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Steinar Ekern 

Option pricing applications in capital budgeting decisions are still in the development 
stage. This paper uses concepts and methods from option pricing theory to evaluate 
real projects rather than financial ones. Within a petroleum projects context such 
real options include development and operations of satellite fields, break-even values 
of incremental capacity, and flexibility value with compound development and 
operations options. The option pricing results may be quite dtxerent from those 
obtained by traditional capital budgeting and decision tree approaches. Some related 
papers on real options are also briefry noted. 
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This paper applies an option pricing approach to 
capital budgeting exemplified by evaluation of petro- 
leum projects. The purpose is to show that concepts 
and methods from option pricing theory and the 
related contingent claims analysis may be quite useful 
additions to the analysts’ tool kit for real investments. 

As evidenced by the bibliography of Cox and 
Rubinstein [SJ, the option literature is both extensive 
and impressive. In a recent survey Mason and Merton 
[16] classify the option applications into three cate- 
gories: 

(i) ‘past’: traded financial options, by now firmly 
established in financial practice; 

(ii) ‘present’: corporate securities interpreted as op- 
tions, representing the state-of-the-art in financial 
practice; and 
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(iii) ‘future’: real options aspects of investments pro- 
jects, still being in the development stage within 
academic research, but holding promise as a part 
of financial practice in the future. 

This paper falls within the ‘future applications’ cate- 
gory. Without purporting to report on major theore- 
tical advances of its own, it builds on an applied 
research programme aimed at giving analysts in oil 
companies as well as in government a rudimentary 
insight into option-based project evaluation. 

Compared to traditional discounted cash flow 
methods, the option framework relies more heavily on 
market-based input data and yields improved esti- 
mates of the expected cash flow elements. Moreover, 
the approach avoids the need to specify appropriate 
risk-adjusted discount rates. From interpreting a real 
investment opportunity as an option, the investment 
may be worthwhile (the option value is positive) even 
if its expected cash flow is worth less than the 
investment cost (the option is out-of-the-money). 
Similarly, if making the investment is interpreted as 
exercising that option, a positive net present value is 

not a clearcut go signal (in-the-money American 
options may be worth more alive than dead). Thus, 
conventional standard results are refuted, as a tradi- 
tionally calculated positive net present value is neither 
a necessary nor a sufficient condition for a project to 
be profitable. 
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When superimposed on decision trees, the option 
pricing approach is far superior when evaluating 
time-distributed, uncertain outcomes. This is an im- 
portant feature, as proper and consistent evaluation 
is necessary for pruning the tree to determine the 
optimal decision. 

Production 

Incremental A 
capacity? 

Yes -__-_-- 

Throughout the paper the option approach is illu- 
strated by a highly stylized general example from a 
petroleum environment. Suppose that a minor reser- 
voir has been discovered close to a major oil field 
which is operating at its current capacity (see Figure 
1). The minor reserve contains such a small amount 
of hydrocarbons that development and extraction of 
that field separately is out of the question. However, 
the minor field may be linked up to the main field as 
a satellite. If so, the satellite may then draw upon the 
processing and transport facilities of the main field, 
provided the latter one is operating and has idle 
capacity. By increasing the processing capacity of the 
major field, oil may be extracted from the satellite 
reserve while the main field is still producing at its 
plateau level (see Figure 2). 

to tl r2 

Figure 2. Production and incremental capacity. 

logarithmic return or exponential growth rate 

9 = ln(S, + JS,) 

is more important. 
Figure 3 illustrates the assumed oil price movement 

in time. Assume that the parameters are stationary 
and take on the exogenously given numerical values 
q = l/2, u = 312 and d = 213. Also, let the initial oil 
price be S, = 18. 

A binomial oil price process 

A stochastic output price is the source of uncertainty 
in the examples. For expositional purposes, assume 
that the oil price follows a binomial multiplicative 
random walk. Let 

With these parameters, at t = 1 an oil price of 
S, = 27 or S, = 12 will be equally likely. At t = 2, the 
possible oil prices are 40.5, 18 and 8, with probabilities 
0.25, 0.50, and 0.25, respectively. As of t =O, the 
expected oil price in one year is E,(S,) = 19.5, whereas 
in two years it is E,(S,) = 21.125. 

S, = oil price per barrel at time t 
H = the event of higher price at t than at (t - 1) 
L = the event of lower price at t than at (t - 1) 
q = probability of a price increase 
u = multiplicative upward factor of oil price 
d = multiplicative downward factor of oil price 

The exponential growth rate g (the logarithmic price 
relative) is stochastic and takes on the values g = In u 
and g = In d with equal probability q. Hence, with 
q = l/2 and d = l/u, its expectation is E(g) = 0 and its 
standard deviation is a(g) = In u = 0.405465. 

Suppose the risk-free rate of interest is R, = l/6 
(= 16.67 %), corresponding to a risk-free factor I = 

The price relative S,, JS, is the gross holding period 
return per barrel of oil. For consistency with a 
continuous oil price movement later in the paper, the 

Price, Probability Price Price, Growth 
t change, t+1 rate 

H/S,+1 =a g = In(S,+1 /S,) = In u 

- -- 0 
Satellite field 

Figure 1. General example. 
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(1) 

S r+, = ds, G = In(S,+, /S,) = In d 

Numerical parameters: 
q=l/2,u=3/2.d=2/3.SO=18 

Figure 3. Binomial oil price process. 
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1 + R, = 7/6. Thus, the growth rate of the oil price 

follows a symmetric random walk without drift. The 
expected oil price rises over time, but its rate of l/12 
is less than the risk-free interest rate of l/6. 

Suppose further that oil has no convenience yield, 
ie the owner of the physical commodity and the owner 
of a contract for future delivery receive equivalent 
returns. For a risk-neutral individual, the expected oil 
price at (t + 1) discounted one period at the riskless 
rate of interest must then equal S,, as there by 
assumption is no other return to holding oil. In general, 
this equality will not hold for the assumed true 
probability of q (= l/2) for an upward price movement. 
It is well known (see eg Cox and Rubinstein [S], p 
1733) that the condition will be satisfied for a probabi- 
lity 

p = (r - d)/(u -d) (2) 

This so-called hedging probability p can be derived by 
a replicating portfolio argument, ruling out favorable 
arbitrage opportunities. It is the value q would have 
in equilibiium if all investors were risk-neutral. 

Plugging in the values for r, u and d, Equation (2) 
yields an imputed ‘probability’ p = 0.6, for which the 
current oil price at any point in time equals the 
risklessly discounted expected future prices. 

The imputed or option probability p can also be 
interpreted in terms of prices of elementary state- 
contingent claims, or state-prices for short. Suppose 
the price change of oil is just about to be revealed. 
Consider a claim that pays off one dollar at time (t + 1) 
if and only if the oil price increases from time t. That 
claim will have a value of p a second before the new 
price becomes known. The corresponding state-price 
at t of an upward price change between t and (t + 1) 
is p/r, ie the risklessly discounted hedging probability. 
In the next section it is shown that the state-price 
i.nterpretation may be useful for making qualitative 
statements about the relation between risk-adjusted 
and risk-free discount rates. 

Valuation of a satellite field 

For simplicity, consider a two-period model where 
development and extractions, if any, will take place in 

period two. The decisions may be made after knowing 
the oil price of that period. Also, the satellite field will 
either be fully operated or not at all. Hence, all cost 
data may be given on a unit (barrel) basis. 

Let the following cost data be given: 

development cost, t = 2 7 
operating cost, t = 2 15.5 
total unit cost, t = 2 V, = 22.5 
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Recall that the expected oil price at t = 2 is E,(S,) = 
21.125, which is less than the known unit cost V, = 
22.5. Superficially, the expected profit is negative, and 
the satellite seems unprofitable. But this is a fallacy, 
as the option aspects of development and operation 
have been ignored. 

Figure 4 shows, in a decision tree format, how the 
satellite field may be evaluated by discounting ‘ex- 
pected’ cashflows at the riskless rate. The crucial 
feature is that the imputed hedging probability p = 0.6 
for higher prices is used for calculating expected values 
rather than the ‘real’ probability q = 0.5 

Taking the combined development and operations 
options into account, the satellite field has a value at 
t = 0 of C, = 4.76. Alternatively, the same answer could 
be obtained by constructing a sequence of self- 
financing replicating portfolios. 

If the ‘real’ probability of q = 0.5 were used in the 
decision tree, with a riskless discount factor r = 7/6, 
the value would decline to 3.31. This appears to be a 
truly risk-neutral evaluation, but it is not consistent 
with the assumed price process for oil. 

A decision tree analyst, sticking with q = 0.5, might 
consider introducing a risk-adjusted discount rate 
(RADR) to incorporate risk aversion. Suppose she 
selects a RADR which is higher than R, = l/6, such 
as RADR = l/4 (=25 %). The field value then de- 
creases further to 2.88. 

Actually, from the state-price interpretation of the 
hedging probability p, it follows that this imputed 
probability equals the true probability q of a price 
increase multiplied by the ratio of marginal utility 

given price increase to expected marginal utility [6]: 

p = q’u;/E(u’) (3) 

Consequently, as p = 0.6 > q = 0.5, for a representative 
individual in market equilibrium the marginal utility 

Value, Price, Operations, Price, Operations, Profit, 
r=O t=l r=1 r=2 t=2 r=2 

4.76 

Cl 

Figure 4. Valuation of satellite field by decision tree. 
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u;, given an oil price increase is higher than the 
expected marginal utility E(u). A higher marginal 
utility conditional on increasing oil prices is consistent 
with higher oil prices being associated with lower 
market returns. Thus, the assumed market parameters 
correspond to oil prices moving counter-cyclical in the 
world economy. Therefore, as in the case of a negative 
beta in a CAPM framework, the appropriate RADR 
is less than the risk-free rate of interest. An analyst 
using q = 0.5 would, however, get the correct field value 
4.76 only if she by chance picks RADR = - l/36 
(= -2.78%) 

P‘ S (u/r).p 
a = the minimum of n and the smallest integer 

greater than ln(K/(Sd”))/ln(u/d) 

In words, Equation (4) says that the call value equals 
the current asset price multiplied by a probability, less 
the present value of the option’s exercise price multi- 
plied by another probability. 

For the satellite field example, with u = 3/2, d = 2/3, 
r = 716, S = 18, K = V, = 22.5, n = 2, p = 315, p’ = 
27/35, the critical ratio becomes ln(22.5/8) = 1.034 
implying a = 2. Hence, 

A different market parameter scenario could be 
consistent with higher oil prices being associated with 
upswings in the economy. Keeping q, u and d at their 
previous values, assume a zero risk-free rate of interest. 
As R, = 0.0 implies I = 1.0, Equation (2) yields p = 
0.4 < q = 0.5. 

C = l8.B(2; 2, 27/35) - 22.5(7/6)-*-B(2; 2, 3/5) 
= 1830.595 1 - 22.5.0.7347.0.36 
= 10.71 - 5.95 = 4.76 

Repeating the calculations for the adjusted risk- 
free discount factor r = 1.0, it turns out that the field 
value with the imputed probability p = 0.4 is now less 
than with the real probability q = 0.5. 

Table 1 summarizes the results of the value of the 
satellite field, with panels (a) and (b) applying to 
risk-free rates of interest of l/6 and 0, respectively. 

Rather than using decision trees, the appropriate 
field value may be found by the Cox-Ross-Rubinstein 
binomial option pricing formula ([SJ, p 178) 

which is exactly the desired value, obtained by plugg- 
ing into an option formula rather than relying on 
decision trees with imputed probabilities. 

If the periods are divided into shorter subperiods, 
the decision tree quickly becomes quite complicated. 
Use of the closed-form pricing formula Equation (4) 
then becomes even more attractive. 

Value of incremental capacity 

C = SeB(a; n, p’) - Kr-“.B(a; n, p) 

where 

(4) 

C = current call value 
B(‘; ‘, ‘) = complementary binomial distribution 
S = current price 
K = the option’s exercise price 
n = number of periods to the option’s expira- 

tion 

P = the hedging probability, given by Equa- 
tion (2) 

By installing incremental processing capacity at the 
main field, suppose that the satellite field may, if so 
desired, be developed and operated already in period 
1. Operations in period 1, if any, preclude operations 
in period 2. Even with incremental capacity, there is 
no obligation to develop and/or operate in any period. 
The development and operations options may still be 
exercised after obtaining information about the oil 
price of the period. The problem at hand is to 
determine the maximum amount k, to invest at t = 0 
in such incremental capacity. 

The oil price data are as before and the risk-free 
interest rate is still R, = l/6. However, the cost data 
are now: 

Table 1. Valuation of satellite field. 

Risk-free Discount 
Probability interest rate rate Value 

(a) p=O.6 R, = l/6 R, = l/6 4.76 
9 =0.5 R, = l/6 R, = l/6 3.31 
9 =o.s R, = 116 RADR = 1 j4 2.88 
9 =o.s R, = l/6 RADR = - l/36 4.16 

(b) p=O.4 RF=0 R,=O 2.88 
9 =o.s RF=0 RF=0 4.50 

(c) The expected price (21.125) is less than unit cost (22.Q which 
superficially might suggest a negative value. 

c=l t=2 

development cost 6 7 
operating cost 9 15.5 
total unit cost vi = 15 V, = 22.5 

A quick and dirty calculation would be to take the 
expected profit at time t = 1 with incremental capacity, 
E&S,) - VI = 19.5 - 15 = 4.5, and discount it back one 
period at the riskless rate, yielding 3.86 as a rough 
indication of the break-even value of incremental 
capacity. But there is no obligation to develop and 
operate at t = 1 if incremental capacity has been 
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incremental Price, Operations, Price, Operations, Profit, 
capacity, t=l t= 1 t=2 t=2 t=2 

t=O 

and operation decisions were simultaneous and identi- 
cal. This section models these decisions as being taken 
successively. Operations are only possible when the 
field has already been developed. Development is then 
an option on the operations option. Before the 
development decision is being taken, the satellite field 
owner or lessee has a compound option, ie an option 
on an option. 

Assume that the development decision has to be 
made either at t = 1 or at t = 0. In other words, the 
European development option expires alternatively at 
t = 1 or c = 0. A longer time to expiration may be 
considered as increased flexibility, with a value of its 
own. 

u* = 1.41 

Figure 5. Break-even value of incremental capacity. 

procured. Also, without incremental capacity there 
remain the options to develop and operate at t = 2. 

The development cost at t = 1 is 6, whereas it is 
3617 = 5.14 at t = 0. Of course, there is no reason why 
the development cost should increase at the riskless 
rate R, = l/6. As by assumption there is no longer any 
incremental capacity available at time t = 1, any 
operations decisions will be made at t = 2, whether the 
development option has been exercised at t = 0 or 
t = 1. The unit operations cost at t = 2 is 15.5 as before. 

The decision tree Figure 5 reflects an option 
approach to valuing the incremental capacity. Note 
that the imputed probability p= 0.6 as well as the 
decision options open to management are explicitly 
entered into the analysis. 

Figure 6 shows the compound option evaluation, 
when the European development option expires at 
t = 1 and must be exercised to retain the European 
operations option expiring at t = 2. 

Table 2 summarizes the computations for various 
sets of probabilities, risk-free rates of interest, and 
discount rates. Its panel (a) is based on a risk-free 
interest rate of l/6, whereas a zero risk-free rate is used 
for panel (b). It is just a coincidence that a constant 
and common RADR of -l/36 happens to yield all 
the correct values, and in any case it would be most 
difficult to figure that out in advance. 

A similar tree can be drawn for the case when the 
compound option’s first component (ie the develop- 
ment option) expires immediately. Panel (a) of Table 
3 compares the value of the compound option for 
different expiration times of the development option. 
In all cases it is assumed that operations can only take 

place at t = 2, and only if the field has been developed. 

Value of flexibility with a compound option 

The two previous sections considered a joint develop- 
ment and operation option, where the development 

Panel (b) of Table 3 tries to give an example of a 
more precise meaning of the slippery term value of 
flexibility. A decision-maker maintains flexibility with 
respect to a particular decision as long as she has more 
than one choice alternative. Being able to postpone 
the decision of whether to develop yields increased 
flexibility. The economic value of that flexibility can 
be found in the panel. 

Table 2. Break-even valuation of incremental capacity. 

Probability 
Risk-free Discount 
interest rate 

Incremental capacity value 
rate With Without Break-even 

(a) p=O.6 R,= l/6 R,= l/6 

9 =0.5 R,= l/6 R,= l/6 
9 =0.5 RF= l/6 RADR= l/4 
9 =o.s RF= 116 RADR= -l/36 

(b) p = 0.4 RF=0 RF=0 
9 =os RF=0 RF=0 

(c) Discounted value of expected profit t = 1 with incremental capacity: 3.86. 

6.171 4.761 1.410 
5.143 3.306 1.837 
4.800 2.880 1.920 
6.171 4.761 I.410 

4.800 2.880 1.920 
6.000 4.500 1.500 
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Value, Price, Development, Price, Operations, Profit, 
r=O t= 1 I=1 t=2 t=2 t=2 

3.97 

q 

Figure 6. Value of compound option. 

A continuous oil price process 

From now on it is assumed that the oil price move- 
ments in time are smooth and continuous. That is, 
there is an infinitesimal short interval between each 
price change, and all price changes are infinitely small. 
Figure 7(a) is a typical picture of how prices may move 
over time under the new assumption, which rules out 

jumps in the price path. 
Technically, the oil price is assumed to follow a 

diffusion-type process involving a standard Gauss- 
Wiener process (see eg [ 161). Therefore, future oil 
prices are lognormally distributed, as sketched in 
Figure 7(b). 

With a judicious choice of parameters, the binomial 
price model and the current continuous model become 
consistent. Appropriate formulas are widely available, 
as in Cox and Rubinstein ([S], p 200) or, for a 
somewhat different set, see Jarrow and Rudd ([12], 
p 186). Recall that the numerical parameters in the 
discrete case resulted in the growth rate of the oil price 
having a mean of zero and a standard deviation of In U. 
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Oil price movements in time 

L 
Time, t 

a 

It can be shown that the results E(g) = 0 and o(y) = In u 
carry over to the continuous price dynamics case, 
but with g now interpreted as an annualized instan- 
taneous growth rate. 

The famous Black-Scholes formula is a powerful 
result for valuation with such a continuous price 
process. It is stated throughout the option literature 
(eg [2], p 446 or [_5] p 2111) and may be written as 

C = SN(d,) - KeeRrTN(d2) (5) 

where 

d, = [ln(S/K) + R,T + cr2T/2]/[aJT] 

d2zdd, -aJT 

and N(.) is the standardized cumulative normal distri- 
bution. 

Replacing the binomial formula (4), the Black- 
Scholes formula (5) has the same structure. It also 
yields a recipe for a portfolio duplicating the cashflows 

from holding one call for one period: the first term 
shows the amount to be invested in the corresponding 
stock, partly financed by riskless borrowing the 
amount given by the second term. 

Field values with continuous oil price 

As the development and operations decisions at the 
outset were assumed to be simultaneous and identical, 
they may be considered as one single option when 
valuing the satellite field. Therefore, the Black-Scholes 
formula is applicable. The parameter values to be 

plugged into Equation (5) are: 

S = 18 (current oil price) 
K = 22.5 = V, (exercise price = unit cost) 
T = 2 (time to expiration) 
R, = ln(7/6) (annualized instantaneous risk-free rate 

of interest) 
d = ln(3/2) (standard deviation of annualized instan- 

taneous growth rate (return on holding the 

asset)). 

Future oil prices log-normally distributed 

L 

b 
Oil price, S, 

Figure 7. Continuous oil price process. 
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With these parameters, the Black-Scholes formula 
shows that the satellite field has a value of 4.67. This 
continuous price dynamics case value is close to the 
value 4.76 previously obtained for the discrete price 
case. 

The Black-Scholes formula can no longer be used 
when the development decision and the operations 
decision are separated in time. Fortunately, Geske [ 1 l] 
has developed a corresponding formula for a two-stage 

compound option. This formula is quite complicated 
and will not be reproduced here (see eg [S], p 414), 
but it builds on a recursive procedure which will be 
sketched briefly. First, the conditional value of the 
second-stage option as of t = 1 is computed by the 
Black-Scholes formula. The important feature is that 
at t = 1 there exists a cut-off value I/* for the price V, 
of the underlying asset (note that the standard notation 
for compound options differs from that used elsewhere 
in this paper). The first-stage option will then be 
exercised if and only if V, > V*. Next, further computa- 
tions involve the current price as well as the present 
values of the exercise prices of the two constituent 
options, all terms being multiplied by particular pro- 
babilities from bivariate or univariate normal distribu- 
tions. 

Figure 8 presents the general structure of the 
continuous price case compound option, where devel- 
opment may be decided only at t = 1 and operations 
may be decided upon only at t = 2, provided the field 
has been developed. 

Using Geske’s formula, it turns out that the critical 
value I/* = 18.55. Thus, the field will be developed at 
t = 1 if and only if the oil price at that point in time 
exceeds 18.55. Subject to interpolation errors, the 
compound options is found to be worth 3.67 as of 
r = 0. In panel (a) of Table 3 a corresponding value 
of 3.97 was found for the binomial price process. 

Value Price Development Price Operations Profit, 
compound changes, option, changes, Optloll, r=2 
option, r=otor=1 t=1 t=1tot=2 r=2 

r=o 

I /’ , 

Figure 8. Compound option with continuous oil prices. 

Incremental capacity value with continuous 
price 

(9 

(ii) 

(iii) 

Figure 9 depicts the problem of valuing incremental 
capacity for the continous price case. Without incre- 
mental capacity, a joint development-operations deci- 
sion will be made at t = 2. In the previous section that 
option was found to have a value of 4.67. With 
incremental capacity, the option may be exercised 
either at t = 1 or at t = 2. Finding a closed-form 
solution to that option value appears to be rather 
challenging. 

A cursory literature search indicated some promis- 

ing sources: 

value of an option with uncertain exercise price 
(Fischer [S]); 
value of an option to exchange one asset for 
another (Margrabe [15]); and 
value of an option on the minimum or maximum 
of two risky assets (Stulz [24]). 

Unfortunately, it seems as if none of these contribu- 
tions quite cover the problem at hand. Therefore, one 
may so far have to settle for either the binomial model 

Table 3. Compound option of successive development and operations 
options 

(a) Development option 
may be exercised only at Value 

t=2 4.16 
t=l 3.91 
t=O 2.35 

Assumption: the conditional operations option may be 
exercised only at t = 2. 

(b) Value of extra flexibility by postponing development decision: 
Fromt=Otot=1:3.97-2.35=1.62 
Fromt=l tot=2:4.76-3.97=0.79 

Incremental Price Joint D - 0 Price 
capacity, 

Joint D - 0 Profit, 
changes, option, changes, option, t=2 

t=o t=otot=1 t=1 t= 1 tor=2 t=2 

Figure 9. Incremental capacity problem with continuous oil 
price process. 
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(possibly with more and shorter time periods) or 
numerical methods (Jarrow and Rudd [ 121, 
pp 202-208). 

Some concluding remarks 

The admittedly simplified examples of this paper may 
nevertheless suggest that the option pricing approach 
to project evaluation may give worthwhile supple- 
mental insight into project profitability. The option 
analysis may yield results partly conflicting with the 
recommendations of traditional capital budgeting 
methods. The paper should not be construed as an 
attempt to peddle the option analogy to real invest- 
ments as an all purpose snake oil, curing the various 
shortcomings of traditional techniques for project 
assessment. At this stage, a comprehensive and sys- 
tematic comparison of the pros and cons of the options 
framework would be somewhat premature, awaiting 
the outcome of Myers’ [19] call to arms for further 
research on real options. 

So far, the option approach is still in its infancy. 
The challenge remains to develop project evaluation 
methods which are both applicable in practice and 
have a sound theoretical basis. Progress in this respect 
is quite important for capital investment projects 
where huge amounts of money are at stake, such as 

in the petroleum industry. 
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in principle might be used for valuing real projects as well. 
In his dissertation Tourinho [25] originated the applica- 

tion of option pricing to valuation of reserves of natural 
resources, Brennan and Schwartz [3] used the self-financing 
portfolio approach to evaluate natural resource investments 
under output price uncertainty, simultaneously obtaining 
optimal policies for the underlying development, operating 
and abandonment decisions. Their simplified version [4] 
conveyed the main ideas in a form suitable to a general 
management readership. Paddock, Siegel and Smith [21] 
developed an option pricing methodology for the valuation 
of claims on a real asset such as an offshore petroleum lease. 
In a case study Kemna [ 131 examined input estimates to be 
used for oil-based contingent claims analysis. 

Myers [19] emphasized that corporate financial theory 

An option pricing approach to evaluating petroleum projects: S. Ekern 

requires extension to deal with real options, in order to 
reconcile financial and strategic analysis. Majd and Pindyck 
[ 143 used option pricing methods to derive optimal decision 
rules for sequential investment outlays, when a considerable 
construction period preceeds any project returns. In a related 
paper McDonald and Siegel [lS] also stressed the option 
value of postponing an irreversible investment. Both Myers 
and Majd [20] and McDonald and Siegel [17] applied 
option-pricing techniques to the investment abandonment 
decision. Petruzzi [22] derived optimal hurdle rates for real 
investment opportunities using the option analogy. 

A discussion of some options aspects of real capital 
projects has recently been included in textbooks such as 
Brealey and Myers ([2], p 429 and pp 45W54) and Franks, 
Broyles and Carleton ([9], pp 562-565). 
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