Answer keys to Homework \#1

Homework \# 1
a) For Home to have comparative advantage in chips, the condition is such that

$$
\begin{equation*}
\frac{a_{L C}}{a_{L F}}<\frac{a_{L C}^{*}}{a_{L F}^{*}} \tag{1}
\end{equation*}
$$

In the same way, for foreign to have comparative adrantoge in fish, we must hare

$$
\frac{a_{L F}^{r}}{a_{L C}^{\gamma}}<\frac{a_{L F}}{a_{L C}}
$$

(2) Which is in tact equivalent to (1)
For Home to hare absolute advantage in fish

| $a_{L F}<a_{L F}^{\gamma}$ | (3) |
| :--- | :--- | :--- |
| $a_{L C}^{\gamma}<a_{L c}$ | (4) |

C4) for Foxier to nave absolute advantage in chips.

point is whom Home is the sole prodveer of chips and Foreign is sole producer of Ships. Both Home and Foreign produce chips at area D and point E. Both Home and Foreign produce fish at area B and point A. Home is the sole producer of chips at area B and point. Foreign is the sole producer of fish at area 0 and point E
C. Home has absolute and comparative advantage in chips. under the Ricardian model, wage in each country will be equal across sector. Then following from CRS technology, interior solution requires

$$
\begin{aligned}
& P_{C} \leq W a_{L C} \\
& P_{F} \leq W a_{L F}
\end{aligned}
$$

If economy is diversified

$$
\begin{equation*}
W=\frac{p_{C}}{a_{L C}}=\frac{f_{f}}{a_{L F}} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad W^{*}=\frac{p_{C}^{\gamma}}{a_{L C}^{\gamma}}=\frac{p_{F}^{\gamma}}{a_{L F}^{\gamma}} \tag{6}
\end{equation*}
$$

(5) and (6) are wage rates in Autarky equilibriums. Now consider trading equilibrium, in case that both countries specialia in one good

$$
\begin{aligned}
& w=\frac{P_{C}^{W}}{a_{L C}} \\
& W^{\gamma}=\frac{P_{f}^{\gamma}}{a_{L f}^{\gamma}}
\end{aligned}
$$

Home's waye may not higher than foreign. The case that Home's wage will be nigher than foreign's is when Foriom diversifies: $W^{\gamma}=\frac{P_{F}^{H}}{q_{L f}^{\gamma}}=\frac{P_{C}^{W}}{G_{L C^{\gamma}}}$
In this case $w>w^{\gamma}$ sine $a_{L C}<a_{2}{ }_{c}$. similarly, Foreign has higher wage than Home if Home diversifies and then $W=\frac{p_{F}^{2}}{a_{L F}}=\frac{p_{C}{ }^{4}}{a_{L C}}$

$$
\text { In this case, } w<w^{\gamma} \text { since } a_{L f}>G_{2 f}^{\gamma}
$$

