The pinion A of the hoist motor drives gear B, which is attached to the hoisting drum. The load L is lifted from its rest position and acquires an upward velocity of 2 m/s in a vertical raise of 0.8 m with constant acceleration. As the load passes this position, compute (a) the acceleration of point C on the cable in contact with the drum and (b) the angular velocity and angular acceleration of the pinion A.

![Diagram of a hoist motor and gear system]
The angular velocity of a gear is controlled according to \(\omega = 12 - 3t \) where \(\omega \), in radians per second, is positive in the clockwise sense and where \(t \) is the time in seconds. Find the net angular displacement \(\Delta \theta \) from the time \(t = 0 \) to \(t = 3s \). Also find the total number of revolutions \(N \) through which the gear turns during the 3 seconds.
The circular disk rotates about its z-axis with an angular velocity in the direction shown. At a certain instant the magnitude of the velocity of point A is 3 m/s and is decreasing at the rate 7.2 m/s2. Write the vector expressions for the angular acceleration α of the disk and the total acceleration of point B at the instant.
A wheel of radius \(r \) rolls on a flat surface without slipping. Determine the angular motion of the wheel in terms of the linear motion of its center \(O \). Also determine the acceleration of a point on the rim of the wheel as the point comes into contact with the surface on which the wheel rolls.
The slotted arm OA rotates with a constant angular velocity $\omega = \dot{\theta}$ during a limited interval of its motion and moves the pivoted slider block along the horizontal slot. Write the expressions for the velocity v_B and acceleration a_B of the pin B in the slider block in terms of θ.

![Diagram of the slotted arm and slider block](image-url)
At the instant represented, $a = 150$ mm and $b = 125$ mm, and the distance $a + b$ between A and C is decreasing at the rate of 0.2 m/s. Determine the common velocity v of points B and D for this instant.
Link OA revolves counterclockwise with a constant angular velocity of 3 rad/s. Link AB slides through the pivoted collar at C. Determine the angular velocity ω of AB when $\theta = 40^\circ$.

![Diagram of the mechanism with link OA revolving and link AB sliding through a collar at C. The diagram shows the dimensions and the direction of motion.]
The wheel of radius $r = 300$ mm rolls to the right without slipping and its center O has a velocity $v_0 = 3$ m/s. Calculate the velocity of point A on the wheel for the instant represented.
Each of the sliding bars \(A \) and \(B \) engages its respective rim of the two riveted wheels without slipping. Determine the magnitude of the velocity of point \(P \) for the position shown.
End A of the link has a downward velocity v_A of 2 m/s during an interval of its motion. For the position where $\theta = 30^\circ$ determine the angular velocity ω of AB and the velocity v_G of the midpoint G of the link.
If the link OB and the connecting rod AB have lengths of $r = 0.3$ m and $l = 0.8$ m, respectively. The link OB rotates with the angular velocity of 2000 rpm. At the instant of $\theta = 40^\circ$ determine the angular velocity of the rod AB and the velocities of the slider A and of the connecting rod’s C.G.
The power screw turns at a speed which gives the threaded collar C a velocity of 0.25 m/s vertically down. Determine the angular velocity of the slotted arm when $\theta = 30^\circ$.
If the wheel rolls on the circular surface without slipping, obtain an expression for the acceleration of point C on the wheel momentarily in contact with the circular surface in the bottom position. The wheel has an angular velocity ω and an angular acceleration α at this position.
The crank CB has a constant counterclockwise angular velocity of 2 rad/s in the position shown during a short interval of its motion. Determine the angular acceleration of links AB and OA for this position.
Elements of the switching device are shown here. If the velocity v of the control rod is 0.9 m/s and is decreasing at the rate of 6 m/s2 when $\theta = 60^\circ$, determine the magnitude of the acceleration of C.
The crank OA revolves clockwise with a constant angular velocity of 10 rad/s within a limited arc of its motion. For the position $\theta = 30^\circ$, determine the angular velocity of the slotted link CB and the acceleration of A as measured relative to the slot in CB.

![Diagram of a crank OA with a slotted link CB and point A]
Each of the two cars A and B is traveling with a constant speed of 72 km/h. Determine the velocity and acceleration of car A as seen by an observer moving and rotating with car B when the cars are in the position shown. The x-y axes are attached to car B. Sketch both relative-motion vectors.
At the instant represented, the disk with the radial a lot is rotating about O with a counterclockwise angular velocity of 4 rad/s which is decreasing at the rate of 10 rad/s2. The motion of slider A is separately controlled, and at this instant, $r = 150$ mm, $\dot{r} = 125$ mm/s, and $\ddot{r} = 2025$ mm/s2. Determine the absolute velocity and acceleration of A for this position.