Tutorial III: MOSFETs

B. G. Streetman (6th Edition): End-of-Chapter 6 Problems

6.10) An n^+ -polysilicon-gate *p*-channel MOS transistor is made on a *n*-type Si substrate with $N_d = 5 \times 10^{16} \text{ cm}^{-3}$. The SiO₂ thickness is 100Å in the gate region, and the effective interface charge Q_i is $2 \times 10^{11} \text{ qC/cm}^2$. Sketch the *C-V* curve for this device and give important numbers for the scale.

6.12) Calculate the V_T of a Si MOS transistor for an n^+ -polysilicon gate with silicon oxide thickness = 50 Å, $N_d = 1 \times 10^{18}$ cm⁻³, and a fixed charge of $2 \times 10^{10} q$ C/cm². Is it an enchancement-or depletion-mode device? What **B dose** is required to change the V_T to 0 V? Assume a shallow B implant.

6.19-6.20) Calculate the V_T of a Si n-channel MOSFET for an n^+ -polysilicon gate with gate oxide thickness = 100 Å, $N_a = 10^{18}$ cm⁻³, and a fixed oxide charge of 5×10¹⁰ qC/cm². If the MOSFET has $Z = 50 \mu m$, $L = 2 \mu m$, calculate the **drain current** at $V_G = 5$ V, $V_D = 0.1$ V. Repeat for $V_G = 3$ V, $V_D = 5$ V. Assume an electron channel mobility $\mu_n = 200$ cm²/V-s, and the substrate is connected to the source.

6.22) For the MOSFET characteristics shown in the Fig. P6-22, calculate:

- 1. Linear V_T and k_N
- 2. Saturation V_T and k_N

Assume channel mobility, $\mu_n = 500 \text{ cm}^2/\text{V-s}$, and $V_{FB} = 0 \text{ V}$

Self-study Book: อุปกรณ์สารกึ่งตัวนำ Examples 7.1-7.3