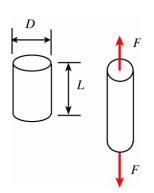


2103-602

Measurement and Instrumentations

Review of Stress and Strain

Axial stress σ_a , axial strain ε_a , transverse strain ε_t , Poisson's ratio v, and Young modulus E are



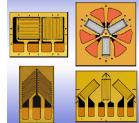
$$\sigma_a = \frac{F}{A}$$
 $\varepsilon_a = \frac{dL}{L}$ $\varepsilon_t = \frac{dD}{D}$

$$\upsilon = \frac{-\varepsilon_t}{\varepsilon_a} = \frac{-dD/D}{dL/L} \approx 0.3$$

$$E = \frac{\sigma}{\varepsilon}$$

Electrical-Resistance Strain Gages

- Widely used for strain measurement
- Resistance of gage material changes with deformation
- Use to measure local strain in axial direction of the gage
- Can measure various components of strain using rosette gages



Principle of Operation

Electrical resistance of any gage wire is determined by

$$R = \frac{\rho L}{A}$$

where L is the gage length A is area of the wire ρ is resistivity in Ω -m

Note: - The strain increased, R increased

- *R* linearly increases with strain, provided a constant temperature

Relation of R and ε

From
$$R = \frac{\rho L}{A}$$

where
$$A = cD^2$$

c = 1 (square) and $c = \pi/4$ (circular).

The change of R is then

$$dR = d\left(\frac{\rho L}{A}\right)$$

$$= \frac{L}{A}d\rho + \frac{\rho}{A}dL - \frac{\rho L}{A^2}dA$$

$$= \frac{L}{A}d\rho + \frac{\rho}{A}dL - \frac{2\rho L}{A}\frac{dD}{D}$$

or
$$\frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - \frac{2dD}{D}$$
$$\frac{dR/R}{dL/L} = \frac{dR/R}{\varepsilon_a} = \frac{d\rho/\rho}{\varepsilon_a} + 1 + 2\upsilon$$

If ρ is constant, i.e. resistivity does not change with strain, thus

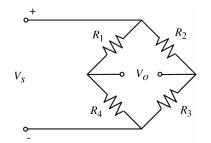
$$\frac{dR/R}{\varepsilon_a} = 1 + 2\upsilon \equiv \text{Gage Factor (GF)}$$

Gage Factor

$$\frac{dR/R}{\varepsilon_a} = 1 + 2\upsilon \equiv \text{Gage Factor (GF)}$$

- GF or the sensitivity typically varies from 1.6 to 4
- Large GF (a large change in resistance for a given strain) is desirable
- R is normally 120 Ω or 350 Ω
- Axial strain ε_a is in the range of 10^{-6} to 10^{-3} , resulting in $dR = 0.00024 0.24 \ \Omega$.
- Note that how small dR is, so we cannot simply stick an ohm meter across the strain gages.
- Wheatstone bridges circuit are commonly used to amplify such low resistance values.

Wheatstone Bridge

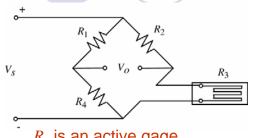


Output voltage V_o is

$$V_o = V_s \frac{R_3 R_1 - R_4 R_2}{(R_2 + R_3)(R_1 + R_4)}$$

If all four resistors are identical or if $R_3R_1=R_4R_2$, the bridge is balanced, i.e. $V_o = 0$.

Quarter Bridge Circuit (one active gage)



 R_3 is an active gage

The bridge is initially balanced, when $R_{3i}R_1 = R_4R_2$. Thus

$$V_{oi}=0$$
 If $R_1=R_2=R_{3i}=R_4$, then the strain causes a change in R_3 as $R_{3i}+dR_3$

The output voltage per input voltage is

$$\frac{V_o}{V_s} = \frac{(R_{3i} + dR_3)R_1 - R_4R_2}{(R_2 + R_{3i} + dR_3)(R_1 + R_4)} \cong \frac{R_2R_{3i}}{(R_2 + R_{3i})^2} \left(\frac{dR_3}{R_{3i}}\right)$$

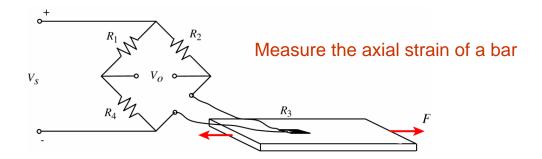
 $\frac{dR_3/R_3}{\varepsilon_a} = GF \quad \text{ and } R_2 = R_{3i}, \text{ therefore } \quad \frac{V_o}{V_c} = \frac{1}{4}\varepsilon_a GF$ Since

Or the sensitivity

$$\frac{V_o}{\varepsilon_a} = \frac{1}{4} V_s GF$$

(in unit of V/ppm)

Installation of One Active Gage

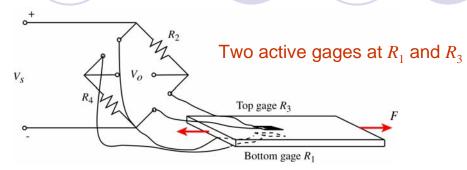


Ex: If under tension the output voltage is $V_o = 2.1 \text{ mV}$. Given $V_s = 10 \text{ V}$ and GF = 1.8, determine the measured strain ε_a .

From the sensitivity, we obtain

$$\varepsilon_a = \frac{4V_o}{V_s \text{GF}} = \frac{4 \times 2.1 \times 10^{-3}}{10 \times 1.8} = 0.000933 \text{ , or 933 ppm}$$

Half Bridge Circuit (two active gages)



Initially balance the gage, hence $R_{3i}R_{1i} = R_4R_2$.

When loaded, we can get the output voltage per input voltage as

$$\frac{V_o}{V_s} \approx \frac{R_2 R_{3i}}{(R_2 + R_{3i})^2} \left(\frac{dR_1}{R_{1i}} + \frac{dR_3}{R_{3i}} \right)$$
 where $\frac{dR_1}{R_{1i}} = \frac{dR_3}{R_{3i}} = \varepsilon_a GF$

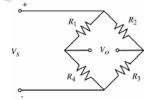
Therefore the sensitivity for this case is $\frac{V_o}{\varepsilon_a} = \frac{2}{4}V_s GF$

$$\frac{V_o}{\varepsilon_a} = \frac{2}{4} V_s GF$$

Change of R in Bridge Circuit

If all four resistors R in bridge circuit have a change,

$$\frac{V_o}{V_s} \approx \frac{R_2 R_{3i}}{(R_2 + R_{3i})^2} \left(\frac{dR_1}{R_{1i}} - \frac{dR_2}{R_{2i}} + \frac{dR_3}{R_{3i}} - \frac{dR_4}{R_{4i}} \right)$$



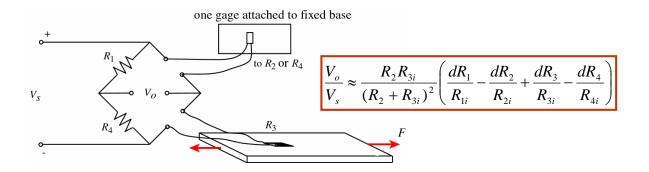
- As strain increased, dR_1 and dR_3 contribute to + V_o whereas dR_2 and dR_4 contribute to V_o .
- According to the ± signs, it is important where you place strain gages in the circuit.
- For the previous ex., if we put the first gage at R₁, it does not make sense to put the second gage at R₂ and R₄, because dR could cancel and V_o is zero.

For a little exercise, if we have two active gages on a beam as shown, where to connect these two gages in the Wheatstone bridge?

Note that the resistance change due to compression is minus of that in tension.

Answer: At 1 and 2, 3 and 4, 2 and 3, or 1 and 4, else result in zero output voltage.

Temperature Compensation

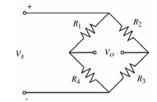


To cancel the resistance change of the strain gages due to thermal effect, we can setup the gages as shown.

With R_3 as an active gage, we can use R_2 or R_4 to compensate for the temperature.

Full Bridge Circuit (four active gages)

$$\frac{V_o}{V_s} \approx \frac{R_2 R_{3i}}{(R_2 + R_{3i})^2} \left(\frac{dR_1}{R_{1i}} - \frac{dR_2}{R_{2i}} + \frac{dR_3}{R_{3i}} - \frac{dR_4}{R_{4i}} \right)$$

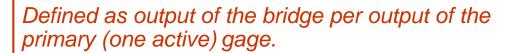


When all *R* on the bridge are replaced by strain gages:

 ${}^{\prime\prime}R_1$ and R_3 must have positive strain (tension), while R_2 and R_4 have negative strain (compression)".

We can get the sensitivity <u>four</u> times of the quarter bridge and <u>two</u> times of the half bridge.

Bridge Constant (K)



For one active gage (K=1), the sensitivity is

$$\frac{V_0}{\varepsilon_a} = \frac{1}{4} V_s GF$$

For two active gages (K=2), the sensitivity is

$$\frac{V_0}{\varepsilon_a} = \frac{2}{4} V_s \text{GF}$$

For four active gages (K=4), the sensitivity is

$$\frac{V_0}{\varepsilon_a} = \frac{4}{4}V_s \text{GF}$$

$$\frac{V_0}{\varepsilon_a} = \frac{K}{4} V_s GF$$