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Vibration Analysis of Fluid Dynamic Bearing
Spindles with Rotating-Shaft Design

Thitima Jintanawan, I. Y. Shen, and Katsuhiko Tanaka

Abstract—This paper is to present theoretical and experimental
vibration analysis of fluid dynamic bearing (FDB) spindles with
rotating-shaft design. In the theoretical analysis, a mathematical
model is developed to predict half-speed whirls, rocking modes,
frequency response functions, and shock responses. In the experi-
mental studies, FDB spindles carrying multiple disks are tested at
various spin speed. Frequency response functions (FRF) are ob-
tained to verify the mathematical model. The theoretical results
agree reasonably well with experimental results in both natural fre-
quencies and resonance amplitudes.

I. INTRODUCTION

F LUID dynamic bearing (FDB) spindles are being consid-
ered for HDD industry, because FDB spindles have sig-

nificantly larger damping and lower acoustic noise. Currently,
there are two types of spindle design: fixed-shaft design and
rotating-shaft design. Fixed-shaft design, as shown in Fig. 1,
consists of a rotating hub (rotor) carrying the disks, which is
mounted on a stationary shaft (stator) through either ball bear-
ings or FDB’s. This design is widely used in ball-bearing spin-
dles, and the mathematical model is available [1], [2]. Although
this design has also been used for FDB spindles [3], it becomes
difficult and expensive. A more desirable design is rotating-
shaft design; see Fig. 2. The rotating shaft and hub (rotor) that
carry the disks are pressed into the stationary bearing sleeve and
the base plate (stator). This design has fewer components and
the bearing lubricant is less likely to leak. Therefore, this design
is becoming dominant among FDB spindles. This design, how-
ever, is more difficult to model, because the shaft is spinning,
whirling, and rocking together with the hub and the disks. Be-
cause a mathematical model is not available, designers cannot
accurately compare and evaluate the vibration performance of
these two designs.

The purpose of this paper is to present theoretical and experi-
mental vibration analysis of FDB spindle systems with rotating-
shaft design. A mathematical model is developed to predict free
and forced responses of the systems. Free vibration analysis of
rotating-shaft spindles [4] shows that the hub deformation at the
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Fig. 1. A fixed-shaft spindle.

Fig. 2. A rotating-shaft spindle.

hub/shaft interface is critical in the rotating-shaft design, be-
cause a considerable load is transmitted. Modeling of the hub
deformation can improve the prediction of rocking mode fre-
quencies by 30% [4]. Further to these studies, this paper focuses
on forced vibration analysis of FDB spindles with rotating-shaft
design. Frequency response functions (FRF) are predicted and
compared with experimental results to verify the mathematical
model.

II. M ATHEMATICAL MODEL

This section outlines the important assumptions, variables,
and formulation of the mathematical model. Due to the space
limitation, the detail derivation of the model is not presented in
this paper. Interested readers should refer to [4], [5] for detail.

Fig. 2 shows a disk-spindle system with rotating-shaft design.
The system consists of elastic circular disks clamped to a
deformable hub that allows infinitesimal rigid-body translation
and rocking. In addition, the hub is press-fit onto a rotating,
flexible shaft, which is mounted to the base through radial
and thrust FDB’s. Free vibration analysis of rotating-shaft
spindles [4] shows that the hub deformation is localized at
the hub/shaft interface. To compensate for this localized
deformation, the boundary conditions of the flexible shaft at
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the hub/shaft interface (press-fit end) are modeled as a hinged
support with a torsional spring. The torsional spring stiffness
is determined from the work-energy equation [4]. The fluid
bearings are modeled as generalized internal forces through
in-line and cross stiffness and damping coefficients. Both radial
and thrust bearings are considered. In the present model, the
thrust bearings may or may not provide restoring and damping
moments against the spindle rocking. Finally, the spindle
system is subjected to external forces applied to the disks and
base excitations. The base excitations consist of an in-plane
and an angular components.

The coupled motion of FDB spindle systems with rotating-
shaft design is described by the following degrees-of-freedom:
infinitesimal rigid-body translation of the spindle centroid (,

, ), infinitesimal rigid-body rocking of the hub (, ),
eigenmodes of the flexible shaft (, ), and eigenmodes of
each disks ( , ), where the indices and

refer to disk modes with nodal circles and nodal
diameters.

Equations of motion for FDB spindles with rotating-shaft de-
sign are derived through use of Lagrange’s equation. Moreover,
when all the disks are identical and the spindle system is axisym-
metric, the equations of motion can be substantially simplified
by using the following complex representation

(1)

(2)

where . Because of the insignificance of the disk vi-
bration modes with one or more nodal circles, only the zero-
nodal-circle modes are retained in the equations of motion. As
a result, the equations of motion can be separated into three sets
of coupled equations: a) coupled hub translation-rocking, shaft
deflection, and (0, 1) disk modes, b) coupled axial hub transla-
tion and (0, 0) disk modes, and c) disk modes with two or more
nodal diameters. The first set of equations a) is the most critical
for HDD, because the motion has a significant in-plane com-
ponent causing track misregistration. Therefore, this paper will
only focus on the first set of equations of motion.

The matrix equation of motion governing the hub rocking and
(0, 1) modes is

(3)

where
is the vector of generalized coordinates,

is the inertia matrix,

is the complex gyroscopic and damping matrix, and

is the complex stiffness and oscillatory matrix given by

(4)
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Also, and are vectors of generalized forces associ-
ated with the external loads and base excitations, respectively,
given by

...

(8)

...

(9)

Description of each term in , , , , and is explained
in Appendix with great detail.

Solution of (3) is obtained through Laplace transforms and
convolution integral; see [2] and [5] for detail. Specifically,
transfer matrices from Laplace transforms and Green’s func-
tions from convolution integral determine FRF’s and time
responses, respectively.



JINTANAWAN et al.: VIBRATION ANALYSIS OF FDB SPINDLES WITH ROTATING-SHAFT DESIGN 801

Fig. 3. Experimental setup.

TABLE I
GEOMETRY AND PROPERTIES OF THEFDB SPINDLE

III. EXPERIMENTAL SETUP

Fig. 3 shows the experimental setup. In the experiment, the
spindle spins at a constant speed. An automatic impact hammer
[6] applies an impact force to the outer rim of the top disk in the
transverse direction. In addition, a capacitance probe measures
the transverse vibration of the top disk. Both the force and vibra-
tion signals are sent to a spectrum analyzer to calculate FRF’s.
The experiment is then repeated at other speeds.

The FDB spindle used in the experiments was sponsored by
NSK Ltd., Japan. The spindle carries four identical disks with
thickness of 0.8 mm. In addition, the spindle is supported by two
radial bearings and a thrust bearing. The geometry and proper-
ties of this spindle are listed in Table I. For the disk section of
Table I, and are inner and outer radius of the disk,and
are the transverse and polar mass moment of inertia about the
disk center, , , and are location of the disks with re-
spect to the centroid of the disk pack, andis the mass of the
disk. For the bearing section of Table I, the subscriptsand
refer to the lower and upper bearings, the subscripts 1 and 2 refer
to the in-line and cross bearing coefficients, and the superscript

refers to radial bearings. The variables, , and represent
stiffness, damping, and location of the bearings with respect to
the disk pack centroid. Note that stiffness coefficients, ,

, and of the radial bearings in Table I are proportional

Fig. 4. Experimental waterfall plot of a FDB spindle with rotating shaft; 4-disk
spindle.

to the rotational speed , where is in rad/s. The bearing co-
efficients were calculated throughMTI CARDENCE Program
CAD-42I, and were also verified by other calculation methods.
Also note that the thrust bearing coefficients are not listed in
Table I because of the space limitation. Basically, the spindle
is supported axially by a single thrust bearing with an attrac-
tive magnet; see Fig. 2. Therefore, the bearing clearance is not
a constant and highly depends on the spin speed. As a result,
simple formula like in Table I for radial bearings cannot be
obtained. In general, the stiffness and damping coefficients of
the thrust bearing decrease as the spin speed increases. Finally,
for the shaft section of Table I, parameters, , , and repre-
sent the length, diameter, Young’s modulus, and density of the
shaft. Also, and are the location of the bearings measured
from the bottom (not the fixed end) of the shaft.

IV. EXPERIMENTAL RESULTS

Fig. 4 shows the waterfall plot of the FDB spindle from 0 to
7200 rpm. The transverse load applied to the disk excites two
types of modes: disk modes and spindle modes. Disk modes
include (0, 0)B, (0, 1) B, (0, 2) and (0, 3) modes. Spindle modes
include half-speed whirls and unbalanced (0, 1) modes [denoted
by (0, 1)U], which is also known as rocking modes in HDD
industry. For disk modes, only the disks experience deformation
resulting in axial displacement only. In contrast, spindle modes
have both bearing and disk deformation resulting both axial and
radial displacement components.

Inspection of Fig. 4 shows that the amplitude of the rocking
modes is substantially reduced from 30m/N to 20 m/N when
the FDB spindle spins up. Also, splitting of the rocking modes
into backward and forward components is not observed in Fig. 4.
This probably results from increased flexibility as the system
spins up. When the spindle is stationary, the spindle rests on the
thrust bearing through metal-to-metal contact, which serves as
a fixed-end boundary condition. When the spindle spins up, the
spindle floats on the thrust bearing surface through a lubrica-
tion film, which serves as a viscoelastic foundation. The transi-
tion of the thrust bearing boundary condition from a fixed end
to a viscoelastic foundation increases the flexibility and con-
sequently the damping of the system. Note that the increased



802 IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 2, MARCH 2001

Fig. 5. Experimental waterfall plot of a FDB spindle with rotating shaft; 1-disk
spindle.

Fig. 6. Experimental waterfall plot of a ball-bearing spindle with rotating
shaft.

flexibility does not significantly reduce the natural frequencies
of the rocking modes. This can be observed when the spindle
carries only one disk; see the waterfall plot shown in Fig. 5.
Fig. 5 shows shallow resonance peaks for backward and for-
ward rocking modes when Hz. Clearly, the frequency
splits around that of the stationary spindle.

To investigate the effect of FDB’s, experimental waterfall
plots of a FDB spindle (Fig. 4) and a ball-bearing spindle (Fig. 6)
with rotating-shaft design are qualitatively compared. Compar-
ison of Figs. 4 and 6 shows that FDB’s damp out the rocking
modes (0, 1)U, which are the critical vibration modes for HDD.
Moreover, FDB’s induce the half-speed whirls with small am-
plitude. Note that the disk modes of the ball-bearing spindle
have smaller amplitude. This is because the ball-bearing spin-
dles carries two disks with 1.27-mm thickness (versus 0.8-mm
disk thickness in FDB spindles).

V. EXPERIMENTAL VERIFICATION

Theoretical predictions of FRF’s are compared with exper-
imental measurements to validate the mathematical model.
Figs. 7 and 8 show the comparison at and 120 Hz,
respectively. First of all, (0, 2) and (0, 3) disk modes from the
theoretical predictions match well with the experimental results

Fig. 7. Experimental and theoretical FRF’s of the FDB spindle;! = 0 Hz.

Fig. 8. Experimental and theoretical FRF’s of the FDB spindle;! = 120Hz.

in both natural frequencies and resonance amplitudes. In addi-
tion, the natural frequencies of (0, 1)B and (0, 0)B modes from
the predictions agree well with the experimental frequencies.
The theoretical and experimental resonance amplitudes of the
balanced modes at also agree very well. When ,
these resonance amplitudes cannot be compared because there
exists broken peaks of the balanced modes in the measurement.
These broken peaks may result from the unbalanced disks or
the imperfection of the disks.

Fig. 9 shows theoretical and experimental FRF’s of the same
spindle at , and 90 Hz, focusing on the half-speed
whirls and rocking modes. The theoretical and experimental re-
sults in Fig. 9 match well in both shape and resonance frequen-
cies. For resonance amplitudes, however, there is a discrepancy
between the theoretical and experimental results.

There are probably several factors contributing to the
discrepancy. The first factor is the uncertainties of the bearing
coefficients listed in Table I. Because the exact temperature
of the lubricant inside the bearings is unknown, the viscosity
of the lubricant can only be estimated. This results in some
uncertainties in the calculated radial bearing stiffness and
damping coefficients.

The second factor is the bearing width. The theoretical model
assumes that the bearing stiffness and damping are lumped at the
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Fig. 9. Half-speed whirls and unbalanced (0, 1) modes; solid line for theory,
and dash line for experiment.

center of each bearing. In reality, the width of the fluid bearings
is not infinitesimal. How much the bearing width affects the
spindle response remains open thus far.

The third factor might be the thrust bearing coefficients. The
theoretical calculations in Fig. 9 assume that the thrust bearing
has constant bearing coefficients. Under this assumption, the
damping of (0, 1) unbalanced modes remains unchanged, be-
cause the damping of the radial bearings is almost independent
of the spin speeds. Consequently, the theoretical results in Fig. 9
predict an amplitude around 30m/N for the (0, 1) unbalanced
modes, when the spin speed varies from 30 to 90 Hz. The exper-
imental data, however, indicate an increase in damping for (0, 1)
unbalanced modes as the spin speed increases. This might result
from the thrust bearing coefficients, because they vary signifi-
cantly with respect to the spin speed.

VI. CONCLUSIONS

1) Fundamental vibration characteristics, such as balanced
and unbalanced modes, remain valid for spindles with ro-
tating-shaft design.

2) FDB spindles significantly damp out the rocking modes,
but induce small half-speed whirls.

3) A preliminary numerical simulation, based on the mathe-
matical model, predicts FRF’s of rotating-shaft FDB spin-
dles with reasonable accuracy. The model captures major
characteristics of FDB spindles, such as half-speed whirls
and (0, 1) unbalanced modes. Nevertheless, fine tuning of
the mathematical model is needed to further improve the
accuracy of the model.

APPENDIX

In (5) and (6)

(10)

(11)

and

(12)

where
is the total mass of the disk-spindle system,

and are the centroidal mass moment of inertia of the
disk-spindle system about theand axes, and
is the diametral mass moment of inertia of each
disk.

In addition, , , , , and are the modal masses
of the shaft defined in [5].

In (6)

(13)

(14)

(15)

(16)

(17)

(18)

and

(19)

where
and are the position of the bearings measured with

respect to the system centroid and the lower end
of the shaft, respectively,
is the 1st mode shape of the shaft, and

and mean summation over all the radial and thrust
FDB’s, respectively.

In addition, and are complex damping constants
defined as

(20)

Note that and ( ) are the in-line and
off-diagonal damping coefficients of the bearings, respectively.
Also is the shaft viscous damping coefficient, is the
shaft density, is the shaft cross section area, andis the
normalized viscous damping of the disks defined in [5].

Similarly, if and are complex stiffness coefficients
defined as

(21)

then in (7)

(22)

(23)
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(24)

and

(25)

where is the natural frequencies of the disks. In addition,
coefficients , , and in (7) can be found from (14)
and (16) with all replaced by .

In (8) and (9), is the position of theth disk measured with
respect to the system centroid, is the point of applied load,

, , and are the external load applied to theth disk
in , , and directions, and are the mode
shapes of the disks. Also

(26)

, , can be determined from (26) by replacing allwith .
Moreover, is the in-plane base excitation andis the angular
base excitation defined as

(27)
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