Economic Risk and Decision Analysis for Oil and Gas Industry CE81.9008

School of Engineering and Technology Asian Institute of Technology

January Semester

Presented by Dr. Thitisak Boonpramote

Department of Mining and Petroleum Engineering, Chulalongkorn University

Project Screening by Dominance

Investments Criteria

Maximum return

If the return is *risk-free (certain)*, all investors prefer the **higher return**Maximum expected return

If two risky assets have the **same variance** of the returns, risk-averse investors prefer the one with the **higher expected return***

Minimum variance of the return

If two risky assets have the **same expected return**, risk-averse investors prefer the one with the **lower variance of return***

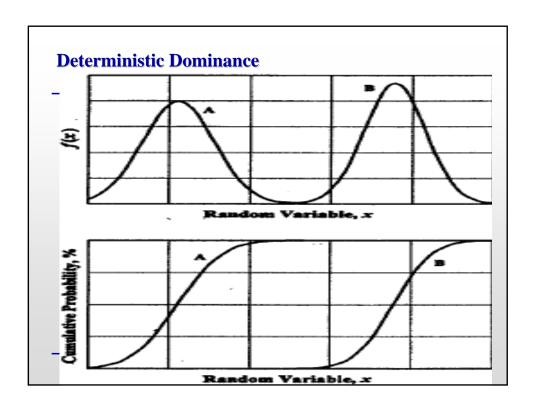
Risk aversion

Investors prefer a **certain dollar** to a lottery with an **expected return** of one dollar

Mean-Variance Criterion

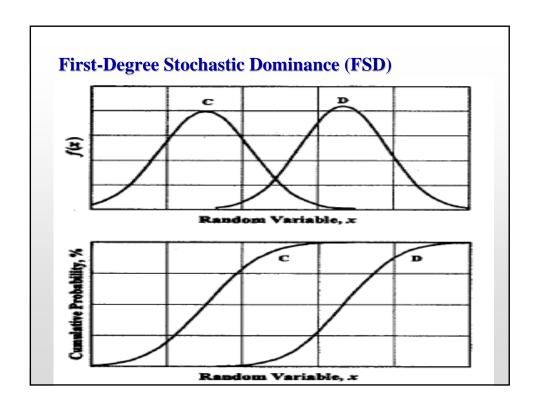
Chose the investment with the **lower variance of return** and **higher expected return**

Mean-Variance Criterion

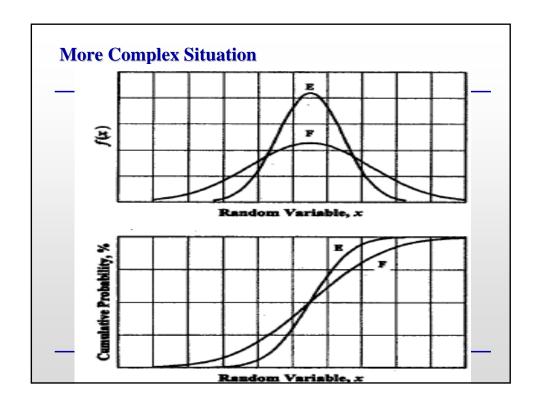

- Decision maker may use EMV and standard deviation to screen or rank alternatives
- Mean-variance approach favored by some risk-averse decision makers seeks to choose alternative that yields highest expected return with lowest variance

Mean-Standard Deviation Screening Method

- Approach more appropriate when probability distribution of each alternative can be represented by mean and standard deviation
 - Normal distribution good example of appropriate distribution
- When distribution not described completely by mean and standard deviation, best to compare distributions themselves


Dominance

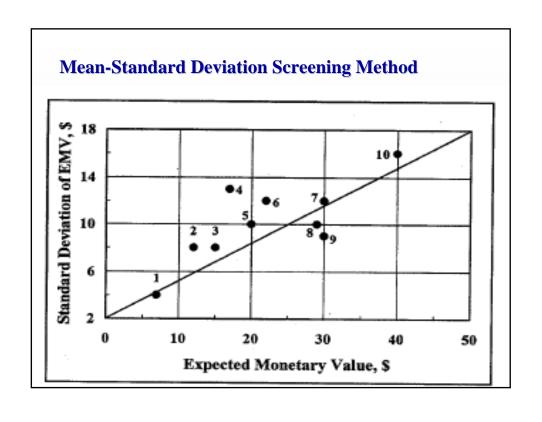
- When we can compare pdf and cdf of alternatives, we can use dominance rules to choose between alternatives
- Situations include
- Deterministic dominance pdf's, cdf's, don't intersect, one alternative always better
- First degree stochastic dominance pdf's intersect,
 cdf's don't, one alternative still clear choice over other
- Second degree stochastic dominance less clear


Deterministic Dominance

- The **PDF** of alternative B is **always to the right** of the PDF of alternative A.
- PDF for the two investment alternatives A and B do not intersect.
- Therefore, alternative A is clearly dominated by alternative B
- The EMV of B being certainly higher than A
- This situation is referred to as deterministic dominance.
- Alternative B has a higher expected mean and lower expected S.D. (mean-variance criteria)
- In this case, alternatives are ranked based on maximized EMV.

First-Degree Stochastic Dominance (FSD)

- PDF of two investments do intersect
- But the corresponding CDF do not intersect, then a condition of first degree stochastic dominance exists.
- It cannot be said *with certainty* one alternative will produce higher EMV than the other
- However, it can be said that for all EMVs alternative D is more likely to exceed the EMV of C
- Alternatives in this case may be ranked based on maximized EMV.


Second-Degree Stochastic Dominance (SSD)

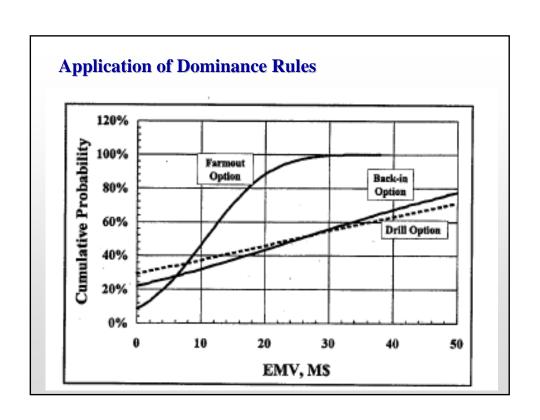
- Both the PDFs and their corresponding CDFs of alternatives intersect.
- If the alternatives have the **same expected value**, but the S.D. of alternative F is more than the S.D. of alternative E. Therefore, alternative **F** is more risky.
- The **CDF** shows up to the **point of crossover**, investment E dominated investment F while after the crossover point investment F dominates investment E.
- This situation is called second-degree stochastic dominance
- Comparison of the areas between the F dominated part and the E dominated part will give the overall extent of dominance. The part with the larger area is the dominating investment.

Second-Degree Stochastic Dominance (SSD)

Alternative
$$a_j$$
 dominates a_i in the sense of SSD if

$$\int_{-\infty}^{z} [F_i(y) - F_j(y)] dy \ge 0$$
for all z over y .

Mean-Standard Deviation Screening Method


- Investments 1, 7, 8, 9, and 10 provide greater EMV for given level of risk than other investment opportunities
 - Determines "efficient frontier"
- Choice between investments depends on how risk averse decision maker is
 - Investment 10 offers greatest reward, but is highest risk

Application of Dominance Rules

Out- come State	Proba- bility	Drill with 37.5%		Farm out with ORI		Back in with 37.5%	
		NPV	EMV	NPV	EMV	NPV	EMV
Dry hole	0.25	-30.000	-7.500	0	0	0	0
20 MSTB	0.30	4.357	1.307	8.733	2.620	0.750	0.225
35 MSTB	0.25	45.448	11.362	14.646	3.662	34.142	8.536
50 MSTB	0.15	87.411	13.112	20.693	3.104	73.712	11.057
65 MSTB	0.05	125.863	6.293	26.401	1.320	111.141	5.557
EMV, M\$			24.574		10.706		25.375
Standard deviation, M\$			45.622		7.809		32.869

Application of Dominance Rules

- Assume normal distributions for each case
 - Allows use of EMV, standard deviation to generate cdf

Application of Dominance Rules

- Back-in option dominates drill option for 0<EMV<\$27M</p>
- Drill option dominates back-in option for EMV>\$27M
- Area dominated by back-in option slightly larger than area dominated by drill option
 - Back-in option has second-degree stochastic dominance over drill option