Room 1408/8 Maha Vajirunhis Building

(Email) sujin.k AT chula.ac.th

Department of Mathematics and Computer Science,

Chulalongkorn University

(Tel) 66-022185223

Bangkok, THAILAND 10330

Research Interests

·       Partial Differential Equations, Mathematical Analysis, Applied Mathematics, Differential Geometry


1.     S. Khomrutai, A. Manui, and A. Schikorra, Non-blow up at critical exponent for a semilinear nonlocal diffusion equation, Applied Mathematics Letters.

2.     S. Yeepo, W. Lewkeeratiyutkul, S. Khomrutai, and A. Schikorra. On the Calderon-Zygmund property of Riesz-transform type operators arising in nonlocal equations, preprint, submit.

3.     S. Khomrutai and A. Schikorra, On C^{1,\alpha}-regularity for critical points of a geometric obstacle-type problem, Volume 136, April 2020, Journal de Mathématiques Pures et Appliquées, Pages 257-278

4.     S. Khomrutai, Nonlocal equations with regular varying decay solutions, 267(8) 2019, 4807-4840, Journal of Differential Equations.

5.     S. Khomrutai, Weighted Lp estimates and Fujita critical exponent for a nonlocal equation, 184C July 2019, 321-351, Nonlinear Analysis.

6.     S. Khomrutai, Global well-posedness and grow-up rate of solutions for a sublinear pseudoparabolic equation, 260(4) 2016, 3598-3657, Journal of Differential Equations.

7.     S. Khomrutai, Global and blow-up solutions of superlinear pseudoparabolic equations with unbounded coefficient, 122 July 2015, 192-214, Nonlinear Analysis, Theory, Methods, & Applications.

8.     S. Khomrutai, Uniqueness and grow-up rate of solutions for pseudoparabolic equations in Rn with a sublinear source, 48 October 2015, 8-13, Applied Mathematics Letters.

9.     S. Khomrutai and N. Kitisin, Blow-up in non-autonomous semilinear pseudoparabolic equations, ScienceAsia 10 (2014).


·      arXiv.org: Analysis of PDEs

·      Math Journals: Aust MS



Update 07/Dec/2020