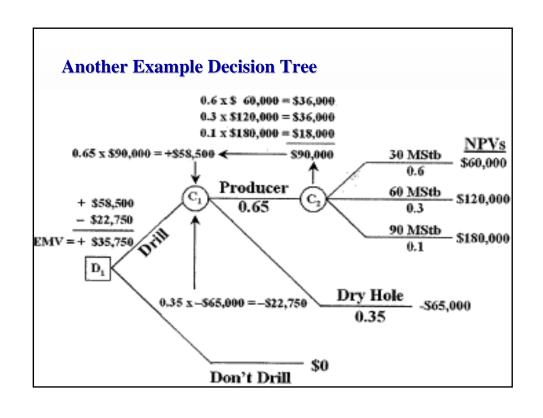
Solving Decision Trees

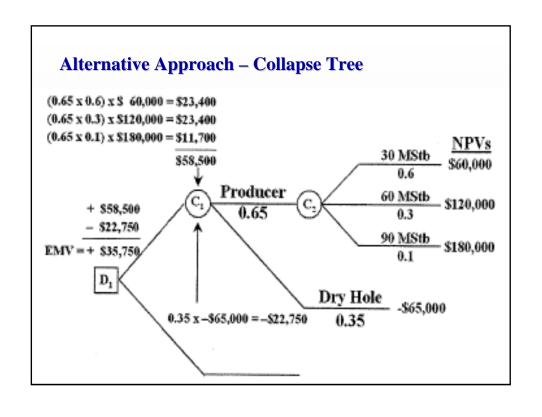

- Decision analysis on tree can produce expected value of model, standard deviation, and risk profile of optimum strategy
- Method of calculating optimum path called folding back or rolling back tree
- Solve from right to left consider later decisions first

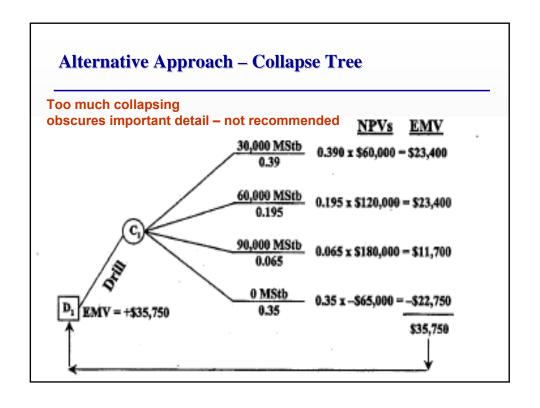

Solving Decision Trees

- Chance node reduction
 - Calculate expected value of rightmost chance nodes and reduce to single event
- Decision node reduction
 - Choose optimal path of rightmost decision nodes and reduce to single event (choose maximum E{C_i} at decision node)
- Repeat
 - Repeat procedure until you arrive at final, leftmost, decision node

Example Decision Tree


- Lucky Oil Company wants to decide whether to drill new prospect
- Geologists and engineers expect
 - Probability of dry hole 60%, NPV -\$65M
 - Probability of 60M STB 30%, NPV \$120M
 - Probability of 90M STB 10%, NPV \$180M





Another Example Decision Tree

- Lucky Oil Company plans to drill a well, wants to determine EMV of drilling
- 35% chance of dry hole, NPV -\$65M
- 65% chance of producer if successful
 - 60% chance of 30M STB, NPV \$60M
 - 30% chance of 60M STB, NPV \$120M
 - 10% chance of 90M STB, NPV \$180M

Constructing Risk Profiles

- Risk profile is distribution function describing chance associated with every possible outcome of decision model
- Steps to generate risk profile
- 1. Reduce chance nodes (collapse tree)
- Reduce decision nodes consider only optimal branches

Steps in Constructing Risk Profiles

- Repeat steps 1 and 2 until tree is reduced to single chance node with set of values and corresponding probabilities
- 4. Generate risk profile
 - Final set of payoff and probability pairs defines discrete probability distribution used to generate risk profile
 - Can graph risk profile as discrete cumulative density distribution or scatter diagram

Steps in Constructing Risk Profile

5. Calculate expected value, variance, and standard deviation, as in example

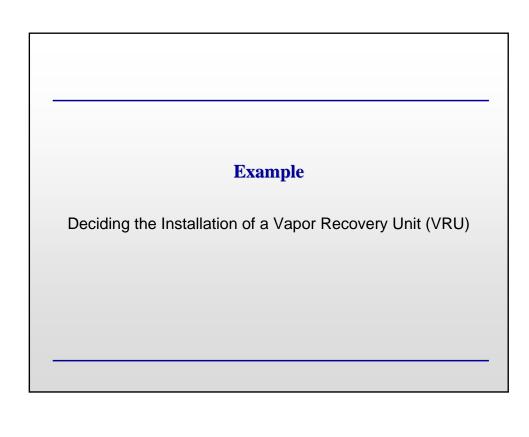
Unconditional Probability, p _i	NPV, X _i , \$M	EMV, \$M	Variance,\$MM p _i (X _i -EMV)²
0.350	-65	-22.75	3,552.697
0.065	180	11.70	1,352.524
0.195	120	23.40	1,384.122
0.390	60	23.40	229.344
		35.75	6,518.687

 $s = \sqrt{6,518.687e6} = \$80.74M$

Spreadsheet Applications

- Excel built-in functions simplify calculation of EMV, variance, standard deviation
- Palisade's PrecisionTree assists us in constructing and solving decision trees

Excel SUMPRODUCT Function

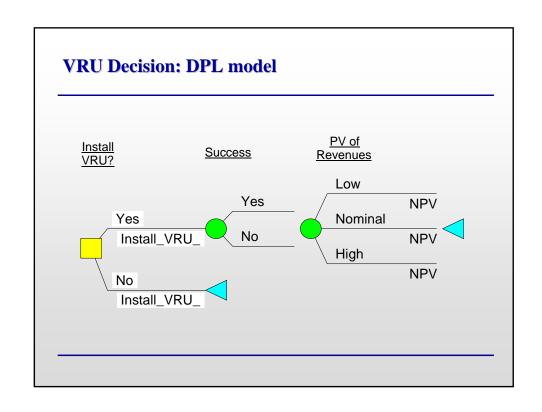

	B	e in the		
3	Unconditional	NPV		
	Probability, p	X, (\$)		
5	0.350	-\$65,000		
6	0.065	\$180,000		
	0.195	\$120,000		
N	0.390	\$60,000		
9.	1.000			
10 EMV		\$35,750		
11	Variance, s ²	\$6,518,687,500		
12 Standard Deviation		\$80,738		
	C10=SUMPRODUCT(B5:B8,C5:C8)			
	C11=SUMPRODUCT(B5:B8,C5:C8^2)-C10^2			
C12=SQRT(C11)				

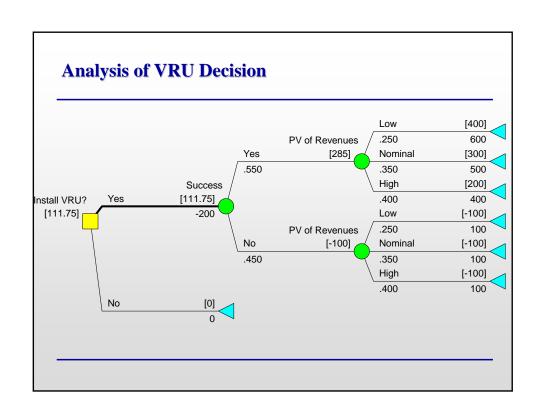
PrecisionTree

- Part of Palisades suite
- Add-in to Microsoft Excel
- Allows us to create and solve decision trees in Excel
- Also capable of performing sensitivity analysis, displaying results as spider graphs and tornado charts

Running Precision Tree

- Pages 212 to 226 of Mian, Vol. II, serve as a tutorial for using PrecisionTree to create and solve decision trees
- Be sure that you can reproduce Examples 3-10, 3-11, and 3-12


Vapor Recovery Unit (VRU)


- Sometimes the output of an oil well can be enhanced by the installation of a Vapor Recovery Unit (VRU).
- Based on his experience with similar wells, the manager of this operation estimates that there is a 55% chance that the VRU installation on this well would be economically successful.
- If the project is successful, the economic life of the well is expected to be 10 years.

Vapor Recovery Unit (VRU)

- The VRU will cost \$200,000 to install, and will have no salvage value after 10 years.
- If the project is not successful, the VRU will have a salvage value of \$100,000.
- The estimates of the return for a successful project are as follows:

<u>Probability</u>	PV of Cash Flows
0.25	\$600,000
0.35	\$500,000
0.40	\$400,000

