Dynamic Characteristics of Instruments and Measuring Systems

2103-602 Measurement and Instrumentation

Introduction

Instruments and measuring system *do not* respond to the change of input *instantly*.

Introduction

✓ Types of input

- Sinusoidal
- √ Types of transducer (instrument)
- ✓ Initial conditions
- √ System characteristics

Introduction

When subjected to dynamic input, e.g. sinusoidal, an instrument has a response with differences in both amplitude and phase (time lag) from the input.

Introduction

The differences in both amplitude and phase are normally shown in Frequency Response plot.

Dynamics of Measuring Systems

 General dynamic model of a system is governed by a linear ODE:

by a linear ODE:

$$\frac{d^n y(t) + a}{dt^n} = \frac{d^{n-1} y(t) + ... + a_n y(t)}{dt^{n-1}}$$

$$= b_m \frac{d^m u(t) + ... + b_n u(t)}{dt^m}$$

Take Laplace transform (L.T.) with zero initial conditions to get Transfer Function:

$$G(S) = \frac{\overline{y}(s)}{\overline{U}(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + ... + b_o}{S^n + a_{m-1} s^{m-1} + ... + a_o} = \frac{\kappa(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$$

First-order System

y(t) + By(t) = Auct)

Rewrite as

$$\forall y(t) + y(t) = Cu(t)$$

where $\delta = 1$ is time constant, $C = \frac{A}{B}$

Take L.T. $w/3$ ero initial condition $y(0) = 0$
 $\forall y(s) = \frac{A}{S+B}$
 $\forall y(t) + By(t) = Auct$

1st-order System: Step Input

If u(t) is a unit step; i.e. u(t) = 1

$$\overline{U}(s) = \frac{1}{s}$$

$$\overline{Y}(s) = A$$

$$S(s+B) = S$$

$$\overline{S} = S+B$$

$$\overline{S} = S+B$$
Inverse L.T.
$$\overline{Y}(t) = C(1-e^{-Bt}) = C(1-e^{-t/s})$$

Plot of Unit Step Response

Ex1: Thermometer/Thermocouple

T, Cp~ specific heat (W/kg°c)

ho~ convective heat transfer coefficient $\dot{Q} = \frac{dU}{dt} = \frac{mC_{p}}{dt} \frac{dT}{dt}$

Convection.

$$Q = h_0 A(T-T) - O$$

$$\dot{Q} = \frac{dU}{dt} = mC_P \frac{dT}{dt} - C_S$$

$$0=2: h_{\lambda}A(T_{\lambda}-T) = mc_{\beta}dT$$
or $\delta dT + T(t) = T_{\lambda}; \quad \mathcal{T} = mc_{\beta}$

$$dt$$

$$Tf T(0) = 0, \quad T(t) = T_{\lambda}(1-e^{-t/2})$$

what if T(0) \$0 9

1st-order System: Sinusoidal Input

If
$$u(t) = \sin \omega t \rightarrow \overline{U}(s) = \frac{\omega}{s^2 + \omega^2}$$

T.F. of the 1st order system is

$$G(s) = \overline{y}(s) = \underline{C}$$

$$\overline{U}(s) = \frac{C\omega}{8s+1}$$

$$\therefore \overline{y}(s) = \underline{C} \quad \overline{U}(s) = \frac{C\omega}{(8s+1)(s^2 + \omega^2)}$$

Take inverse L.T.

$$y(t) = \frac{C\omega}{7a} e^{-\frac{t}{7}} + \frac{C}{7a} \sin \left[\omega t + \phi(\omega)\right]$$

Steady state (ss)

Transient where $\alpha = \sqrt{(\frac{t}{7})^2 + \omega^2}$

1st-order System: Sinusoidal Input

Steady state response is

$$y = \frac{c}{7a} \sin \left[\omega t + \phi(\omega)\right]$$

magnitude

phase

For sinusoidal response, the magnitude and phase directly relate to the transfer function $G(j\omega) = G(s)|_{s=i\omega}$ as

1st-order System: Frequency Response

Ex2: RC-Circuit (Low-Pass Filter)

Note:

Note:

$$V_R = iR$$
 $V_C = \frac{1}{c} \int i dt$
 $V_L = L di$
 $V_L = L di$

$$V_s = V_{in}$$
 $V_s = V_{in}$
 $V_s = V_c + V_R$
 $V_s = V_s + V_c + V_c$
 $V_s = V_s + V_s$
 $V_s = V_c +$

Alternative Low-Pass Filter (RL Circuit)

$$V_{s} = V_{L} + V_{R}$$

$$= L \frac{di}{dt} + V_{R}$$

$$= L \frac{dV_{R}}{dt} + V_{R}$$

or
$$\left[\frac{\partial V_R}{\partial t} + V_R = V_S\right]; \quad 7 = L$$

Low-Pass Filter: Frequency Response (Gain at Various Frequency)

Ex3: High-Pass Filter

$$V_{S} = V_{C} + V_{R}$$

$$= \frac{1}{c} \int i \, dt + V_{R}$$

$$= \frac{1}{R} \int V_{R} \, dt + V_{R}$$
or
$$\frac{1}{R} \int V_{R} + \frac{dV_{R}}{dt} = \frac{dV_{S}}{dt}$$

L.T.
$$\frac{1}{RC} \nabla_{R}(S) + S \nabla_{R}(S) = S \nabla_{S}(S)$$

$$G(S) = \frac{\nabla_{R}(S)}{\nabla_{S}(S)} = \frac{8S}{1+7S}; \quad 7=RC$$

$$|G(j\omega)| = |G(S)|_{S=j\omega}$$

$$= \frac{7\omega}{\sqrt{7\omega^{2}+1}}$$

High pass filter

Second-order Systems

Governing equation:

my + Cy + ky = F(t)

Accelerometer or
$$\ddot{y} + 2g\omega_n \dot{y} + \omega_n^2 \dot{y} = F(t)$$

Take L.T.

$$G(s) = \frac{\sqrt{s}}{\sqrt{s}} = \frac{1}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n^2}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n^2}}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n^2}}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n s + \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n^2}}}$$

$$\frac{\sqrt{s^2 + 2\beta \omega_n^2}}{\sqrt{s^2 + 2\beta \omega_n^2}}}$$

2nd-order System: Step Input

For
$$F(t) = 1 \rightarrow F(s) = \frac{1}{s}$$

$$f(t) = \frac{1}{k} \left[1 - e^{-\frac{2}{3}\omega_n^t} \sin(\omega_n t + \phi) \right]$$

$$\frac{1}{k} \sim \text{amplitude}$$

$$\delta = \frac{2}{3}\omega_n \sim \text{decay rate}$$

$$\omega_d \sim \text{oscillation frequency}$$

2nd-order System: Sinusoidal Input

For
$$F(t) = \sin \omega t$$

From
$$\Theta(S) = \frac{y_{(S)}}{F(S)} = \frac{1}{m} = \frac{1}{k}$$

$$\frac{F(S)}{S^2 + 2g\omega_S + \omega_n^2} = \frac{1}{(\frac{S}{\omega_n})^2 + \frac{2gS}{\omega_n} + 1}$$

$$\frac{y_{(S)}(t)}{y_{(S)}(t)} = \frac{1}{2g\omega_N} = \frac{1}{2g\omega_N} = \frac{1}{2g\omega_N}$$
where $|G(j\omega)| = \frac{1}{(\frac{S}{\omega_n})^2} = \frac{1}{(\frac{S}{\omega_n})^2}$
and $\Phi(\omega) = -\tan^{-1}\left[\frac{2g\omega_N}{1 - (\frac{S}{\omega_n})^2}\right]$

Ex4: RLC Circuit (2nd order system)

$$V_S = V_R + V_L + V_C$$
 $= iR + Ldi + V_C$
 $= iR + Ldi + V_C$
 $= CR dV_C + LC dV_C + V_C$
 $= CR dV_C + C dV_C$
 $= CR dV_C$
 $=$

Summary

Frequency response gives information of instrument sensitivity at various frequencies; i.e., how much the output amplitude is amplified from the input, and how the output phase is changed for each frequency.

$$u(t)$$
 $sin at$
 $G(j\omega)$
 $y(t)$
 $\overline{U(s)}$

For total sensitivity, all block diagram is simply combined.

sensitivity, all block diagram is simple
$$u_{\underline{I}}$$
 $u_{\underline{I}}$ u