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Abstract This paper aims at investigating the effects of
variations in thrust hydrodynamic bearing (HDB)
parameters such as axial stiffness and damping coefficients
on the axial vibration of disk-spindle systems in hard disk
drives. For a parametric study, a closed-form axial fre-
quency response function (FRF) of HDB spindle systems is
derived as a function of the axial stiffness and damping
coefficients of thrust HDBs. It is known that the axial
vibration of the disk-spindle system is composed of two
main parts: the vibration of the rigid hub in the axial
direction and the disk deflection in the transverse direc-
tion. The results from this research clearly show that the
vibration amplitudes at low frequency range is dominated
by the axial vibration of the hub, and the amplitude of the
unbalanced (0,0) mode is dominated by the disk deflec-
tion. The parametric study reveals that at low frequency
range an increase in the bearing stiffness significantly
reduces the hub axial vibration, and hence the axial
vibration of the disk-spindle system. Surprisingly, a too
much increase in the damping results in a higher ampli-
tude of the unbalanced (0,0) mode. This is because a heavy
damping constrains the hub vibration to nearly no motion,
resulting in a direct transmission of vibration from the
base to disk. To confirm the parametric study, a vibration
test was performed on two HDB spindle motors with
identical design but different fluid viscosity. The higher
viscosity represents the higher axial stiffness and damping
in the thrust bearing. The test result indicates that the
spindle motor with higher viscosity has a larger unbal-
anced (0,0) mode amplitude when subjected to an axial
base excitation.

1
Introduction
Currently, hydrodynamic bearing (HDB) spindle motors
are widely used in hard disk drives (HDDs) because of
their capabilities for vibration suppression and acoustic

noise reduction. Design criteria for the HDB spindles are
reliability, low power consumption, and low vibration and
shock responses (Asada et al. 2001; Matsuoka et al. 2001).
As the spin speed and the density of HDD increase, the
design of both radial and thrust bearings are a key to
minimize the vibration of the HDB spindles. The radial
HDBs are designed to suppress the rocking vibration
which is the major contribution to track misregistration
(Jintanawan 2002). The thrust HDBs have an impact not
only on the rocking vibration but also on the axial
vibration. The thrust HDBs provide rocking restoring and
damping moments as well as axial restoring and damping
forces. However only the axial forces have a great effect on
the axial vibration. Suppression of this axial vibration
through optimization of the thrust HDB parameters would
be a practical and inexpensive solution. Experimental
study on the effect of the thrust HDBs on the axial
vibration of the disk-spindle systems for HDD was con-
ducted by Ku (1997). In his study, the disk-spindle systems
with four types of thrust HDBs, representing different
compliance or stiffness, were tested. He has concluded that
the compliance of the thrust HDB characterizes the axial
vibration at low frequency range whereas the disk flexi-
bility and/or disk clamping condition characterizes the
disk (0,0) modes. However how the damping of the thrust
HDBs affects the axial vibration of the disk-spindle sys-
tems for HDD is still open thus far.

This paper aims at investigating the effects of variations
in the thrust HDB parameters, such as the axial stiffness
and damping coefficients, on the axial vibration of the
disk-spindle systems under an axial base excitation. For
the parametric study, the mathematical model developed
by Shen (1997) is modified to predict the axial frequency
response functions (FRFs) of the HDB spindle systems
for each set of the thrust HDB parameters. A closed-form
FRF measured along the axial direction is then derived as a
function of the axial stiffness and damping coefficients.
Finally, two HDB spindle motors with different fluid vis-
cosity are tested to support the findings.

2
Mathematical model
In this section, the equations of motion governing the axial
vibration of HDB spindle systems are described. The
equations of motion for HDB spindles are derived using
Lagrange’s method. The detailed derivation of these
equations of motion is presented in Jintanawan et al.
(1999) and Jintanawan et al. (2001). Figure 1 shows a
physical model of disk-spindle systems with HDBs. The
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system consists of N elastic circular disks clamped to a
deformable hub that allows infinitesimal rigid-body
translation and rocking. The hub is press-fit onto a rotat-
ing, flexible shaft which is mounted to the base through
two radial HDBs and a double-sided thrust HDB. The fluid
bearings are modeled as generalized internal forces
through in-line and cross stiffness and damping coeffi-
cients. In this model, the spindle system is axisymmetric
and all the disks are identical. Because of the insignificance
of the disk vibration modes with one or more nodal circles,
only the zero-nodal-circle modes are retained in the
mathematical model. Moreover the motion of the hub in
the transverse and axial directions are completely decou-
pled. The spindle system is subjected to an axial base
excitation and thus exhibits only the axial vibration.

From Jintanawan et al. (1999) and Jintanawan et al.
(2001), vibration of the spindle systems is categorized into
three sets of coupled motion: (a) coupled hub transverse
translation-rocking, shaft deflection, and one nodal
diametral disk modes; (b) coupled axial hub translation
and axisymmetric disk modes; and (c) vibration mode of
each disk with two or more nodal diameters. In this paper,
we will focus only on the coupled axial motion (b). This
axial motion is described by the following two groups of
degrees of freedom: infinitesimal rigid-body translation Rz

of the spindle centroid in the axial direction, and axi-
symmetric eigenmodes of each disk q

ðiÞ
00 ði ¼ 1; 2; . . . ;NÞ,

where the first and second indices zeros refer to the axi-
symmetric disk modes with zero nodal circle and zero
nodal diameter. The equation of motion governing the
axial hub translation and axisymmetric disk modes is

M€qðtÞ þ C _qðtÞ þ KqðtÞ ¼ fðtÞ ð1Þ
where q is a vector of the generalized coordinates, M is the
inertia matrix, C is the damping matrix, and K is the
stiffness matrix given by

q ¼ Rz; q
ð1Þ
00 ; q

ð2Þ
00 ; � � � ; q

ðNÞ
00

� �T
ð2Þ

M ¼

g b0 b0 � � � b0

b0 1 0 � � � 0
b0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

b0 0 0 � � � 1

2
666664

3
777775

ð3Þ

C ¼ diag½cz; f; f; � � � ; f� ð4Þ
K ¼ diag½kz;x

2
00;x

2
00; � � � ;x2

00� ð5Þ

f(t) is a vector of the generalized forces associated with the
vertical base acceleration €szðtÞ given by

f ¼ �€szðtÞ

g
b0

..

.

b0

0
BBB@

1
CCCA ð6Þ

Detailed description of each term in M, C, K, and f(t) is
given in the Appendix.

3
Frequency response function (FRF)
In this section, a closed-form frequency response of the
axial vibration Dz(t) is derived as a function of the total
axial stiffness and damping coefficients kz, and cz. The
amplitude of this frequency response will be used for the
parametric study of the thrust HDBs in Sect. 4.

Consider the disk-spindle systems subjected to a har-
monic base acceleration €sðtÞ � cos xt. From (6), the gen-
eralized force of this harmonic base acceleration can be
written as

f ¼ �

g
b0

..

.

b0

0
BBB@

1
CCCA cos xt ð7Þ

From (1), the steady-state response q(t) when subjected
to the harmonic base acceleration is

qðtÞ¼�1

2
HðjxÞejxtþHð�jxÞe�jxt
� �

g; b0; � � � ; b0½ �T

� 1

2
�QðjxÞejxtþ �Qð�jxÞe�jxt
� �

ð8Þ
where H(jx) is the complex frequency response function
matrix given by

HðjxÞ ¼ �x2Mþ jxCþ K
� ��1 ð9Þ

By expanding the terms in the bracket on the right-hand
side of (9), H(jx) can be written as

HðjxÞ ¼

A B B � � � B
B C 0 � � � 0
B 0 C � � � 0
..
. ..

. ..
. . .

. ..
.

B 0 0 � � � C

2
66664

3
77775

�1

ð10Þ

where

A ¼ kz � gx2
� �

þ jczx ð11Þ
B ¼ �b0x

2 ð12Þ
C ¼ x2

00 � x2
� �

þ jfx ð13Þ
Due to the particular form of (10), H(jx) can then be
rewritten using the matrix inversion (Shen 1997) as

HðjxÞ ¼ ppT

FC
þ 1

C
diag 0 1 � � � 1½ � ð14Þ

Fig. 1. A disk-spindle model with HDBs
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where

F ¼ AC � NB2 ð15Þ
p ¼ C; �B; � � � ; �Bð ÞT ð16Þ
Note that the notation �QðjxÞ introduced in (8) is the fre-
quency response vector with respect to a unit complex
base acceleration €sðtÞ ¼ ejxt. �QðjxÞ is related to H(jx) as
follows

�QðjxÞ �

�RzðjxÞ
�q
ð1Þ
00 ðjxÞ

..

.

�q
ðNÞ
00 ðjxÞ

0
BBB@

1
CCCA ¼ �HðjxÞ g; b0; � � � ; b0½ �T

ð17Þ
For the parametric study, the frequency response vector

�QðjxÞ needs to be derived in terms of the bearing
parameters kz and cz. By substituting (14) into (17) and
then expanding (17), �QðjxÞ can be derived as

�QðjxÞ�

�RzðjxÞ
�q
ð1Þ
00 ðjxÞ

..

.

�q
ðNÞ
00 ðjxÞ

0
BBB@

1
CCCA¼

1

F

g ðx2
00�x2Þþjfx

� �
þNb2

0x
2

b0ðkzþjczxÞ
..
.

b0ðkzþjczxÞ

0
BBB@

1
CCCA

ð18Þ
It is observed from (18) that each component in �QðjxÞ is a
complex value containing the information of the response
amplitude and the phase.

In practice the axial response Dz(t) of the spindle sys-
tems can be measured at an arbitrary point (with radius r)
on the top disk from the ground-based observer as shown
in Fig. 1. The measured response Dz(t) consists of two
components of motion: the axial hub translation Rz(t), and
the axisymmetric vibration of the disk wd(r, t). Dz(t) is
given by

DzðtÞ ¼ RzðtÞ þ wdðr; tÞ ð19Þ
where wd(r, t) is discretized through the following
approximation function

wdðr; tÞ ¼ R00ðrÞqðNÞ00 ðtÞ ð20Þ
where R00(r) and q

ðNÞ
00 ðtÞ are the axisymmetric shapefunc-

tion and the N-th eigenmode, respectively. Dz(t) is calcu-

lated by first solving (1) for Rz(t) and q
ðNÞ
00 ðtÞ, and then

substituting (20) into (19).
From (19) and (20), the measured axial frequency

response �DzðjxÞ when subjected to a unit harmonic base
acceleration is obtained as

�DzðjxÞ ¼ �RzðjxÞ þ R00ðrÞ�qðNÞ00 ðjxÞ ð21Þ
Substituting (18) into (21) yields

�DzðjxÞ ¼
Pþ jQ

F
ð22Þ

where

P ¼ b0kzR00ðr0Þ þ gx2
00 þ ðNb2

0 � gÞx2 ð23Þ

and

Q ¼ ½b0czR00ðr0Þ þ g0f�x ð24Þ
The amplitude of �DzðjxÞ is

�Dzðx; kz; czÞ
�� �� ¼ P2 þ Q2

F0j j2

" #1
2

ð25Þ

4
Parametric study of thrust HDBs
In this section, the effects of variations in thrust HDB
parameters such as the axial stiffness and damping coef-
ficients on the axial FRF are investigated through the
numerical simulation. The disk-spindle system under
consideration consists of four identical disks with a
thickness of 0.8 mm. The spindle spins at 7200 rpm. The
disk-spindle parameters excepted the bearing coefficients
are described in Table 1. The axial stiffness and damping
parameters of the thrust HDB are inherently dependent;
i.e., design of thrust HDB to increase the stiffness will
increase the damping and vice versa. Both stiffness and
damping parameters can be changed through changes in
the bearing geometries and axial-gap height, the fluid
viscosity, and etc. (Jang and Kim 1999). In this paper, five
sets of the axial stiffness and damping coefficients of the
thrust HDBs, collected from various bearing designs, were
used for the parametric study and the optimization. The
values of stiffness and damping coefficients for these five
data sets are summarized in Table 2 and plotted in Fig. 2.

Figure 3 shows the axial FRF of the disk-spindle system
obtained from (25) when the radius r of measurement is
0.042 m, and both the axial stiffness and damping coeffi-
cients are varied according to Table 2. The resonance peak
around 600 Hz for each bearing design is the unbalanced
(0,0) mode. For this mode, all disks exhibit in-phase axi-
symmetric vibration and the hub undergoes axial vibra-
tion (Shen 1997). The shape of this unbalanced (0,0) mode
is shown in Fig. 4. As seen in Fig. 3, with an increase in
both stiffness and damping (the stiffness and damping

Table 1. Geometry and Properties of a four-disk spindle system
supported by HDBs

Disk-spindle system

b 47.50 mm
a 15.24 mm
I1 8.56 kg mm2

M 7.87 · 10)2 kg

Table 2. Axial stiffness and damping coefficients of five different
thrust bearing designs

Data set
P

t
k
ðtÞ
zz (N/m)

P
t

c
ðtÞ
zz (Ns/m)

1 4.974 · 104 1.581 · 102

2 2.368 · 105 4.958 · 102

3 5.584 · 105 1.013 · 103

4 1.108 · 106 2.130 · 103

5 1.690 · 106 3.247 · 103
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coefficients change from bearing design 1 to 5 in Table 2),
the vibration amplitude at low frequency range (<400 Hz)
is reduced. However, higher axial stiffness and damping
result in higher amplitude of the unbalanced (0,0) mode.

Figures 5 and 6 show the FRFs of axial vibration com-
ponents: the axial hub translation �Rzj j and the disk
deflection �wdj j at radius r of 0.042 m, when both the
stiffness and damping coefficients are varied. Compared
with the total axial vibration in Fig. 3, it can be seen from
Figs. 5 and 6 that the large amplitude of the axial vibration
at low frequency range (<400 Hz) is dominated by the
axial hub vibration while the unbalanced (0,0) mode is
dominated by the disk deflection.

To investigate the effect of variation in only the axial
stiffness or only the axial damping on the axial vibration,
the numerical simulation was performed by varying each
parameter at a time. Figures 7 and 8 show the axial FRF
of the disk-spindle system when varying only the axial

stiffness and only the axial damping, respectively. As seen
in Fig. 7, an increase in the axial stiffness suppresses the
axial vibration at low frequency range (<400 Hz). Specif-
ically, larger stiffness significantly reduces the axial hub
vibration which is the major component of the axial
vibration in the low frequency range. Moreover with the
larger stiffness, the amplitude of the unbalanced (0,0)
mode around 600 Hz slightly increases as shown in Fig. 7.
Let’s now consider the damping effect in Fig. 8. An in-
crease in the axial damping decreases the amplitude at the
low frequency range, but surprisingly increases the
amplitude of the unbalanced (0,0) mode. At resonance, the
larger damping slightly reduces the axial hub vibration but
significantly increases the disk deflection which is the
major component in the unbalanced (0,0) mode. From
Figs. 7 and 8, an increase in either axial stiffness or axial
damping causes a higher amplitude of the unbalanced
(0,0) mode. However the axial damping has a greater effect
on the amplitude of this mode.

For a clear explanation of damping effect on the
unbalanced (0,0) mode, a model of HDB spindle with
single disk is considered. This model is equivalent to a
two-degree-of-freedom discrete system in Fig. 9, where m1

and m2 represent the masses of the hub and the disk,
respectively. In addition, k1 and c1 are the axial stiffness
and damping coefficients of the thrust HDB, whereas
k2 and c2 are the equivalent disk stiffness and damping.
x1 and x2 in Fig. 9 represent the axial hub vibration and

Fig. 2. kzz and czz for five different thrust bearing designs

Fig. 3. Axial FRF of the disk-spindle system when the axial
stiffness and damping coefficients are varied

Fig. 4. Shape of the unbalanced (0,0) mode

Fig. 5. FRF of the hub axial translation when the axial stiffness
and damping coefficients are varied
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the total axial vibration measured at the outer rim of the
disk, respectively. In this stated problem, the damping
coefficient c1 is tuned to reduce the axial vibration x2.

Figure 10 shows the FRF of the axial vibration x2 sub-
jected to the base excitation €szðtÞ when the damping c1 is
varied. With a light damping (c1 < 100 Ns/m), there exist
two resonance modes at the frequency around 450 and
1100 Hz. This is natural because the system has two
degrees of freedom. Moreover an increase of damping
from 10 to 100 Ns/m reduces both resonance amplitudes.
However as the damping becomes larger (>100 Ns/m), a
new lightly damped resonance develops at 900 Hz. This is
probably because a very large damping powerfully sup-
presses the vibration x1 so that there is nearly no motion
(pin-support like) for m1. Hence the system behaves
similar to a one-degree-of-freedom system, having its own
single resonance. With a high constraint at mass m1, the

excitation tends to transmit directly from the base to mass
m2. Thus a too much increase in the damping c1 leads to
an undesirable large vibration of x2 at the new resonance.
This phenomena would occur to the HDB spindle with
more than one disks. In conclusion, a too much increase in
the axial damping of the thrust bearing most likely con-
strains the hub motion, allowing the vibration to be
transmitted from the base to the disks directly. Therefore
the larger value of damping results in a higher amplitude
of the unbalanced (0,0) modes.

The parametric study is useful for the design of thrust
HDBs. In practice, an optimal value of the axial damping
in the thrust HDBs can be desired to minimize the
amplitude of the unbalanced (0,0) mode. With the optimal
axial damping, the corresponding axial stiffness does not
minimize the axial vibration at low frequency range. This
undesirable axial vibration at low frequency range, how-
ever, can be compensated by the servo system in HDD.

5
Experimental test
To confirm the study of the axial stiffness and damping
effect, a vibration test was performed on two identical
HDB spindles with different fluid viscosity. The fluid vis-
cosities of these two spindles are listed in Table 3. Both

Fig. 6. FRF of the disk deflection when the axial stiffness and
damping coefficients are varied

Fig. 7. Axial FRF of the disk-spindle system when only the axial
stiffness coefficient is varied

Fig. 8. Axial FRF of the disk-spindle system when only the axial
damping coefficient is varied

Fig. 9. A two-degree-of-freedom discrete model
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axial stiffness and damping are linearly proportional to
fluid viscosity (Booser 1984). Thus from Table 3, the axial
stiffness and damping of spindle A are higher than those of
spindle B. In the test, each HDB spindle motor carries a
single disk with thickness of 1.27 mm. Figure 11 shows the
test setup. The disk-spindle system is mounted on a very
rigid fixture which is fixed on a shaker stand. During the
test the motor spins at 7200 rpm and the shaker applies a
random acceleration with a magnitude of 1 g rms along
the vertical direction. The frequency of this random
excitation ranges from 10 Hz to 1200 Hz. An accelerom-
eter and a capacitance probe are used to measure the input
acceleration and the axial vibration at outer radius of the
top disk, respectively. A dynamic signal analyzer was used
to determine the FRFs of the disk-spindle system based on
the acceleration and vibration measured by the sensors.

Figures 12 and 13 compare the FRFs of the two tested
spindles when they are stationary and spinning, respec-
tively. In both figures, the resonance peak around 930 Hz
is an unbalanced (0,0) mode. In the case when the motors
are stationary, the vibration characteristics of both spin-
dles are identical, as seen in Fig. 12. This shows that both
spindles have the same design parameters except for the
bearing lubricant properties. A comparison of Figs. 12 and
13 shows that the resonance amplitude reduces from
50 lm/g in the stationary case to �15 lm/g in the spin-
ning case. The unbalanced (0,0) modes in the spinning
case are heavily damped, because the fluid damping is
activated and helps dissipate an energy from the system.

Figure 13 clearly shows that the HDB spindle with a
higher viscosity or larger axial stiffness and damping has a
higher amplitude of the unbalanced (0,0) mode. Compared
with the HDB spindle with lower viscosity, the resonance

amplitude of the spindle with higher viscosity is increased
by 36%. This test result validates the prediction of the
stiffness and damping effect on the axial vibration in Sect.
4. In conclusion, an increase in the axial stiffness and
damping of the thrust bearing leads to a higher amplitude
of the unbalanced (0,0) mode.

6
Conclusions
The parametric study reveals the following useful knowl-
edge for the design of the thrust HDBs in disk drive
spindles.

1. An increase in the axial stiffness and damping in thrust
HDBs suppresses the axial vibration of the disk-spindle
system at low frequency range. This is mainly because
the larger stiffness significantly reduces the axial hub
vibration which is the major component of the axial
vibration in the low frequency range.

2. A too much increase in the axial stiffness and damping
results in a higher amplitude of the unbalanced (0,0)
mode. This is mainly because the higher damping
results in the larger deflection of the disks which is the
major component in the unbalanced (0,0) mode.

Fig. 10. Effect of damping on vibration of a two-degree-of-free-
dom discrete system

Table 3. Viscosity properties of the tested spindles

Spindle type Viscosity (mPas)

A 34.2
B 10.5

Fig. 11. Vibration test setup

Fig. 12. Axial FRFs of a single disk HDB spindle systems at sta-
tionary
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In practice, an optimal value of the axial stiffness and
damping coefficients in thrust HDBs can be desired to
minimize the amplitude of the unbalanced (0,0) mode.

References
Asada T; Saitou H; Asaida Y; Toujou K (2001) Development of
FDB spindle motors for HDD Use. IEEE Trans Mag 37: 783–788
Booser ER (1984) Handbook of Lubrication–Theory and Practice
of Tribology. Vol II, CRC Press, Florida
Jang G; Kim Y (1999) Calculation of dynamic coefficients in
hydrodynamic bearing considering five degree of freedom for a
general rotor-bearing system. ASME J Tribol 121: 499–505
Jintanawan T; Shen IY; Ku C-P (1999) Free and forced vibration
of a rotating disk pack and spindle motor system with hydro-
dynamic bearings. J Information Storage Processing Sys: 1: 45–48

Jintanawan T; Shen IY; Tanaka K (2001) Vibration analysis of
fluid dynamic bearing spindles with rotating-shaft design. IEEE
Trans Mag 37: 799–804
Jintanawan T (2002) FDB spindle motor design for vibration
suppression. In Proc of APMRC 2002, pp 45–58
Ku C-P (1997) Effects of compliance of hydrodynamic thrust
bearings in hard disk drives on disk Vibration. IEEE Trans Mag
33: 2641–2643
Matsuoka K; Obata S; Kita H; Itoh F (2001) Characteristic anal-
ysis of hydrodynamic bearings for HDDs. IEEE Trans Mag 37:
810–813
Shen IY (1997) Closed-form forced response of a damped,
rotating, multiple disk/spindle system. J Appl Mech 64: 343–352

Appendix
In Eqs. (3–6), g and b0 are inertia terms normalized with
respect to the diametral mass moment of inertia of each
disk I1, given by

g ¼ M

I1
; b0 ¼

2pqh

I1

Zb

a

R00ðrÞdr ð26Þ

Furthermore x00 is the natural frequencies of the axi-
symmetric disk mode, f is the normalized viscous damp-
ing of the disks as defined in Jintanawan et al. (2001), and
kz and cz are total axial stiffness and damping of thrust
HDBs normalized with respect to I1:

kz ¼
1

I1

X
t

kðtÞzz ; cz ¼
1

I1

X
t

cðtÞzz ð27Þ

In (26) and (27) M is the total mass of the disk-spindle
system, R00(r) is the shape function of the axisymmetric
disk mode, and k

ðtÞ
zz and c

ðtÞ
zz are axial stiffness and damping

coefficients of thrust HDB, respectively. In addition, a and
b in (26) are an inner radius and an outer radius of the
disk.

Fig. 13. Axial FRFs of a single disk HDB spindle systems at
7200 rpm
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