To derive the DE, we look at an initially straight beam that is elastically deformed by loads applied perpendicular to beam’s x-axis & lying in x-y plane of symmetry, Fig 8.7(a).

Due to loading, the beam deforms under shear & bending.

If beam L >> d, greatest deformation will be caused by bending.

When M deforms the element of beam, the angle between the cross sections becomes $d\theta$, Fig 8.7(b).

The arc dx that rep a portion of the elastic curve intersects the neutral axis.

The radius of curvature for this arc is defined as the distance, ρ, which is measured from ctr of curvature O' to dx.

Any arc on the element other than dx is subjected to normal strain.

The strain in arc ds located at position y from the neutral axis is $$\varepsilon = \frac{(ds'-ds)}{ds}$$

If the material is homogeneous & behaves in a linear manner, then Hooke’s law applies

$$\varepsilon = \frac{\sigma}{E}$$

The flexure formula also applies

$$\sigma = -\frac{My}{I}$$
Combining these eqns, we have:

\[
\frac{1}{\rho} = \frac{M}{EI} \quad \text{eqn 8.1}
\]

\(\rho\) = the radius of curvature at a specific point on the elastic curve

\(M\) = internal moment in the beam at the point where \(\rho\) is to be determined

\(E\) = the material's modulus of elasticity

\(I\) = the beam’s moment of inertia computed about the neutral axis

8.3 eqn

\[
\begin{align*}
\frac{d^2v}{dx^2} &= \frac{M}{EI} \\
E &= \frac{M}{EI} \\
\end{align*}
\]

8.4 eqn

\[
\begin{align*}
\frac{d^2v}{dx^2} &= \frac{M}{EI} \\
\end{align*}
\]

This eqn rep a non-linear second DE

\(V = f(x)\) gives the exact shape of the elastic curve

The slope of the elastic curve for most structures is very small

Using small deflection theory, we assume \(dv/dx \approx 0\)

Eqn 3 reduces to

\[
\frac{d^2v}{dx^2} = \frac{M}{EI}
\]

8.2 Elastic Beam theory

\(EI\) = flexural rigidity; \(dx = \rho d\theta\)

From eqn 8.1

\[
d\theta = \frac{M}{EI} \cdot dx \quad \text{eqn 8.2}
\]

\(v\) – axis as +ve \(\hat{\imath}\),

\[
\frac{1}{\rho} = \frac{d^2v}{dx^2} \quad \text{eqn 8.3}
\]

Therefore, \(\frac{M}{EI} = \frac{d^2v}{dx^2} \quad \text{eqn 8.3}\)

By assuming \(dv/dv \approx 0\) \(\Rightarrow ds\) in Fig. 7(b) is approximately equal to \(dx\)

\[
ds = 2dx^2 + dv^2 = 2(\frac{dv}{dx})^2dx \approx dx
\]

This implies that points on the elastic curve will only be displaced vertically & not horizontally.
8-3 The double integration method

- $M = f(x)$, successive integration of eqn 8.4 will yield the beam’s slope
 - $\theta \approx \tan \theta = \frac{dv}{dx} = \int \frac{M}{EI} \, dx$
- Eqn of elastic curve
 - $V = f(x) = \int \frac{M}{EI} \, dx$
- Consider the beam shown in Fig 8.8
- The internal moment in regions AB, BC & CD must be written in terms of x_1, x_2 and x_3

Once these functions are integrated through the applications of eqn 8.4 & the constants determined, the functions will give the slope & deflection for each region of the beam

- When applying eqn 8.4, it is important to use the proper sign for M as established by the sign convention used in derivation
 - $+ve$ v is upward, hence, the $+ve$ slope angle, θ will be measured counterclockwise from the x-axis
 - Reason for this is shown in Fig 8.9(b)

Fig. 8-8

Fig. 8-9
8-3 The double integration method

- The constants of integration are determined by evaluating the functions for slope or displacement at a particular point on the beam where the value of the function is known.
- These values are called boundary conditions.
- Consider the beam shown in Fig 8.10.
- Here x_1 and x_2 coordinates are valid within the regions AB & BC.

Once the functions for the slope & deflections are obtained, they must give the same values for slope & deflection at point B.

This is so as for the beam to be physically continuous.

Example 8.3

- The cantilevered beam shown in Fig 8.11(a) is subjected to a couple moment M_o at its end.
- Determine the eqn of the elastic curve.
- EI is constant.
Example 8.3 - solution

- The load tends to deflect the beam as shown in Fig 8.9(a).
- By inspection, the internal moment can be represented throughout the beam using a single x coordinate.
- From the free-body diagram, with M acting in +ve direction, Fig 8.11(b), we have:
 \[M = M_o \]

Example 8.3 - solution

- Substituting these values into earlier eqns, we get:
 \[\theta = \frac{dv}{dx} \]
 \[\theta = \frac{M_o x}{EI}; \quad v = \frac{M_o x^2}{2EI} \]
- Max slope & disp occur at A (x = L) for which
 \[\theta_A = \frac{M_o L}{EI}; \quad v_A = \frac{M_o L^2}{2EI} \]

Example 8.3 - solution

- Applying eqn 8.4 & integrating twice yields:
 \[EI \frac{d^2 v}{dx^2} = M_o \]
 \[EI \frac{dv}{dx} = M_o x + C_1 \]
 \[EI v = \frac{M_o x^2}{2} + C_1 x + C_2 \]
- Using boundary conditions, \(dv/dx = 0 \) at \(x = 0 \) & \(v = 0 \) at \(x = 0 \) then \(C_1 = C_2 = 0 \)

Example 8.3 - solution

- The +ve result for \(\theta_A \) indicates counterclockwise rotation & the +ve result for \(v_A \) indicates that it is upwards.
- This agrees with results sketched in Fig 8.11(a).
- In order to obtain some idea to the actual magnitude of the slope.
- Consider the beam in Fig 8.11(a) to:
 - Have a length of 3.6m
 - Support a couple moment of 20kNm
 - Be made of steel having \(E_{st} = 200 \text{GPa} \).
Example 8.3 - solution

- If this beam were designed w/o a fos by assuming the allowable normal stress = yield stress = 250kNm/m
- A W6 x 9 would be found to be adequate

\[\theta_d = \frac{20kNm(3.6m)}{[200(10^9)kN / m][6.8(10^9)(10^{-12})m^3]} = 0.0529 \text{rad} \]

\[v_d = \frac{20kNm(3.6m)^2}{[2][200(10^9)kN / m][6.8(10^9)(10^{-12})m^3]} = 95.3 \text{mm} \]

Example 8.3 - solution

- Since \(\theta_A = 0.00280(10^{-4}) < 1 \), this justifies the use of eqn 8.4
- Also this numerical application is for cantilevered beam, we have obtained larger values for max \(\theta \) and \(v \) than would have been obtained if the beam were supported using pins, rollers or other supports