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Abstract This paper is to analyze vibration of fluid dy-
namic bearing spindles with distributed journal bearing
forces. The dynamical model is developed to predict the
transverse vibration of the disk–spindle systems in HDD
where an aspect ratio of the bearing width to the shaft
length is significant and the shaft is likely flexible. In
such spindles the journal bearing functions as a contin-
uous support, providing the distributed restoring and
damping forces, and is therefore modeled as distributed
linear spring and damping forces through distribution
functions of dynamic coefficients. Vibration analysis
reveals that the spindle model with distributed bearing
forces predicts the same natural frequencies for all
transverse modes but higher modal damping of the
rocking modes, when compared to the values predicted
by the conventional model with discrete bearing forces.
The difference in damping prediction is clearer for the
flexible-shaft spindle whose ratio of the bearing width to
the shaft length becomes larger.

1 Introduction

Fluid dynamic bearing (FDB) spindle motors are cur-
rently used in hard disk drive (HDD) because of the
FDB capability in vibration and acoustic reduction. In
the FDB spindle drives, the herringbone grooved journal
bearings (HGJB) are used to provide restoring and
damping forces in the radial direction. In conventional
approach, the dynamic forces provided by the journal
bearings, including HGJBs, are modeled as discrete
linear spring and damping forces acting at the bearing
center (Booser 1984; Klit et al. 1986; Zirkelback et al.
1998; Jang et al. 1999).

The transverse vibration of HDD spindles, occurring
in the disk-plane direction, is the main cause of the track
misregistration that limits the storage density perfor-
mance. It has been known that the property and location
of HGJB play an important role in optimizing such
unwanted transverse vibration (Park et al. 2002). To
develop a dynamic model predicting the vibration of the
disk–spindle systems for HDD, one can observe that
geometry of the bearing-spindle in HDD is quite unique;
i.e., the aspect ratio of the bearing width to the shaft
length is significant or greater when compared with that
in general rotordynamic systems. Taking disk drives
with small form factors (e.g., 0.85 in. HDD to be used in
cell phones) as an example, most of the shaft length is
supported by the bearings. In this case the aspect ratio of
the width for each bearing to the shaft length could be as
great as 0.5. In addition the spindle shaft in HDD is
more accurately modeled as a flexible shaft than a rigid
shaft (Jintanawan et al. 2001). With these observations,
the HGJBs in the HDD spindles would rather function
as a continuous support providing distributed restoring
and damping forces. Jintanawan (2004) proposes a new
dynamic model of distributed bearing forces in HGJB.
In the paper, the distribution functions of dynamic
coefficients characterizing the distributed forces of the
HGJB were determined.

This paper is to further develop a dynamical model of
disk–spindle systems with distributed forces in HGJB
for predicting vibration in HDD. The HGJB is modeled
as distributed linear spring and damping forces through
distribution functions of the direct and cross-coupled
spring and damping coefficients. Determination of these
coefficients is presented in Sect. 2. The mathematical
model of disk–spindle systems with distributed bearing
forces is then developed and summarized in Sect. 3. In
Sect. 4, free and forced transverse vibrations predicted
by this present model are compared with those from the
conventional spindle model with discrete bearing forces.
How the distribution of bearing forces affects the
vibration of HDD spindles is analyzed for various
bearing widths.
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2 Determination of distribution of dynamic bearing
coefficients

Consider an arbitrary HGJB as shown in Fig. 1. There
exists two types of HGJB for HDD spindles depending
on the location of their grooves: (a) the grooved-bearing
(GB) type, and (b) the grooved-journal (GJ) type. The
GB type has the grooves located on the bearing sleeve,
while the GJ type has the grooves located on the rotating

journal. The groove angles for both types are in the
opposite direction, in order to pump the fluid inward. In
addition, the bearing width is L and the journal having a
radius R rotates with a constant angular speed x3.

To determine the dynamic coefficients of the HGJB,
Reynolds equation governing a pressure field of the
journal bearing is formulated. The pressure perturbation
arising from the dynamic perturbations of journal
displacements and velocities is then analyzed using a
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variational approach (Klit et al. 1986). The detailed
derivation of the pressure perturbation px; py ; p _x and p _y ;
with respect to the perturbation of displacements and
velocities respectively, is presented in Appendix A. The
finite element model is developed to subsequently solve
for the steady-state pressure field and the pressure per-
turbation generated in the HGJB. The pressure pertur-
bation px; py ; p _x and p _y is then integrated over a
circumferential direction to obtain the distribution of
stiffness and damping coefficients along the bearing
length. The distribution of bearing coefficients, being
function of the bearing position ẑ that measured from
the bearing center along its length, are represented in a
matrix form as

k ¼ kxxðẑÞ kxyðẑÞ
kyxðẑÞ kyy ð̂zÞ

� �
¼
Z
h

� cos h
� sin h

� �
pxðẑÞ py ð̂zÞ½ �Rdh

ð1Þ

and

c ¼ cxxð̂zÞ cxyðẑÞ
cyxð̂zÞ cyyðẑÞ

� �
¼
Z
h

� cos h
� sin h

� �
p _xðẑÞ p _yðẑÞ½ �Rdh;

ð2Þ

where h is the bearing angle, kxxðẑÞ and kyyðẑÞ denote the
direct stiffness distributions, kxyðẑÞ and kyxðẑÞ denote the
cross-coupled stiffness distributions, cxxðẑÞ and cyyðẑÞ
denote the direct damping distributions, and cxyðẑÞ and
cyxðẑÞ denote the cross-coupled damping distributions.
The distributions of stiffness and damping coefficients in
(1) and (2) have units of N/m2 and Ns/m2, respectively,
characterizing the distributed bearing forces. Note that
total stiffness and damping coefficients for the discrete
bearing forces can be determined from an integration of
kxxðẑÞ; kxyðẑÞ; cxxðẑÞ; and cxy ð̂zÞ over ẑ:

In general, the data of the bearing coefficients for
HGJB in spindle drives are determined numerically in
terms of discrete stiffness and damping coefficients, and
these data are reported in various publications. Thus,
the present model of distributed bearing forces was
validated by comparing the total dynamic coefficients for
the discrete bearing forces of various HGJBs with the
data published in Zirkelback et al. (1998) and Jang et al.
(1999), as presented in Jintanawan (2004). The difference
of the bearing coefficients in the comparison is less than
8%.

A GB-type HGJB for a HDD spindle with properties
and geometry shown in Table 1 is analyzed. Figure 2
shows the distribution of dynamic coefficients of this
HGJB at various bearing position ẑ. The calculation
yields kxxðẑÞ ¼ kyyðẑÞ; kxyðẑÞ ¼ �kyxð̂zÞ; cxxðẑÞ ¼ cyyðẑÞ; and
cxy ð̂zÞ ¼ �cyxðẑÞ: This so-called isotropic property occurs
in the lightly loaded bearing such as the HGJB for hard
disk drives. In Fig. 2, the distributions of direct and
cross-coupled stiffness kxxð̂zÞ; kxy ð̂zÞ and the distribution
of direct damping cxxðẑÞ are gradually increased from
both sided-ends of the bearing, and reach maximum at

the bearing center. In addition the cross-coupled stiffness
kxy ð̂zÞ is larger than the direct stiffness kxxð̂zÞ. Note that
the total cross-coupled damping is about zero.

3 Dynamical model of FDB spindle systems
with distributed bearing forces

In this section, the mathematical model of fluid dy-
namic bearing (FDB) spindle systems with distributed
journal bearing forces, predicting the transverse vibra-
tion of a HDD, is presented. The equations governing
the transverse motion of the spindle systems are de-
rived using Lagrange’s method. Most detailed deriva-
tion is not different from that presented in Jintanawan
et al. (2001) and would be omitted here. This paper
however will focus on a formulation of the distributed
bearing forces provided by HGJB and a contribution
of these distributed forces to the dynamical model of
the system.

3.1 Model description

Figure 3 shows a physical model of the FDB spindle
system in HDD. The system consists of N elastic cir-
cular disks clamped to a deformable hub that allows
infinitesimal rigid-body translation and rocking. The
hub is press-fit onto a rotating, flexible shaft, which is
mounted to the base through two HGJB and a spiral-
grooved thrust bearing. The HGJBs provide distributed
direct and cross-coupled spring and damping forces in
the radial direction. The thrust bearing provides the
axial restoring and damping forces against the spindle
axial motion as well as the restoring- and damping-
rocking moments against the spindle rocking. In order
to provide the rocking moment to the system, the
thrust bearing is modeled as torsional springs and
dampers through the angular direct and cross-coupled
stiffness and damping coefficients, kt1, kt2, ct1, ct2 (Jin-
tanawan et al. 2001). According to large deformation
of the hub around the press-fit, the hub-shaft interface
is modeled as a hinged support with a torsional spring.
In this model, the spindle system is axisymmetric and
all the disks are identical. Only the zero-nodal-circle
modes of the disk vibration are retained in the

Table 1 Geometry and property of the GB-type HGJB

Fluid viscosity (l) 0.0142 Pa’s
Clearance (c) 2.5 lm
Rotational speed (x 3) 7,200 rpm
Radius of journal (R) 2 mm
Groove angle (a) 157�
Groove depth ratio (cg/c) 2.4
Ridge ratio (wr/wr + wg) 0.8
Number of groove (Ng) 6
Bearing width to diameter ratio (L/D) 0.7
Eccentricity ratio (e0/c) 0
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mathematical model because of their significance in the
frequency range of interest. Moreover, the motion of
the system in the spindle’s transverse and axial direc-
tions can be completely decoupled (Jintanawan 2000).
In this study, the spindle spins at a constant speed x3

and is subjected to the base excitation in the disk-plane
direction, thus the system exhibits only the transverse
motion.

The transverse motion of the FDB spindle system
for HDD is described by the following generalized
coordinates: infinitesimal rigid body whirling of the
spindle hub (Rx, Ry); infinitesimal rigid body precession
of the hub (hx, hy); eigenmodes of the flexible shaft
(qx, qy); and the (0,1) eigenmodes of each disk

ðqðiÞ01 ; q
ðiÞ
0;�1; i ¼ 1; 2; :::;NÞ:
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3.2 Model of distributed dynamic bearing forces
in HGJB

The HGJB is modeled as generalized internal forces
through distributed direct and cross-coupled stiffnesses
and dampings. Let us consider a single arbitrary HGJB.
An infinitesimal deflection of the bearing at various
position z, (z is measured from the lower end of the
shaft), can be discretized in terms of the generalized
coordinates as follows:

rbðzÞ � rxbðzÞIþ rybðzÞJþ rzbK; zlb6z6zub
¼ ðRx þ /ðzÞqx þ zbhyÞIþ ðRy þ /ðzÞqy � zbhxÞJ
þ RzK; ð3Þ

where I, J and K are the unit vectors, / (z) is the first
modeshape or eigenfunction of the shaft, zlb and zub are
the positions of lower and upper ends of the bearing,
and zb=z � zG is the bearing position that measured
with respect to the system C.G. For the isotropic bear-
ing, the distribution of stiffness and damping coefficients
are simply

k1ðzÞ � kxxðzÞ ¼ kyyðzÞ; k2ðzÞ � kxyðzÞ ¼ �kyxðzÞ;
c1ðzÞ � cxxðzÞ ¼ cyyðzÞ; c2ðzÞ � cxyðzÞ ¼ �cyxðzÞ

: ð4Þ

With k1(z), k2(z), c1(z), and c2(z) obtained from Sec-
tion 2, the distributed forces per unit length provided by
HGJB are

fxb(z)
fyb(z)

� �
¼ � k1(z) k2(z)

�k2(z) k1(z)

� �
rxbðzÞ
rybðzÞ

� �

� c1(z) c2(z)
�c2(z) c1(z)

� �
_rxbðzÞ
_rybðzÞ

� �
: ð5Þ

Hence the virtual work done by HGJB is

dW ¼
Zzub
zlb

fxbðzÞdrxbdzþ
Zzub
zlb

fybðzÞdrybdz; ð6Þ

where drxb (z) and dryb (z) are virtual displacements of
the bearing.

3.3 Equations governing transverse motion

The equation governing the transverse motion of the
FDB spindle system can be simplified by using the fol-
lowing complex representation

�h � hx þ jhy ; �R � Rx þ jRy ;
�QðiÞ01 � qðiÞ0;�1 � jqðiÞ01 ; �q � qx þ jqy

; ð7Þ

where j �
ffiffiffiffiffiffiffi
�1
p

: The matrix equation of motion gov-
erning the transverse motion of the system is then

M€qðtÞ þ ðGþ CÞ _qðtÞ þ KqðtÞ ¼ fðtÞ; ð8Þ

where q is a vector of the generalized coordinates, M is
the inertia matrix, G is the complex gyroscopic matrix, C
is the complex damping matrix, and K is the complex
stiffness and oscillatory matrix given by

q ¼ �h; �R; �q; �Qð1Þ01 ;
�Qð2Þ01 ; . . . ; �QðNÞ01

� �T
; ð9Þ

M ¼

g1 0 ja1 a0 a0 � � � a0

0 g0 k1 0 0 � � � 0
�ja1 k1 g2 0 0 � � � 0

a0 0 0 1 0 � � � 0
a0 0 0 0 1 � � � 0

..

. ..
. ..

. ..
. ..

. . .
. ..

.

a0 0 0 0 0 � � � 1

2
6666666664

3
7777777775
; ð10Þ

G ¼ jx3

g3 0 ja2 2a0 2a0 � � � 2a0

0 0 0 0 0 � � � 0
�ja2 0 k2 0 0 � � � 0
2a0 0 0 2 0 � � � 0
2a0 0 0 0 2 � � � 0

..

. ..
. ..

. ..
. ..

. . .
. ..

.

2a0 0 0 0 0 � � � 2

2
6666666664

3
7777777775
; ð11Þ

C ¼

chh chR chq 0 0 � � � 0
�chR cRR cRq 0 0 � � � 0
�chq cRq cqq 0 0 � � � 0
0 0 0 0 0 � � � 0
0 0 0 0 0 � � � 0
..
. ..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 0 � � � 0

2
666666664

3
777777775
; ð12Þ

K ¼

khh khR khq 0 0 � � � 0
�khR kRR kRq 0 0 � � � 0
�khq kRq kqq 0 0 � � � 0
0 0 0 k01 0 � � � 0
0 0 0 0 k01 � � � 0

..

. ..
. ..

. ..
. ..

. . .
. ..

.

0 0 0 0 0 � � � k01

2
6666666664

3
7777777775
; ð13Þ

f(t) is a vector of the generalized forces associated with
the base acceleration €sðtÞ given by

f ¼ €sðtÞ 0; g0; k1; 0; . . . ; 0ð ÞT: ð14Þ

The distributions of coefficients k1(z), k2(z), c1(z), and
c2(z) are contributed to the components of matrices C

and K in (12) and (13) as follows:

chh ¼
1

I1

X
r

Zzub
zlb

z2bðc1 � jc2Þdz

2
4

3
5þX

t

Ct;

chR ¼
j
I1

X
r

Zzub
zlb

zbðc1 � jc2Þdz

2
4

3
5

ð15Þ
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chq ¼
j
I1

X
r

Zzub
zlb

zb/ðzÞðc1 � jc2Þdz

2
4

3
5þX

t

@/ðztÞ
@z

Ct;

cRR ¼
1

I1

X
r

Zzub
zlb

ðc1 � jc2Þdz

2
4

3
5;

cRq ¼
1

I1

X
r

Zzub
zlb

/ðzÞðc1 � jc2Þdz

2
4

3
5;

cqq ¼
1

I1

X
r

Zzub
zlb

/2ðzÞðc1 � jc2Þdz

2
4

3
5þX

t

@/ðztÞ
@z

� �2
Ct

where
P

r ½� and
P

t ½� are sum over all the radial HGJBs
and the thrust bearings, respectively, Ct=ct1 � jct2 is the
angular damping coefficients of the thrust bearing, and
zt is the position of the thrust bearing. In addition, the
coefficients khh; khR; khq; kRR; kRq can be found from (15)
with all c replaced by k. Also

kqq ¼ x2
s þ

1

I1

X
r

Zzub
zlb

/2ðzÞðk1 � jk2Þdz

2
4

3
5

þ
X

t

@/ðztÞ
@z

� �2
Kt; ð16Þ

where xs is the shaft natural frequency, and Kt=kt�jkt2
is the angular stiffness coefficients of the thrust bearing.
Moreover, the rest detailed description of each term in
M, G, C, K, and f(t) is given in Appendix B.

4 Vibration analysis

In this section, free and forced vibrations of the FDB
spindle systems with distributed bearing forces are
analyzed for various aspect ratios of the bearing width
to the shaft length. For the free vibration, natural fre-
quencies and modal dampings of the transverse modes
are present. The modal damping indicates the shape of
resonance peak and characteristics of the resonance

amplitudes when subjected to the excitation. For forced
vibration, transverse frequency response functions
(FRF) of the system subjected to the base excitation in
the disk-plane direction are present. Free and forced
vibrations predicted by the model in Sect. 3 are com-
pared to those predicted by the conventional model with
discrete bearing forces (Jintanawan et al. 2001). Effect of
the distributed bearing forces of HGJBs on the natural
frequencies, modal dampings and transverse FRF of the
spindle system is then discussed.

Two nearly identical disk–spindle systems A and B
for HDD, with only difference in bearing width, are
studied. Both systems have two-disk platter. Geometries
and properties of the disks and spindle are listed in
Table 2. Each spindle consists of two identical HGJB
whose property and geometry, except L/D, are previ-
ously shown in Table 1. In addition the bearing width of
spindles A and B are 2.8 and 5 mm, respectively. Thus
the aspect ratios of each bearing width to the shaft
length for both spindles are 0.17 and 0.30, respectively.
The angular stiffness and damping coefficients of the
thrust bearing are assumed small and negligible in this
case.

4.1 Free vibration

The model of spindle system with distributed bearing
forces developed in Sect. 3 predicts the natural fre-
quencies and the modal dampings of spindles A and B as
illustrated by the solid lines in Fig. 4 for various spin
speeds. In addition, these results are compared to the
values predicted by the model with discrete bearing
forces as shown by the dashed lines in the same plot.
Furthermore, the values of the natural frequencies and
the modal dampings of spindles A and B for 120 Hz spin
speed that predicted by both models are presented in
Tables 3 and 4. Both spindle models with either discrete
or distributed bearing forces predict similar character-
istics of the transverse vibration which can be divided
into two groups: (a) four half-speed whirl (HSW) modes,
and (b) two pairs of rocking modes; see Fig. 4. Each
modeshape exhibits a coupled motion of the spindle
whirling and precession, the flexible shaft vibration and

Table 2 Geometry and properties of a two-disk FDB spindle system in a hard disk drive

Disk Spindle

b 47.50 mm I1 3.293 kg mm2

a 15.24 mm I3 4.818 kg mm2

I1 1.372 kg mm2 m 3.180·10�2 kg

z1 �4.425 mm Shaft
z2 �8.245 mm Length ls 16.9 mm
m 2.282·10�2 kg Diameter ds 4 mm

zlb (for lower HGJB) 1.55 mm
zub (for upper HGJB) 14.87 mm
Es 190 GPa
qs 7,800 kg/m3
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the disk vibration of (0,1) modes (Shen et al. 1997; Jin-
tanawan et al. 1999). All these vibration modes exist in
the transverse direction, and hence are the main cause of
the track misregistration. In Fig. 4, the half-speed whirls
occur at a certain frequency about half of the rotor
speed, and they are heavily damped compared to the
rocking modes. The frequencies and damping of the
rocking mode pairs have two split branches known as
backward (B) and forward (F) modes, as seen in Fig. 4.
In addition, for both rocking mode pairs, the modal
damping of the backward modes is always slightly
greater than the damping of the forward modes as

shown in Tables 3 and 4. In practice, the predictable
half-speed whirl can be corrected by the servo system in
HDD. Therefore, it is the rocking modes that are the
major concern in optimizing the vibration performance
of HDD spindles. Moreover, only the spindle model
considering the shaft and disk flexibility can predict
these two rocking mode pairs.

Compared to the conventional model of discrete
bearing forces, the spindle model with distributed bear-
ing forces predicts the same natural frequencies for all
transverse modes but predicts higher modal dampings of
the rocking mode pairs. The difference in damping
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prediction is clearer for spindle B where the ratio of the
bearing width to the shaft length becomes larger. It
implies that under the base excitation, the resonance
peaks of the rocking modes predicted by the model with
distributed bearing forces are more heavily damped (the
peaks are less steep) and the rocking amplitude is smaller
when compared to those predicted by the conventional
model of discrete bearing force. In the spindle design,
the rocking amplitudes have to be minimized in order to
optimize the vibration performance. With the higher
modal damping of the rocking modes, the vibration
performance of HDD spindles is better.

The same predictions of natural frequency for both
models can be explained as follows. The half-speed
whirls are an inherence whirl phenomena of the bearing
and their resonance frequency is only affected by the
spin speed. Furthermore, the frequencies of the rocking
mode pairs substantially depend on the natural fre-
quencies of the shaft and disk (xs and x01) through the
terms kqq and k01 in (13) and (16). Accordingly, the
bearing property and geometry has no great effect on all
resonance frequencies. The difference in damping pre-
dictions of the rocking modes from the two models can
be discussed as follows. The modal damping of the
rocking modes is mainly affected by the damping in
the bearing as well as the bearing deflection, through the
terms chh, chR, chq, cRR, cRq, and cqq in (15). For the
distributed bearing forces, the bearing deflection is
considered as continuously varied along the bearing
length due to the shaft flexibility. Thus, it results in
different values of modal dampings compared to those
predicted by the spindle model with discrete bearing
forces that the bearing deflection is simply evaluated at
the bearing center.

To further investigate the effect of shaft flexibility on
the modal damping that predicted by the model with
distributed bearing forces, Fig. 5 compares the natural

frequencies and modal dampings1 of two different flex-
ible-disk spindle systems: (1) with rigid shaft; and (2)
with flexible shaft, for various spin speed. When com-
pared to the flexible-shaft system, the system with rigid
shaft possesses four half-speed whirl modes but only one
pair of rocking modes. This is because of reduced
degrees of freedom in the system. Moreover, the modal
dampings of rocking modes for the rigid-shaft spindle
system, predicted by the models with either discrete or
distributed bearing forces, are nearly identical, as seen
on the left of Fig. 5. It is implied that the model of
distributed bearing forces does not cause any difference
in damping prediction unless the shaft is flexible. For the
rigid shaft, the deflection of the bearing, which is af-
fected by only the whirling and the rocking of the rigid
spindle, slightly varies along its length. In such case, the
dynamic resultants of bearing forces obtained from
either discrete or distributed models are not different,
and hence resulting in similar vibration characteristics.

For the FDB spindle system with significant aspect
ratio of the bearing width to the shaft length and the
shaft is likely flexible, the conventional spindle model
with discrete bearing forces would not accurately predict
the modal damping of rocking modes. In such system,
the dynamic model of disk–spindle system with distrib-
uted bearing forces could be the alternative model for
improving the damping prediction.

4.2 Forced vibration

In this section, we present a simulation of frequency
response functions (FRF) whose response is measured
from the disk along the radial or transverse direction,

Table 3 Natural frequencies and modal dampings of spindle A (bearing width = 2.8 mm)

Vibration modes Natural frequencies (Hz) Modal damping (%)

Discrete model Distributed model Discrete model Distributed model

HSW 62.5 62.5 60 60
Rocking B1 285 285 3.23 3.99
Rocking F1 515 515 1.78 2.33
Rocking B2 1893 1893 1.24 1.84
Rocking F2 2089 2088 1.20 1.75

Table 4 Natural frequencies and modal dampings of spindle B (bearing width = 5.0 mm)

Vibration modes Natural frequencies (Hz) Modal damping (%)

Discrete model Distributed model Discrete model Distributed model

HSW 62 62 34 32
Rocking B1 282 283 1.97 7.09
Rocking F1 513 514 1.29 5.01
Rocking B2 1902 1897 1.20 5.16
Rocking F2 2100 2094 1.15 4.78

1For all cases, the modal dampings of the half-speed whirl modes
are not different, and hence they are not shown in Fig. 5
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when subjected to the base excitation in the disk-plane
direction. This transverse FRF well represents the pos-
sible track-misregistration in HDD and can be expressed
as:

D
*

ðzÞ � DxðzÞIþ DyðzÞJ
¼ ðRx þ z0hyÞIþ ðRy � z0hxÞJ

; ð17Þ

where z0 = z�zG is the distance of the measurement
level from system C.G. This transverse vibration consists
of two components: one from the spindle whirling (Rx

and Ry) and the other from the spindle precession (z0hy
and z0hx).

Figure 6 shows the magnitudes of transverse FRF D
*
��� ���

of the previously described disk–spindle systems A and
B, when the response is measured from the lower disk
and the spindle spins at 7,200 rpm or 120 Hz. In Fig. 6
the transverse FRF of both systems A and B that pre-
dicted by the spindle models with discrete and distrib-
uted bearing forces are compared. In all cases, for the

frequency range of 0–800 Hz there exist the resonance
peaks of half-speed whirl modes at 60 Hz and the first
pair of backward and forward rocking modes at 270 and
520 Hz. Moreover, the resonance peaks of rocking
modes predicted by the present model with distributed
bearing forces are more heavily damped. The larger
damping of rocking modes is much clearer for the case
of system B with wider bearing width.

Note that the resonance peak of the half-speed whirls
at 60 Hz as presented in Fig. 6 is more heavily damped
when qualitatively compared to the peaks from general
test results (e.g., Fig. 8 in Jintanawan et al. 2001). The
observation reveals that the predicted modal damping of
the half-speed whirl might be too high. In the parametric
study (Park et al. 2002), the half-speed whirl damping is
decreased with the lower direct stiffness of HGJB. Sim-
ilarly, the damping of the half-speed whirl might de-
crease due to the flexibility of the stationary base (Tseng
et al. 2003), which is not included in this model. The
base flexibility would yield less stiffness of the structure
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Fig. 5 Free vibration prediction of the rigid-shaft and flexible-shaft spindle systems with the bearing width of 5.0 mm
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that leads to the smaller damping of the half-speed whirl
mode for the actual system. In addition, to accurately
predict the half-speed whirls, the exact values of bearing
properties such as viscosity, clearance, and length, etc.,
are needed for calculating the bearing coefficients.

5 Conclusions

In this paper we present a dynamical model of disk–
spindle systems with distributed forces in HGJB for
predicting transverse vibration of HDD spindles. When
compared to vibration predicted by the conventional
spindle model with discrete bearing forces, the present
model with distributed bearing forces predicts the same
natural frequencies for all transverse modes but higher
modal damping of the rocking modes. The difference in
damping prediction is clearer when the aspect ratio of
the bearing width to the shaft length becomes larger and
the shaft is likely flexible. Specifically, the modal
damping of the rocking modes is substantially affected
by the journal bearing forces. For the present model,
these bearing forces are distributed along the bearing
length where the bearing deflection is continuously
varied due to the shaft flexibility. The spindle model with
distributed bearing forces could be the alternative model
for improving the damping prediction of the rocking
modes.
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Appendix A

Consider an arbitrary herringbone grooved journal
bearing (HGJB) as shown in Fig. 1. The inertial coor-
dinate system xy describes the motion of the journal
center and the coordinate system x̂ẑ where x̂ ¼ Rh de-
scribes the position of the unwrapped fluid film. With
the grooves moving, the x̂-axis for the GJ-type bearing is
fixed to the rotating journal. In addition it is easier to
consider the journal of the GJ-type bearing as relatively
stationary while the bearing sleeve rotates in the oppo-
site direction (Zirkelback et al. 1998). The Reynolds
equation governing the pressure field p in HGJB is

1

R2

@

@h
h3

12l
@p
@h

� �
þ @

@ẑ
h3

12l
@p
@ẑ

� �

¼ LðpÞ ¼ x3

2

dh
dh
þ @h
@t
; for GB type

¼ �x3

2

dh
dh
þ @h
@t
; for GJ type ð18Þ
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Fig. 6 Transverse FRF of the
disk–spindle system predicted
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where l is the fluid viscosity, and h is the film thickness
in the ridge and groove regions expressed respectively as

h ¼ cþ ex cos Hþ ey sin H ð19Þ

and

h ¼ cþ cg þ ex cos Hþ ey sin H: ð20Þ

In (19) and (20), c is the nominal film clearance, cg is
groove depth, ex and ey are journal eccentricities, also
H=h for the GB-type HGJB, and H=h+x3t for the
GJ-type HGJB. The pressure field p satisfies the fol-
lowing boundary conditions: pðh; ẑ; tÞ ¼ pðhþ 2p; ẑ; tÞ
and pðh; L=2; ẑÞ ¼ pðh;�L=2; ẑÞ ¼ pa, where pa is the
atmospheric pressure.

For a small perturbation Der (t), (r = x, y), of
journal displacements from the steady state configura-
tion (ex0, ey0), the film thickness is then

h ¼ h0 þ Dex cos Hþ Dey sin H ¼ h0 þ
X

r

Derhr;

r ¼ x; y; ð22Þ

where h0 is the film thickness for the steady state con-
figuration (ex0, ey0), hx=cos H, and hy ¼ sin H: With
the small perturbed displacement DerðtÞ and perturbed
velocity D _erðtÞ; ðr ¼ x; yÞ; the perturbed pressure field is
then

p ¼ p0 þ
X

r

prDer þ
X

_r

p _rD _er; r ¼ x; y; ð23Þ

where pr and p _rðr ¼ x; yÞ are pressure perturbation with
respect to the perturbed displacement and velocity,
respectively. Substituting (22) and (23) into (18) and
neglecting the higher order terms, the differential equa-
tion governing the steady-state pressure field is obtained
as

Lðp0Þ ¼ x3

2
dh0
dh ; for GB type;

¼ � x3

2
dh0
dh � X ex0 sin H� ey0 cos H

	 

;

for GJ type

: ð24Þ

Moreover for both GB- and GJ-types, the equations
governing the pressure perturbation are then

LðprÞ ¼
x3

2

dhr

dh
� 1

R2

@

@h
3h20hr

12l
@p0
@h
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� @

@ẑ
3h2

0hr

12l
@p0
@ẑ

� �
;

r ¼ x; y;

ð25Þ

Lðp _rÞ ¼ hr; r ¼ x; y:

Appendix B

In (10) to (14), g0; g1; g2; g3; k1; k2; a1; a2; and a0 are
the inertias normalized with respect to the diametral
mass moment of inertia of each disk I1, given by

g0 ¼ M
I1
; g1 ¼

�I1
I1
; g2 ¼ Îs

I1
; g3 ¼

�I3
I1

k1 ¼ Ms1
I1
; k2 ¼ Ms2

I1
; a1 ¼ Ns1

I1
; a2 ¼ Ns2

I1

a0 ¼ pqh
I1

Rb
a

R01ðrÞr2dr

; ð26Þ

where M is the total mass of the spindle system, �I and �I3
are the centroidal mass moment of inertia of the rotating
part about x and y axes, and Ms1, Ms2, Ns1, Ns2, and Îs
are the modal mass of the shaft defined in Jintanawan
(2000).

In (13) k01 ¼ x2
01 � x2

3 � jfx3, where x01 and f is the
natural frequencies and the normalized viscous damping
of the disks as defined in Jintanawan (2000).
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